
Efficient Pipelined Execution of Sliding Window Queries over Data

Streams

M. A. Hammad T. M. Ghanem W. G. Aref A. K. Elmagarmid M. F. Mokbel

Department of Computer Sciences

Purdue University

West Lafayette, IN., USA

{mhammad,ghanemtm,aref,ake,mokbel}@cs.purdue.edu

Abstract

Emerging data stream processing systems rely on
windowing to enable on-the-fly processing of continu-
ous queries over unbounded streams. As a result, sev-
eral recent efforts have developed window-aware im-
plementations of query operators such as joins and
aggregates. This focus on individual operators, how-
ever, ignores the larger issue of how to coordinate the
pipelined execution of such operators when combined
into a full windowed query plan. In this paper, we
show how the straightforward application of traditional
pipelined query processing techniques to sliding window
queries can result in inefficient and incorrect behavior.
Then, we present two execution techniques, namely the
Time Probing Approach (TPA) and the Negative Tu-
ple Approach (NTA), that guarantee correct behavior
for pipelined sliding window queries. TPA provides the
best performance for sliding window queries that in-
clude a single-window; while NTA performs the best for
sliding window queries that include multiple windows.
A detailed performance study has been conducted us-
ing a prototype stream database system and both real
and synthetic data streams. In addition to correct ex-
ecution, on average, our proposed approaches provide
an order of magnitude reduction in delays of the query
answers when compared to conventional pipelined exe-
cution.

1 Introduction

Data stream applications such as network monitor-
ing, online transaction flow analysis, and sensor pro-
cessing pose tremendous challenges for database sys-
tems. One major challenge is the development of tech-
niques for providing continuously updating answers to

standing queries over potentially unbounded streams.
The basic approach for addressing this challenge is the
introduction of windows for queries. Window clauses
added to standing queries define a continuous segment-
ing of the input data streams. At any instant, the win-
dow defines the set of tuples that must be considered
by the query in order to produce an output. The con-
tinuous application of window clauses as new data ar-
rives at the query processor results in incremental pro-
cessing of input data streams. Combined with various
types of non-blocking query operators, this incremen-
tal processing results in a system that continuously can
provide query answers on-the-fly, even when effectively
the input streams are never-ending.

A number of recent research efforts have introduced
algorithms for windowed versions of one or more rela-
tional operators (e.g., see [3, 6, 8, 20, 21]). Current
techniques, however, are limited in the following as-
pects: (1) Window algorithms have been proposed for
only a few query operators (e.g., joins [6, 12] and ag-
gregates [9, 11, 22]). (2) The focus has been on the ex-
ecution of individual operators. The interaction among
multiple operators in a pipelined query plan has largely
been ignored. (3) Window algorithms have the ability
to add to the output result incrementally. However,
they do not have the ability to undo parts of the previ-
ously reported result, which is an essential operation in
some operators (e.g., MINUS). (4) Scheduling strate-
gies such as Chain [1] and Train processing [4] have fo-
cused on memory optimization for processing streams
with high input rates. As we discuss later in the pa-
per, these techniques do not address the problems that
arise when considering pipelined execution of window
queries with highly selective operators or low arrival
rates of input streams.

In this paper, we address limitations faced in stream
query processing by introducing the Time Probing and

Negative Tuple approaches to handle pipelined query
execution. The Time Probing Approach (TPA for
short) utilizes the notion of time to expire stored tu-
ples during query execution. TPA provides the best
performance for sliding window queries with a single
time window and can be easily integrated with many of
the window operators proposed in the literature. The
Negative Tuple Approach (NTA for short) builds on
a different and more general model of execution. In
this model, the processing of a sliding window query
can be expressed as processing a sequence of positive
and negative tuples [16] or as processing a sequence of
insertions and deletions [2]. NTA provides the best per-
formance of sliding window queries with multiple win-
dows and can accommodate general notions of window
expiration and predicate windows easily. We study the
proposed approaches for sliding window queries with ei-
ther single or multiple windows (i.e., a different window
for each input stream [18]) while considering a wide
span of stream arrival rates. The proposed approaches
are implemented inside a prototype stream query pro-
cessor, Nile [16], which executes optimizer-based query
evaluation plans that consist of multiple pipelined op-
erators. Pipelined operators are connected through
First-In-First-Out (FIFO) queues. Similar execution
models are adopted in other stream processing sys-
tems (e.g., Fjord [19], Aurora [3] and STREAM [21]).
Many variants of window queries are proposed in the
literature; for concreteness, in this paper we focus on
one particular (and we believe, common) window query
type, namely, sliding window queries that are defined
in terms of time units.

The contributions of this paper can be summarized
as follows:

1. We present a definition of correctness for sliding-
window query plans and show how the straightfor-
ward application of existing pipelined query pro-
cessing techniques can result in incorrect or ineffi-
cient behavior (Section 2).

2. We propose two approaches, namely the Time
Probing and Negative Tuple approaches, for cor-
rect and efficient execution of pipelined query
plans (Section 3).

3. We present a classification of window operators
based on their input/output characteristics. We
describe new algorithms for the windowed opera-
tors. (Section 4).

4. We implement the proposed approaches in
Nile [16] and provide a detailed set of experiments
to show the advantages of the proposed schemes.
The experiments are performed using both real

and synthetic data streams (Section 5 and Sec-
tion 6).

The rest of the paper is organized as follows. Sec-
tion 2 provides the definition of correctness. In Sec-
tion 3, we propose the Time Probing and Negative Tu-
ple approaches for correct and efficient pipelined query
execution. Section 4 describes a classification of win-
dowed operators, and presents new algorithms for the
windowed operators. In Section 5, we present the real-
ization of the proposed approaches inside a prototype
stream database engine. Section 6 provides an exten-
sive set of experiments that study the performance of
the proposed approaches. Section 7 highlights related
work in stream query processing. Finally, Section 8
concludes the paper.

2 Correctness and Motivation

In this section, we introduce a definition of correct-
ness of continuous sliding window queries. Then, we
show that the conventional pipelined execution fails to
adapt to the correctness definition. The correctness
measure assumes that both input and output tuples are
timestamped and that the order of processing of input
tuples is preserved. In other words, the query operators
always produce their output tuples with timestamps
that are monotonically increasing.

2.1 Correctness Measure

Let WQ(I1, I2, . . ., In, w1, w2, . . . , wn) be a sliding
window query, where Ij is the jth input data stream
and wj is Ij ’s sliding window.

Definition 1 A correct execution of WQ must pro-
vide, for each time instance T , output that is equiva-
lent to that of a snapshot query Q that has the follow-
ing properties: (1) Q is a relational query consisting of
WQ with its window clauses removed. (2) The input
to Q from each stream Ij is the set of input tuples that
arrived during the time interval T − |wj | and T .

Similar notions of correctness have been proposed in
other systems, e.g., [21, 24].

2.2 Problem I: Delayed Answers

Figure 1(a) gives the SQL representation and
pipelined execution plan of the continuous sliding win-
dow query Q1 “Continuously, report the total sales of
items with price greater than 4 in the last hour”. The
Select and SUM operators are scheduled as in the con-
ventional query pipeline (Input Triggered Approach).

SELECT SUM(S.Price)

WINDOW 1 hour;
WHERE S.Price > 4
FROM SalesStream S

S2

S3

S1

T1

C

S2

S3
6

S1

22
C

28

6 5 8

6 9 2 2 8

86

28

28

w

6 9 2 2 5 8 2

9

w

(a) Delayed Answers

S2

S3

S1

20

T5

C
20

5 7

2 2 5 8 2 3 4 7

w

2 73 4

3 4 7

2T

8

5

5

9

(b) Incorrect Results

R

S

C

R

S

S−R

C

T1

A C

G

B C

T2

B

S−R

E

w

w
C

C

C

E GH

B

SELECT * FROM SFROM (
MINUS

SELECT * FROM R) S1
GROUP BY S1.ItemID
WINDOW 1 hour;

A C

A

−A

A

A

A

A

B

B

B

H

A

Invalid

SELECT S1.ItemID, MAX(S1.Quantity)

S2

S3

σ

S1

S1 > 4

SUM

Group−By

MINUS

S−R

S R
Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

Time

TimeCorrect
Output

Output
Correct

Output
Correct

Correct
Output

Correct

Output

Time

Time

Time

Time

Time

Time

Time

Time

Figure 1. Motivating examples

In the Input Triggered Approach, an operator, say Op,
is scheduled only when an input tuple arrives at Op’s
input. S1, S2, and S3 represent the input stream, the
output stream after the Select operator, and the final
output stream after applying the SUM operator, re-
spectively. Stream C represents the expected correct
output from Q1 when the query reacts to the arrival of
new input as well as the expiration of the tuples exiting
from the sliding window. For simplicity, in the exam-
ple, we assume that tuples arrive at equal intervals. At
S3, the reported value for the sum is correct at times
T1 (28) and T5 (20), but is incorrect in between. For
example, the correct output at time T2 is 22 (due to
the expiration of the old tuple 6). Similarly, at time
T2 + 1 (not shown in the figure), the correct SUM is
13 due to the expiration of tuple 9). However, because
of the Input Triggered scheduling, the SUM operator
will not identify its expired tuples until receiving an
input at time T5. Note that the SUM operator could
have reported the missing values (e.g., 22 and 13) at
time T5. In this case, the output in S3 at time T5 will
match the correct output. However, this is totally de-
pendent on the pattern of input data and will include a
significant delay. For example, in S3, if both 22 and 13
are released immediately before 20, the output delays
for each is T5 − T2 and T5 − T3, respectively. Thus, at
best, the Input Triggered Approach would result in an
increased delay of the output.

2.3 Problem II: Incorrect Result

Figure 1(b) gives the SQL representation and
pipelined execution plan for Q2 “For each sold item
in SalesStream S and not in SalesStream R, contin-
uously report the maximum sold quantity for the last
hour”. S and R represent the two input streams to
the MINUS operator, while S −R and C represent the
output and the correct answer, respectively. Until time
T1, the MINUS operator provides a correct answer. At
time T2, A is added to R and therefore, A is no longer
a valid output in S −R. Notice that A was still within
the current window when A became invalid. In this
case, the MINUS operator needs to invalidate a previ-
ously reported output tuple by generating an invalid
output tuple. Let A− be the invalid output tuple pro-
duced by MINUS in the correct output of Stream C

at time T2. A− removes any effect of the previously
output A in Stream C. Note that, in this scheme, par-
ent operators of MINUS (e.g., Group-By in this case)
must be able to react to the arrival of an invalid tuple.
Thus Q2 indicates that the incremental evaluation of
window operators needs to incorporate a new type of
output/input tuple, i.e., invalid tuple.

3 Proposed Scheduling Approaches

3.1 Approach I: Time Probing

Recall that in the example of Figure 1(a), the incor-
rect output was the result of scheduling higher opera-
tors in the query plan only when input tuples exist at
their input queues (e.g., the SUM operator). The Time
Probing Approach (TPA, for short) avoids this delayed
processing by scheduling an operator when any of the
following two events happen. The first event is when an
input tuple arrives at the operator’s input queue. The
second event is when a stored tuple expires. The sec-
ond event can only occur for statefull operators (i.e.,
operators that store a set of tuples during execution
such as window join and window aggregate operators).
The steps of the TPA-Scheduler are as follows:

1. Retrieve the next operator, say Op, from the queue
of scheduled operators.

2. If an input tuple, say t, exists at the input queue
of Op, then schedule Op to process t.

3. If Op is a statefull operator and a stored tuple, say
to, in Op expires, then schedule Op to remove to

and produce a new output (if any).

SELECT SUM(S.Price)

WINDOW 1 hour;
WHERE S.Price > 4
FROM SalesStream S

S2

S3
Time

Time

S1
Time

Time
Output

C

5
T

S2

S3

Time

S1
Time

Time
Output

C
T
6

2 5 8 2 3 4 7

85

385

5 8

w

w
Delay

20

2 4

4

1

17 242

15

Correct

Correct

8

7

7

13

σ

S1

SUM

S3

S2

S1 > 4

Figure 2. Voluntary expiration problem

The first two steps of the TPA-Scheduler are self-
explained. Step 3 schedules a statefull operator to ex-
pire a stored tuple even without a new input tuple. No-
tice that the näıve implementation of this step, which
voluntarily expires a stored tuple based solely on the
operator’s clock, could produce incorrect results as we
illustrate by the example in Figure 2. In this example,
we introduce a three clock-tick delay between the time
that the tuple of value 7 is received at S1 and the time
it is received at S2. Such delays are likely to occur
as tuples incur different processing speeds with differ-
ent operators. Stream C represents the correct results
when receiving and processing the input value 7 with
no delays (in this case the Stream C will be similar to
the case in Figure 1(a) at time T5). As a result of ex-
piring stored tuples voluntarily, the SUM operator will
expire tuple 5 at T6 and produce an incorrect SUM 8
in S3. Notice that value 8 never occurs in Stream C.
Moreover, the correct SUM value of 20 (in Stream C

at time T5) never appears in Stream S3. Thus, by vol-
untarily expiring old tuples without checking for new
tuples, which could be delayed in the pipeline, the op-
erator can produce a nondeterministic and incorrect
output.

Therefore, when scheduling an operator in Step 3,
the operator probes its descendants in the pipeline for
the oldest tuple, say to, that is being processed. The
probe path ends at another stateful operator or at the
scan operator. Since tuples always arrive at an oper-
ator in increasing timestamp order, the operator can

S1

S2

S
T2 T

3
1 3T

SUM

(a) (b)

σ

GetTime()

LocalClock

S2S1

S3

6 9

6 9

w

2 2 5 8 2 3

85

28 22 13

Time

Time

Time

W−MAX

Figure 3. The Time Probing Approach

use the timestamp of to to determine whether or not a
stored tuple, t, can be expired. Let |w| be the window
size and TS be the timestamp of tuple t. Then, t is
expired during a time probe only if: to.TS - t.TS >

|w|. This condition is valid for a sliding window query
WQ with a single window. For sliding window queries
that contain multiple windows, each tuple’s timestamp
is compared against its source window size.

3.1.1 Implementation

In general, intermediate tuples in TPA (e.g., the out-
put tuples from the window join) needs to maintain
more than one timestamp, each from their constituent
input tuples. This is important since the expiration
condition is always evaluated against a single-window
size per timestamp. We refer to the minimum and the
maximum timestamps of the set of the tuple’s times-
tamps as minTS and maxTS, respectively, (or tuple-
order for short). For the special type of sliding win-
dow queries that use a single window among the input
data streams, the intermediate tuple needs to maintain
only two timestamps, minTS and maxTS, regardless
of the number of joined data streams. Every state-
full operator in the pipeline stores the value of maxTS

corresponding to the last processed (or probed) tuple.
We refer to this value as the LocalClock of the oper-
ator. Furthermore, each statefull operator provides a
mechanism to report its LocalClock, when probed by
a parent operator in the pipeline. We extend the tra-
ditional operator iterator interface (i.e., Open(), Get-
Next(), and Close()), to include a new call-back inter-
face, GetTime(), that returns the value of LocalClock.
Figure 3(a) illustrates TPA when the windowed MAX
operator (W-MAX) is scheduled to verify tuple expira-
tion. W-MAX calls GetTime() on W-MAX’s immedi-
ate child operators thereby updating W-MAX’s Local-
Clock.

Example. Figure 3(b) gives the execution of TPA for
the example of Figure 1(a). Recall that, in the exam-

a3,b4
a3,b5
a3,b6
a3,b7
a4,b4
a4,b5
a4,b6
a4,b7
a5,b4
a5,b5
a5,b6
a5,b7
a6,b4
a6,b5
a6,b6
a6,b7
a7,b4
a7,b5
a7,b6
a7,b7

(6)

(7)

(8)

a
3
a
4
a
5
a
6
a
7

b
4
b
5
b
6
b
7

8
T

7
T

Time

Time

S1 S2

(5)
(4)
(3)
(2)
(1)

w1

S2(w2)S1(w1)

S3

Aggregate

(a) (b)

S2

S1

w2

Figure 4. Expiring tuples in sliding window
queries with multiple windows

ple, input tuples exist at every clock tick. Then, the Se-
lect operator can always update its LocalClock without
further probing. At time T2, the SUM operator does
not receive any new tuples and tuple 6 expires. Thus,
the SUM operator is scheduled to probe the Select op-
erator asking for the Select operator’s LocalClock. The
Select operator replies back with the timestamp of the
tuple of value 2. Then, the SUM operator recognizes
that it has to expire the old tuple with value 6, and
hence, update the answer of Q1 to be 22. Similarly,
the answer at T3 is updated to be 13.
Processing of Invalid Tuples. The processing of
invalid tuples (e.g., that could be produced from the
MINUS operator) depends on the type of the window
operator. In Section 4, we present a classification of
the window operators and algorithms for the window
operators.

3.1.2 Discussion

One implicit assumption in the design of window-based
statefull operators (e.g., window join [12] and window
aggregate [9]) is that tuples stored in the operator’s
state (in-memory buffer) are ordered by their times-
tamps. In this case, detecting tuple expiration is sim-
plified by examining a small number of tuples at the
beginning of the sorted state. This ordering is feasible
when considering a sliding window query with a sin-
gle window. However, for a sliding window query with
multiple windows, intermediate tuples may expire in
any order. We illustrate this case by the example in
Figure 4(a). Stream S1 has a window of size 5 time
units and Stream S2 has a window of size 4 time units.

S2

T3T2T1

(a) (b)

3S

1S

6 9 2 2 5 8
−6 −9

2 3

−9−68596

28 22 13

w

W−Expire

S1 S2

S3
W−ExpireW−Expire

Time

Time

Time

MAX

Figure 5. The Negative Tuple Approach

Assume a Cartesian product between S1 and S2. Fig-
ure 4(b) gives the output tuples (similarly, the tuples
stored in the Aggregate buffer) at time T7. Assume
that tuples are sorted on the timestamp of S1. At time
T8, tuple a3 expires from Stream S1 while tuple b4 ex-
pires from Stream S2. Since tuples in Figure 4(b) are
sorted based on the timestamp of S1, few comparisons
are sufficient to discover the expired tuples that corre-
spond to a3 in Stream S1. These tuples are marked (1)
to (4) in Figure 4(b). However, to expire tuples that
correspond to b4 (in Stream S2) we need to scan the
buffer sequentially since no sorting order is maintained
on the timestamp of S2 1. These tuples are marked (5)
to (8) in the figure. Therefore, in contrast to single-
window queries, when using TPA for multiple-window
queries, the CPU cost for expiring old tuples is propor-
tional to the buffer size (sequential scan), and hence
can be costly. In the following section, we propose a
scheduling approach that overcomes this drawback.

3.2 Approach II: Negative Tuples

The Negative Tuple Approach (NTA) is inspired by
the fact that, in general, window operators need to pro-
cess invalid tuples (e.g., see Figure 1(b)). A tuple, say t,
that is expired from a sliding window w can be viewed
as a negative tuple t− that goes through the pipeline
following the footsteps of t. t− cancels the effect of t in
all query operators. Negative tuples are another form
of invalid tuples that are produced by the MINUS op-
erator. NTA unifies the handling of both invalid and
negative tuples. With negative tuples, query operators
in NTA can be scheduled using the Input Triggered
scheduling, i.e., an operator is scheduled only when a
tuple exists at its input queue. Notice that in the ex-
istence of negative tuples, Input Triggered scheduling

1We could have another sorted data structure to speed lookup
at the second timestamp. However, this approach is not scalable
with the number of joined streams and includes the additional
cost of maintaining the sorted data structure

will always produce correct output with no delays.

3.2.1 Implementation

Every tuple in NTA stores a single timestamp, TS. Bi-
nary query operators (e.g., window join) use the TS
of an input tuple to preserve ordered execution among
the input data streams. The timestamp of the output
tuple is a single timestamp that equals the maximum
timestamp of the operator’s input tuples. Notice that,
in contrast to TPA, NTA does not expire a tuple based
on the tuple’s timestamp. Instead, tuple expiration in
NTA depends on the value, rather than the timestamp,
of the input negative tuple.

Since negative tuples are synthetic tuples, we need a
new mechanism to generate negative tuples for each in-
put stream. We illustrate this mechanism by a concep-
tual new operator, W-Expire (see Figure 5(a)). In Sec-
tions 5 and 6, we present efficient implementations of
the conceptual W-Expire operator. For an incoming tu-
ple t, W-Expire performs the following steps: (1) Store
t in W-Expire’s window structure. (2) Forward t to
the parent operator. (3) Produce the negative tuple t−

when t is expired due to the sliding window. t− has
the same attributes as those of t and is tagged with a
special flag that indicates that this tuple is negative.
Other query operators should be extended to process
negative tuples. On the other hand, with NTA, query
operators (that can process negative tuples) no longer
need the window constraint to guide their execution,
e.g., to expire an old tuple.

Example. Figure 5(b) gives the execution of NTA
for the example in Figure 1(a). At time T2, the tuple
with value 6 expires. Thus, it appears in S1 as a new
tuple with value -6. The tuple -6 passes the selection
filter as it follows the footsteps of tuple 6. At time T2,
the SUM operator receives a negative input with value
6. Thus, SUM updates its output value to 22. Similarly
at time T3, SUM receives a negative tuple with value
9. Thus, the result is updated to 13.

3.2.2 Discussion

A major advantage of NTA is that it is very simple to
implement. The adaptation of other query operators
to handle negative tuples properly is needed anyway,
to support invalid tuples. Such adaptation is needed
even in TPA. The simplicity of NTA makes it suitable
for stream query processing engines. On the other side,
an obvious disadvantage of NTA is that it doubles the
number of tuples that go through the query pipeline 2.

2Optimizations that reduce the number of negative tuples
floating in a query evaluation pipeline is possible and is a very
interesting research area that the authors of this paper address

This overhead is more evident when compared to TPA,
especially, for single-window queries. For multiple-
window queries, TPA incurs significant CPU process-
ing while expiring stored tuples, (i.e., O(λ|w|), where
λ is the input rate and |w| is the window size). This
overhead is negligible in NTA since NTA depends on
the value of the negative tuple, in contrast to the times-
tamp, to expire old tuples. By designing statefull op-
erators that maintain an ordered state based on the
tuples’ values, the overhead of expiring tuples can al-
ways be bounded to a few comparisons. We compare
the performance of the Time Probing and Negative Tu-
ple approaches for queries with a single-window and
multiple windows in Section 6.

4 Classification and Design of Window

Operators

In this section, we provide execution models for
pipelined window query operators, and present algo-
rithms of the windowed operations.

4.1 Classes of Window Operators

Based on the type of input and output tuples, we
distinguish among four cases of window query opera-
tors:

• Case 1: A positive tuple, t+out, is produced at the
output stream as a result of a positive tuple, t+in,
being added to the input stream.

• Case 2: A negative tuple, t−out, is produced at the
output stream as a result of a positive tuple, t+in,
being added to the input stream.

• Case 3: A positive tuple, t+out, is produced at the
output stream as a result of a negative tuple, t−in,
being added to the input stream.

• Case 4: A negative tuple, t−out, is produced at the
output stream as a result of a negative tuple, t−in,
being added to the input stream.

Cases 1 and 4 can arise in all window operators. For
example, consider the windowed aggregate operator.
For Case 1, when this operator receives an input tu-
ple t+in, a new aggregate value t+out could be produced.
For Case 4, when a negative tuple t−in becomes an in-
put to the operator, and assuming that t+in results in
an earlier output, then the aggregate tuple t−out should
be produced. t−out indicates that the corresponding ag-
gregate value is no longer part of the output stream.

in a separate setup and is beyond the scope of this paper.

DISTINCT

S2

S1
WINDOW 1 hour;

SELECT DISTINCT S.ItemID

FROM SalesStream S

Time

Time(III)

S1

C

5

c d a a

edc

c d e a d

TCorrect
Output

S2

w

Time
ae ad

Time

(I)

S1

S2

C
Correct
Output

Time

1

b a c d e

edcab

b a c

w

d e a
Time

T

Time

Time

Time

S1

S2

C

3T

a c d e a d a

edcab

b a c d e a

w

Correct
Output

(II)

b

Figure 6. Unexpected answers from the DIS-
TINCT operator

Cases 2 and 3 are special to some window operators as
will be explained in the following subsection.

4.2 Window DISTINCT (W-DISTINCT)

Problem Description
Conventional approaches for duplicate elimination can
produce incorrect output when applied to sliding win-
dow queries as we illustrate by the following example.
Figure 6 gives a sliding window query that contains a
windowed DISTINCT operation. S1, S2, and C rep-
resent the input stream, the output stream after the
DISTINCT operator, and the correct output from the
DISTINCT operator, respectively. S2 reports correct
answers until time T1. However, at time T3, tuple a of
Stream S2 expires. Since tuple a was one of the distinct
tuples of Stream S2, the window-output of Stream S2
at time T3 does not reflect the correct distinct values
(compared to Stream C). Similarly, at time T5, tu-
ple d expires from Stream S2 and the distinct tuple in
S2 (a single tuple e) does not reflect the correct dis-
tinct tuples at T5 (the distinct values at time T5 are
the tuples e, a, and d). This incorrect output of the
DISTINCT operator results from ignoring the effect of
tuple expiration.
The W-DISTINCT Algorithm
Similar to the traditional hash-based duplicate-
elimination algorithm [13], the windowed DISTINCT
algorithm (W-DISTINCT) compares an input tuple

Algorithm 4.1 The W-DISTINCT Algorithm

1) For all expired tuples, te, in H
2) Remove te from H
3) If te is found in DL /*te was reported as distinct*/

4) Remove te from DL
5) Probe H using the values of te
6) If a matching tuple is found in H

/* A duplicate of the expired tuple

still exists in the current window*/

7) Add te to DL and to the output stream.

8) Else If input tuple was t−e
9) Add t−e to the output stream
10) EndIf
11) EndIf
12) EndIf
13) Delete te
14) EndFor
15) If new tuple tn exists at the input stream
16) Probe H using the values of tn
17) If no matching tuple is found in H

/* Tuple tn is distinct */

18) Add tn to DL and to the output stream
19) EndIf
20) Add tn to H
21) EndIf

tn with the set of previously received tuples (stored
state). If tn is distinct, W-DISTINCT inserts tn in the
output stream and adds tn to the stored state. On
the other hand, W-DISTINCT differs from the tradi-
tional duplicate-elimination algorithm on the following:
(1) The stored state represents the set of tuples in the
last window (old tuples are dropped from the window).
(2) W-DISTINCT outputs a new tuple t to replace an
expired tuple te, whenever te was produced before as
a distinct tuple and t is a duplicate for te. Typically,
this is Case 3 that is presented in Section 4.1.

W-DISTINCT uses the following two data struc-
tures: (1) A hash table, H , to store the distinct tu-
ples in the current Window, and (2) a sorted list, Dis-
tinct List (or DL for short), to store all output dis-
tinct tuples sorted by their minTS. Given these data
structures, Algorithm 4.1 illustrates the steps of the
W-DISTINCT operator. Expired tuples in Step 1 of
the algorithm are identified either when the timestamp
of the tuples is far by more than window from the Lo-
calClock or when an invalid (similarly negative) tuple
is received.

Consider the example in Figure 6 while using the
proposed W-DISTINCT Algorithm. At time T3, tu-
ple a of Stream S2 expires and the condition in Step 3
of W-DISTINCT is True. Therefore, Steps 4-7 of W-
DISTINCT will produce a new output tuple, a, which
represents the correct answer as in Stream C. Simi-
larly, W-DISTINCT produces a correct output both at

time T5 and when tuple d expires.
Analysis of the W-DISTINCT Algorithm
W-DISTINCT features a regulating property for its
output rate as we illustrate by the following analysis
and in the experimental section.

The window size is defined in time units with length
|w|. The mean time between tuple arrivals in the input
stream follows an exponential distribution with rate λ

tuples/second. Therefore, the window size in terms of
number of tuples is λ|w| tuples, on average. Let nkey be
the total number of distinct tuples in the input stream.
For example, if the stream is a sequence of alphabetical
letters, then nkey = 26. We assume a uniform distribu-
tion for the input data streams. As a result, each tuple
has equal probability (1

nkey
) to appear as the next in-

put in any data stream. To measure the output rate,
we consider a period of execution of time length |w|
and calculate the number of distinct tuples, Nd, in this
period. The output rate equals the ratio Nd

|w| .

For a new tuple, td, the probability, Probd, that td is
distinct in window size λ|w| equals the probability that
no tuple with the same value as td already exists in the
same window. Therefore, Probd equals (1 − 1

nkey
)λ|w|.

For a set of size nkey , the number of tuples that does
not belong to window λ|w| is nkey(1 − 1

nkey
)λ|w| and

the number of distinct tuples that belong to window w

is:
Nd = nkey(1 − (1 − 1

nkey
)λ|w|) (1)

Therefore, the output rate is Nd

|w| . From the previous

equation, we observe the following: (1) The output rate
stabilizes (becomes almost constant) when the input
rate increases (e.g., for large λ, OutputRate =

nkey

|w| .

Therefore, for a high input rate, W-DISTINCT reg-
ulates the output rate. This observation supports
the traditional optimization of pushing W-DISTINCT
down the query pipeline to limit the number of prop-
agating tuples. (2) The output rate decreases as we
increase the window size, and vice versa.

4.3 Window Set Operations

The window UNION (W-UNION) operator is
straightforward and can be implemented with little
modification using traditional UNION operator. How-
ever, W-UNION must process input tuples from differ-
ent sources in-order (increasing maxTS) and expire its
old tuples. On the other hand, the window MINUS (W-
MINUS) and window INTERSECT (W-INTERSECT)
operators are quite involved. W-INTERSECT has the
similar Cases of Section 4 to those of W-Group-By
(Appendix A), therefore, we choose in this section to
present W-MINUS operator only.

Algorithm 4.2 W-MINUS Algorithm

1) For all expired tuples, te =< Ae, TOe >, from HS or HR

/* Expired tuples from different streams are

processed in their expiration order*/

2) If te ∈ stream S
3) Remove te from HS and update fs(te) in FS

4) Retrieve fr(te) from FR

5) If fs(te) > fr(te)
6) If te /∈ OS

7) Remove from OS tuple ti with oldest minTS
8) Add to the output stream an invalid tuple

< Ai, [TOi.minTS, TOe.minTS + |w|] >
9) Else Remove tuple te from OS

10) EndIf
11) EndIf
12) Else If te ∈ stream R
13) Remove te from HR and update fr(te) in FR

14) Retrieve fs(te) from FS

15) If fs(te) > fr(te)
16) Retrieve from HS tuple tn with the newest maxTS
17) Add to the OS and to the output stream a tuple

< An, [TOn.minTS, TOe.minTS + |w|] >
18) EndIF
19) EndIF
20) EndFor
21) If exists new tuple tn =< An, TOn > at the input stream of S
22) Add tn to HS and update fs(tn) in FS

23) Retrieve fr(tn) from FR

24) If fs(tn) > fr(tn)
25) Add tn to the OS and to the output stream
26) EndIf
27) EndIf
28) If exists new tuple tn =< An, TOn > at the input stream of R
29) Add tn to HR and update fr(tn) in FR

30) Retrieve fs(tn) from FS

31) If fs(tn) ≥ fr(tn)
32) Remove from OS tuple ti with the oldest minTS
33) Add to the output stream an invalid tuple

< Ai, [TOi.minTS, TOn.maxTS] >
34) EndIf
35) EndIf

The W-MINUS between streams S and R produces
in the output stream tuples in S that are not included
in R during the last window. Recalling that in the
example in Figure 1(b), W-MINUS can produce an in-
valid output tuple as it receives a new input tuple (i.e.,
W-MINUS contains Case 2). Furthermore, W-MINUS
can produce new output tuples when a previously in-
put tuple expires (i.e., W-MINUS contains Case 3). To
better understand the last case, consider an expired tu-
ple te from Stream R that has no duplicates in R. In
addition, te has a duplicate tuple in Stream S. When
tuple te expires, the duplicate tuple of te in Stream S

must be reported as the new output tuple. In addition
to Cases 2 and 3, W-MINUS also contains Cases 1
and 4. Therefore, W-MINUS operator presents all the
cases in Section 4.

−

−

Time

Time

R

S

w
C

E GH

AB

A

Time

Time

R

S A C

G

w
B

AH

Time
B A C −A

Time
CABS−R

S−R

E

E

E

Time

Time

R

S
G

B

AH

A C
w

E

E

Time
B A C AS−R

Time

Time

R

S
G

B

AH

w
A C

Time
B A C AS−R

E

E

E

T2

T1 T3

T4

Figure 7. W-MINUS Example.

The proposed W-MINUS Algorithm is duplicate-
preserving (i.e., MINUS ALL). The duplicate free ver-
sion of the operator can be easily implemented by fol-
lowing the W-MINUS with a W-DISTINCT operator.
We adopt the SQL definition of duplicate preserving
MINUS operator, where duplicates are significant in
each stream (e.g., if stream S has n duplicates of tu-
ple a and R stream has m duplicates of tuple a, the
output is max(o, n − m) duplicates of tuples a). The
Algorithm uses the following data structures:

• Hash tables (HS and HR): to store the input tu-
ples from streams S and R, respectively.

• Frequency tables (FS and FR): to store the num-
ber of occurrences for each distinct tuple in S and
R, respectively. We use fs(t) and fr(t) to repre-
sent the count of duplicates for tuple t in Streams
S and R, respectively.

• Output table (OS): to store the output tuples
from Stream S that are not expired or invalidated.

Given these data structures and an input tuples of
the form: < A, T O >, where A represents the values in
the list of attributes and TO is the tuple-order, the Al-
gorithm 4.2 presents the details of W-MINUS operator
for sliding window queries with a single window. The
extension to for sliding window queries with multiple
windows is straightforward. We provide an analysis of
the space and time complexity in Appendix C.

Example. The example in Figure 7 is the same
as that in Figure 1(b), however, with more input tu-
ples. Up to time T1, Stream S contains the tuples
B, A, and C (fs(B) = fs(A) = fs(C) = 1). Since no
corresponding tuples for B, A, and C exists in Stream
R (fr(.) = 0), the tuples are reported in the out-
put stream S − R (Steps 21-27 of the W-MINUS Al-
gorithm). At time T2, tuple A arrives in Stream R

(fr(A) = 1). Since A also appeared in Stream S and
was reported in the output Stream (as part of the dif-

ference set), the W-MINUS produces A− tuple to in-
validate tuple A in the output stream (Steps 28-35).
At time T3, tuple E arrives in Stream S. Since tu-
ple E exists in Stream R, the tuple is not reported
in the Stream S − R. However, at time T4, tuple E

of Stream R expires (fr(E) = 0). At this time, tu-
ple E of Stream S should belong to the difference set.
Therefore, at time T4, tuple E is reported at the out-
put stream (Steps 12-19 of the Algorithm).
Analysis of the W-MINUS Algorithm
The space complexity of the W-MINUS algorithm is
determined by the sizes of the hash table and the fre-
quency table for each input stream. In addition the
Output table size is included in the space complexity
of Stream S. Let λ be the arrival rate for both input
streams and let w be the window size w in time units.
Then, the size of the hash table per stream is λw tu-
ples. The size of a stream’s frequency table depends on
the number of distinct tuples in the window and equals
Nd, as in Equation 1. The worst case size of the Output
table for stream S is the window size λw. Therefore,
the total space requirement of the W-MINUS, SMinus,
is:

SMinus = 2(λw + Nd) + λw

Similar to W-DISTINCT, the time complexity of
the algorithm depends on the search complexity in the
other stream. A tuple from one stream needs to access
the frequency table of the other stream (Algorithm 4.2
steps 4,14,23,30) to search for a match. We assume
that the frequency table has a hash structure. There-
fore, the search complexity depends on the size of the
hash bucket. Let the size of the stream’s frequency
table be Nd (Equation 1). Let Hb be the number
of buckets in the hash table. Then, on average, the
BucketSize = Nd

Hb
.

4.4 Window Aggregate and Group-By

Similar to W-DISTINCT, the correct execution for
window aggregate (W-Aggregate) and window Group-
By (W-Group-By) may produce a new output when
a tuple expires (Case 3 in Section 4). This is the case
since the aggregate operation represents a function over
a set of tuples (e.g., SUM), changing this set (either by
expiration or addition) usually invalidates the value of
the previous output and produces a new output. We
focus in this Section on the W-Group-By operation as
W-Aggregate is a special case of W-Group with a single
group.

To comply with the measure of correctness in Sec-
tion 2, the incremental evaluation of W-Group-By must
have the following properties:

• W-Group-By must react for every change in the
input window contents.

• A group G is no longer part of the current out-
put when all tuples ∈ G expire (the W-Group-By
Algorithm produces a NULL tuple for group G in
this case).

• Operators followed by W-Group-By must be able
to distinguish from the output stream those tuples
that belong to the current W-Group-By result.

To address the last property, W-Group-By assigns
the tuple-order for the output tuples such that only
the output tuples that belong to current window are
part of the result. Furthermore, a basic assumption is
that the latest output value for a group overrides any
previous value for the same group.

We present the W-Group-By Algorithm while con-
sidering a general execution framework that can sup-
port any aggregate function (e.g., SUM, COUNT,
MEDIAN . . . etc). Input tuples has the form
< G, A, TO >, where G represents the values of the
group attributes, A represent the values of the aggre-
gate attributes (attribute ai belongs to A if ai appears
in the AggrFn1(a1). . . AggrFnn(an) list of the SQL
SELECT clause), and TO is the tuple-order of the in-
put tuple. For simplicity we use F to represent the
aggregate functions AggrFn1(.),. . . , AggrFnn(.). We
also use V to refer to set of results after applying func-
tion F on the group tuples. The W-Group-By algo-
rithm uses the following data structures:

• GroupHandle, GH (one for each group): stores the
state of the current group such as current aggre-
gate values and the smallest minTS among all tu-
ples in the group(GH.minTS).

• Hash table, H : stores all tuples in the current win-
dow hashed by values in their grouping attributes.
An entry in H stores the tuple and the correspond-
ing GH and has the form: (< G,A, T O >,GH).

Algorithm 4.3 presents the details of the W-Group-
By operation for sliding window queries with a single
window. The extension to for sliding window queries
with multiple windows is straightforward. Steps 2 to 11
handle tuple expiration, Steps 5 and 6 produce a new
output if the expired tuple belongs to a group that still
contains non-expired tuples. Steps 8 and 9 produce a
NULL value for the empty group. New tuple is handled
by Steps 14 to 21 of the Algorithm. Step 17 creates
new group for new tuples that does not belong to any
of the current groups. Steps 19 to 21 compute a new
aggregate value and produce anew group value. The

Algorithm 4.3 W-Group-By Algorithm

1) For all expired tuples, (< Ge,Ae, TOe >,GHe), in H

2) Remove (< Ge,Ae, TOe >,GHe) from H

3) Probe H with values in Ge

4) If found a matching entry (< Ge,Ah, TOh >,GHe)
/* The group still has non-expired tuples and

should report new aggregate values */

5) Apply Fe for tuples in group Ge to get V.
6) Add < Ge,V, [GHe.minTS, TOe.minTS + |w|] >

to the output stream
7) Else /* The Group expires */

8) Add < Ge, NULL, TOe.minTS + |w| >

to the output stream
9) Delete GHe

10) EndIf
11) Delete (< Ge,Ae, TOe >,GHe)
12) EndFor
13) If exists new tuple < Gn,An, TOn > at the input stream
14) Probe H with values in Gn

15) If not found a matching entry, (< Gn,Ah, TOh >,GHn)
/* Tuple < Gn,An, TOn > forms a new group */

16) Create GHn for Gn

17) EndIf
18) Add (< Gn,An, TOn >,GHn) to H

19) Apply Fn for tuples in group Gn to get V.
20) Add < G,V, [GHe.minTS, TOn.max] >

to the output stream
22) EndIfd

tuple-order of the output tuples is assigned at either
Step 8 or Step 21 of the Algorithm.

4.5 Window Join (W-Join)

Typically, the binary join iterates over all tuples in
one input source (the outer data source) and for each
outer tuple retrieves all matching tuples from the in-
ner data source. For joining data streams, a symmet-
ric evaluation is more appropriate than the fixed-outer
evaluation since both sides of the join can act as outer
to perform the join. The extension of the symmetric
approach for W-Joins over data streams is presented
in [14, 12, 18].

According to the cases in Section 4, W-Join needs to
address Cases 1 and 4. W-Join never produces a new
output as an input tuple expires or produces an invalid
output. W-Join needs to process tuples in increasing
maxTS and assigns tuple-order for its output tuples
as follows: The minTS equals the minimum value of
minTS for all joined tuples. The maxTS equals the
maximum value of maxTS for all joined tuples.

We illustrate the symmetric evaluation of W-Join in

1 3 542 6

1 3 542 6 7

1 3 542 6 7

1 3 542 6 7

Time

Time

T

S

w
b c

x z
4 62

w

Time

Time

T

S b
4 6

5Time

Time

T

S b

z
4 6

w

Time

Time

T

S
zy w

ca
2

db c
64

z w o

8

dc
8

w w

a

<c,z,[5,6]>
<c,y,[3,6]>

<c,z,[5,6]>
<c,y,[3,6]>

<b,w,[4,7]>
<c,w,[6,7]>

<c,w,[6,7]>

d

o

o

w o

d

<c,z,[5,6]> <d,w,[7,8]>
<d,w,[5,8]>

<c,w,[6,7]>
<b,w,[4,7]>

<c,z,[5,6]> <d,o,[8,9]><d,w,[7,8]>
<c,o,[6,9]><d,w,[5,8]>

9

8

y

y

8

Figure 8. W-Join.

Figure 8 assuming a single sliding window of size five

clock ticks. The extension to for sliding window queries
with multiple windows is straightforward.. The output
tuples are presented at each execution times. The W-
Join execution at time 8 starts at top digram in the
second column of Figure 8.

4.6 Processing of Invalid and Negative Tuple

To appropriately handle negative tuples, all
pipelined query operators need to be equipped with
special procedures. In this section, we present the mod-
ifications of all window operators to support negative
tuples in a pipelined query plan. As it is a major ad-
vantage in the Negative Tuple approach, the required
modification are simple and easy to implement.

W-DISTINCT operator. Upon receiving a nega-
tive tuple t−, we distinguish between two cases: (1) t+

was reported as distinct in the output stream. There-
fore, t− must be reported as negative tuple in the out-
put stream. In addition, t− may generate a positive
output similar to the case when expiring an old tuple
in Algorithm 4.1(Steps 1-11). (2) t+ was not reported
as distinct in the output stream and therefore, no need
to report t− in the output stream.

W-MINUS operator. Processing an incoming
negative tuple t− is similar to that of processing an
expired tuple (Steps 3-19 of Algorithm 4.2). Only one
slight addition need to be considered, which is the case
when t− appears in S and was reported before as out-
put (e.g., t ∈ OS). In this case, we produce t− in the
output stream.

Project (with duplicates) and Select opera-
tors. A negative tuple t− is processed in the same way
as a positive tuple t+ (e.g., project out some attributes
or apply the selection predicate).

W-Group-By and W-Aggregate operators.
Processing a negative tuple includes two steps: (1) Re-
moving tuple t+ from the stored state of the operator,
i.e., the set of tuples within the window. (2) Generating

a new output value that represents the new aggregate
value over the new stored state.

W-Join operator. After removing the correspond-
ing tuple t+ from the stored state, t− from one stream
joins with matching tuples in the other stream and pro-
duces negative joined tuples (if any).

5 Prototype Implementation

To study the performance of the proposed ap-
proaches and algorithms, we implemented TPA and
NTA inside a prototype stream query processing en-
gine, Nile [16]. Streaming is introduced using an ab-
stract data type stream-type that can present source
data types with streaming capabilities. To connect a
query execution plan with an underlying stream, we
use the StreamScan operator to communicate with the
stream table and retrieve new tuples. The operators
communicate with each other through a network of
FIFO queues. We implement a scheduler to schedule
operators according to the requirements of TPA and
NTA. We implement the W-DISTINCT algorithm pre-
sented , the W-Set, W-Aggregate, W-Group-By, and
W-Join algorithms in Section 4. Invalid tuples are
tagged with special flags to distinguish them from in-
put tuples (negative tuples are tagged similarly).

We implement the W-Expire operator as part of the
StreamScan operator, which is scheduled upon the ar-
rival of an input tuple. The query execution plan is
constructed using multi-level binary join operations on
the streams and relations in the FROM clause. The
Aggregate, Group-By and DISTINCT operators are
added as separate operators. The window specifica-
tions are added as special constructs for the query syn-
tax as given in Q1 and Q5 of Figures 9.

6 Experiments

In this section, we compare the performance of the
proposed Time Probing Approach (TPA) and the pro-
posed Negative Tuple Approach (NTA) against a mod-
ified version of the Input Triggered Approach (ITA for
short). In this modified version, we maintain the cor-
rectness by producing delayed output tuples (though
delayed) when a tuple is received by the operator. In
addition, ITA uses the same set of operators as in TPA,
however, without probing.

Our measures of performance are the average and
maximum of the output response time and the out-
put throughput. To show the performance of the pro-
posed approaches on various window operators while
using a single window and multiple windows, we con-

σ σ

Q1

SELECT SUM(S.Price)

WHERE

FROM SalesStream S

S.ItemID > Threshold

WINDOW 1 minute;

S

SUM

Q1

Single window

COUNT

DISTINCT

S F

Q2

SELECTSS.ItemID, SUM(SS.Price)

Q3

FROM FavoriteItems FI,
SalesStream SS,
FavoriteStores FS

WHERE FI.ItemID = SS.ItemID
AND SS.StoreID = FS.StoreID

GROUP BY SS.ItemID
WINDOW 1 minute;

Group−By

FI

FS

SS

Q3

Q4

SELECT DISTINCT SA.ItemID
FROM SalesStream_A SA,

SalesStream_B SB
WHERE SA.ItemID = SB.ItemID

AND SA.Price > Threshold
WINDOW 1 minute;

SB

SA

DISTINCT

Q4

Q5

SalesStream_A SA,
SalesStream_B SB

FROM

WHERE SA.ItemID = SB.ItemID
WINDOW (SA) 2 minute AND
WINDOW (SB) 1 minute;

SELECT MAX(SA.Price)

SA SB

MAX

Q5

Multiple windows

SELECT COUNT(DISTINCT S.StoreID)

FROM

WINDOW 1 minute;
WHERE S.ItemID = F.ItemID

SalesStream S,
FavoriteItems F

Q2

Figure 9. Workload queries and their execution plans

sider a workload of five different queries given in Fig-
ure 9. The SalesStream in the queries has the follow-
ing schema: (StoreID, ItemID, Price, Quantity, Tuple-
order), where StoreID identifies the retail store, ItemID
is the sold item identifier, Price and Quantity are infor-
mation about the sold item. Tuple-order is as described
in Section 3. In addition, we use two relational tables
that store favorite items (FavoriteItems) and favorite
stores (FavoriteStores). The schema for FavoriteItems
and FavoriteStores tables is a single attribute (primary
key) for ItemsID and StoreID, respectively. Unless
mentioned otherwise, the predicate selectivity for Q1

and Q4 are set to 0.25. The window join selectivity
in Q4 is 0.6 (the overall selectivity in Q4 is ∼ 0.1)
and the join selectivity in Q2, Q3, and Q5 is 0.1. All
the experiments are run on Intel Pentium 4 CPU 2.4
GHz with 512 MB RAM running Windows XP. We
use synthetic data streams where the inter-arrival time
between two data items follows the exponential dis-
tribution with mean λ tuples/second. In Section 6.2,
we use real data streams that represent online transac-
tions from Wal*Mart stores 3. The arrival rate of the
real data streams is bursty with average 1 tuple/second
(during peak sales time).

6.1 Summary of Workload Queries

Figure 10 gives the output response time for the
five workload queries (Figure 9) when scheduled using
ITA, TPA, and NTA. We use synthetic input streams
with an average arrival rate of 20 tuples/second. In
all queries, ITA incurs significant delays (0.85 seconds
on average and 4.8 seconds maximum). For sliding
window queries with a single-window (e.g., Q1 to Q4),

3Data was supplied to Purdue University by Wal*Mart and
NCR Corporations

Q1 Q2 Q3 Q4 Q5
Workload Queries

0.0

0.2

0.4

0.6

0.8

1.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Average

Input Triggered
Negative Tuple
Time Probing

Q1 Q2 Q3 Q5 Q5
Workload Queries

0.0

1.0

2.0

3.0

4.0

5.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Maximum

Input Triggered
Negative Tuple
Time Probing

(a) (b)
Figure 10. Summary for workload queries

TPA provides the smallest output response time, fol-
lowed by NTA. For Q3 and Q4, NTA has higher output
response time compared with that of TPA. The reason
is that both queries include expensive operators (e.g., a
join followed by a Group-By in Q3 and W-Join in Q4).
Processing both new and negative tuples by such ex-
pensive operators increases processing time and output
response time. For Q5, which uses multiple windows,
NTA has the smallest output response time. This is
the result of the increasing overhead of scanning the
buffer of the MAX operator by ITA and TPA com-
pared to NTA. In the following sections, we present a
set of experiment on sliding window queries with a sin-
gle window followed by a second set of experiments on
sliding window queries with multiple windows.

6.2 Single-window Queries

Variable input rate
Figure 11 gives the performance of the scheduling ap-
proaches for the range of arrival rates between 5 and 40
tuples/second and when applied for Q3 (Q1, Q2, and
Q4 give similar performance measures as Q3). TPA
has better performance followed by NTA and then ITA.

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.00

0.10

0.20

0.30

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Average

Input Triggered
Negative Tuple
Time Probing

0.0 10.0 20.0 30.0 40.0
Input Rate (tuples/second)

0.0

1.0

2.0

3.0

4.0

5.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Maximum

Input Triggered
Negative Tuple
Time Probing

(a) (b)
Figure 11. Changing input rate

0.2 0.4 0.6 0.8 1.0
Selectivity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Average

Input Triggered
Negative Tuple
Time Probing

0.2 0.4 0.6 0.8 1.0
Selectivity

0.0

10.0

20.0

30.0

40.0

50.0

60.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Maximum

Input Triggered
Negative Tuple
Time Probing

(a) (b)

Figure 12. Changing selectivity

The reason is the same as described in Section 6.1. The
performance of all approaches converges as we increase
input arrival rates. This behavior is expected. Higher
input rates produce more tuples that propagate up the
pipeline, hence, refreshing the stored state of window
operators and producing output tuples with shorter de-
lays. However, ITA still provides a higher output re-
sponse time compared to the other approaches. The
main reason is that ITA is greatly constrained by the
underlying operator selectivity. We repeated all the ex-
periments using the Wal*Mart real data streams and
obtained comparable results and trends to those of syn-
thetic data. For space limitations we omit these results.
Changing Selectivity
In this experiment, we use the real data streams from

Wal*Mart stores. Figure 12(a) and 12(b) give the ef-
fect of changing the selectivity (from 0.2 to 1) on the
average and maximum output response times, respec-
tively, when using the various scheduling approaches.
We present only the results of the experiment for Q1

since similar performance is obtained from the other
queries. We set the single-window size to 10 minutes.
With a low selectivity of 0.2 (i.e., high filtering), ITA
has increased response time (4 seconds on average and
maximum of approximately one minute). TPA and
NTA have significant improvement (an order of magni-
tude decrease in average response time). With the in-
crease in selectivity, all the scheduling approaches have
low output response time. This is a result of having
more tuples through the pipeline. With selectivity 1.0
(i.e., no filtration), all the scheduling approaches have

0 5 10 15 20 25 30 35
Number of output tuples (in thousands)

0

100

200

300

400

500

T
im

e
(S

ec
.)

Input Triggered
Negative Tuple
Time Probing

Figure 13. Output Throughput

the same performance. This indicates that for simple
queries that do not have any filtration, ITA can be a
candidate for scheduling. Other scheduling approaches
have a slight increase in the output response time with
the increase in selectivity. This is mainly due to the
additional processing overhead incurred by TPA and
NTA.
High Input Rate
In this experiment, we measure the execution speed of
the various scheduling approaches. We run the work-
load queries using a very high input rate (more than the
maximum capacity of the available system resources).
Then, we measure the number of tuples produced by
each approach at time advances. Figures 13 gives the
execution time needed by the scheduling approach to
output up to 40K tuples for Q4. We use synthetic data
streams with an arrival rate of 2056 tuples/second. ITA
and TPA provide comparable execution times followed
by NTA, since at high data rates no delays are expected
at the output. Therefore, TPA is scheduled similar to
ITA (no probes) and produces similar performance.

6.3 Multiple-Window Queries

Variable Input Rate
Figure 14(a) gives the average and maximum output

5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
Input Rate (tuples/second)

0.10

0.12

0.15

0.18

0.20

0.23

0.25

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Average

Input Triggered
Negative Tuple
Time Probing

5 10 15 20 25 30 35 40 45
Input Rate (tuples/second)

0.5

0.8

1.0

1.2

1.5

1.8

2.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Maximum

Input Triggered
Negative Tuple
Time Probing

(a) (b)

Figure 14. Changing input rate

response times of the scheduling approaches for the
range of input rates between 10 and 40 tuples/second
and when applied for Q5. The join selectivity is set to

0.2. NTA has the best performance, followed by TPA,
and then ITA. This graph supports our conclusion in
Section 3.2.2, where for multiple windows, NTA out-
performs both TPA and ITA. The reason is that TPA
and ITA use sequential scanning for expiring old tu-
ples from the intermediate buffer of the MAX operator.
Alternatively, NTA uses hashing based on the tuple’s
value to identify expired tuples. For high input rate,
the performance degrades in all approaches. However,
ITA has the highest response time since the buffers (in
the join and the MAX operators) increase in size due
to the infrequent refreshing. NTA has better perfor-
mance than TPA due to the fast expiration in the case
of NTA. Similar to the case of average response time,
Figure 14(b) illustrates a similar trend for the case of
the Maximum response time for all three approaches.
However, NTA and TPA incur almost the same maxi-
mum response times since we assume that the system
can keep up with the arrival rate and that no indefinite
postponement is expected.
Changing Selectivity
Figure 15 gives the performance of the scheduling ap-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Join Selectivity (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Average

Input Triggered
Negative Tuple
Time Probing

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Join Selectivity (%)

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

O
u

tp
u

t
R

es
p

o
n

se
 T

im
e

(S
ec

.)

Maximum

Input Triggered
Negative Tuple
Time Probing

(a) (b)
Figure 15. Changing selectivity

proaches for the range of join selectivity between 0.1
and 0.8, when applied for Q5. NTA has the best per-
formance, followed by TPA, and then ITA. The per-
formance converges for all approaches (similar to the
single-window case) as we increase selectivity, which
increases the input rate to the intermediate buffer.
This behavior is expected since higher input rates pro-
duce more tuples to propagate up the pipeline, hence
refreshing the stored state of the window operators
and producing output tuples with lower response time.
However, the output response times increase in all ap-
proaches for high selectivity since the processing times
of tuples increase (more tuples to compare with in the
intermediate buffer of the MAX operator).
High Input Rate
In this experiment we use Q5 and apply the same set-
tings as for the corresponding single window experi-
ment in Section 6.2. As illustrated in Figure 16, NTA
has the best throughput for high data rates followed
by ITA and TPA. TPA and ITA have the same perfor-

0 20 40 60 80
Number of output tuples (in thousands)

0

100

200

300

400

500

600

700

800

T
im

e
(S

ec
.)

Input Triggered
Negative Tuple
Time Probing

Figure 16. Output Throughput

mance since TPA performs almost no probing. As time
advances, all approaches start to encounter higher de-
lays because of the size increase in the inter-operator
queues. However, the rate of increase is much lower
for the case of NTA due to the efficient expiration ap-
proach (no sequential scanning).

6.4 Memory Requirement - Discussion

In terms of memory requirements, TPA and ITA
use lower memory during execution compared to NTA.
However, NTA has many desirable properties in terms
of memory usage such as the following: First, for ag-
gregate functions such as SUM, COUNT, and Aver-
age, the amount of stored state can be significantly
reduced. Instead of storing a whole window of tuples
in the case of TPA and ITA, it reduces to storing a
single value (two values for the average) in the case of
NTA, since the positive/negative tuples can be used
to increment/decrement the stored values. Second, the
W-Expire operator can be integrated as part of the join
buffers in W-Join queries. Therefore, W-Expire will in-
cur no additional memory. Furthermore, to optimize
memory usage by the operators’ queues, our proposed
scheduling approaches can utilize the techniques pro-
posed in [1, 4].

7 Related Work

In this section, we discuss the related work in the
areas of sequence databases, temporal databases, and
continuous query evaluation of streams and append-
only relations.

Sequence databases and temporal databases are
well-studied areas of research in the database litera-
ture. Seshadri et al. [22] present the SEQ model and its
implementation for sequence databases. In this work,
a sequence is defined as a set with a mapping func-
tion to an ordered domain. Jagadish et al. [17] provide
a data model for chronicles (i.e., sequences) of data
items and discuss the complexity of executing a view
described by the relational algebra operators. The fo-
cus of both these efforts was on stored time-ordered

data rather than on the pipelined processing of live
data streams. Snodgrass [23] addresses handling time
in traditional databases. His seminal work includes
SQL formulation to evaluate complex predicates and
joins over the time attributes. Temporal join [26] and
Band-Join [10] are join operators that use a distance-
guided predicate (similar to window join). Push-based
execution of query operators as execution threads con-
nected by queues is listed by Graefe [13] as one de-
sign alternative that is followed by traditional database
systems. Duplicate-elimination and the effect of early
DISTINCT operators on reducing processing work is
addressed in [7]. Early work on extending database
systems to process Continuous Queries is presented in
Tapestry [24] that investigated the incremental evalu-
ation of queries over append-only databases.

Stream query processing is being addressed cur-
rently in a number of prototype systems, e.g., Au-
rora [3], Gigascope [8], Nile [16], STREAM [21], and
Telegraph [5]. These projects have recognized the need
for sliding windows in order to make queries over data
streams practical. However, to date, these systems
have not detailed how they address the problems re-
sulting from pipelined sliding-window queries over data
streams. Thus, our work is largely complementary to
these other projects. Finally, work on punctuating data
streams [25] is related to NTA. However, punctuations
have been used to delineate among groups of tuples
rather than to refer to a single tuple as in NTA.

8 Conclusions

We have described a correctness measure for the
pipelined execution of sliding window queries. We pro-
posed two scheduling approaches to guarantee the cor-
rect execution. The Time Probing Approach (TPA)
synchronizes the local clock of each operator based
on the most recent processed or probed tuple. The
Negative Tuple Approach (NTA) uses the new idea of
propagating special tuples (negative tuples) to undo
the effect of the expired tuples. TPA gives the best
performance for sliding-window queries with a single-
window for low as well as high input rates. NTA gives
the best performance for sliding window queries with
multiple windows for low as well as high input rates.
Between the two proposed approaches, the Negative
Tuple Approach was the simplest to implement. We
described the various combinations of input and out-
put tuples using the positive-negative tuple paradigm.
This classification helps in identifying various classes of
sliding-window operators. We presented one example
of an incremental algorithm for the window DISTINCT
operator. We performed experiments based on an im-

plementation of the two proposed approaches and al-
gorithms in Nile, a prototype stream query processing
engine. The results show that the proposed scheduling
algorithms provide more than an order of magnitude
reduction in output response time when compared to
the Input Triggered Approach. Remarkably, this per-
formance is achieved for input data streams with low
arrival rates.

References

[1] B. Babcock, S. Babu, , M. Datar, and et al. Chain: Opera-
tor scheduling for memory minimization in stream systems.
In SIGMOD, June, 2003.

[2] S. Babu, R. Motwani, K. Munagala, and et al. Adaptive
ordering of pipelined stream filters. In SIGMOD, Jun.,
2004.

[3] D. Carney, U. Cetintemel, M. Cherniack, and et al. Moni-
toring streams - a new class of data management applica-
tions. In VLDB, Aug., 2002.

[4] D. Carney, U. Cetintemel, A. Rasin, and et al. Operator
scheduling in a data stream manager. In VLDB, Sep., 2003.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, and et al.
Telegraphcq: Continuous dataflow processing for an uncer-
tain world. In CIDR, Jan., 2003.

[6] S. Chandrasekaran and M. J. Franklin. Streaming queries
over streaming data. In VLDB, Aug., 2002.

[7] S. Chaudhuri and K. Shim. Including group-by in query
optimization. In VLDB, Sep., 1994.

[8] C. D. Cranor, T. Johnson, O. Spatscheck, and et al. Gi-
gascope: A stream database for network applications. In
SIGMOD, June, 2003.

[9] M. Datar, A. Gionis, P. Indyk, and et al. Maintaining
stream statistics over sliding windows. In ACM-SIAM
Symposium on Discrete Algorithms, 2002.

[10] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An
evaluation of non-equijoin algorithms. In VLDB, Sep.,
1991.

[11] J. Gehrke, F. Korn, and D. Srivastava. On computing cor-
related aggregates over continual data streams. In SIG-
MOD, June, 2001.

[12] L. Golab and M. T. Ozsu. Processing sliding window multi-
joins in continuous queries over data streams. In VLDB,
Sep., 2003.

[13] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73–170, 1993.

[14] M. A. Hammad, W. G. Aref, and A. K. Elmagarmid.
Stream window join: Tracking moving objects in sensor-
network databases. In SSDBM, July, 2003.

[15] M. A. Hammad, T. Ghanem, W. Aref, and
et al. Efficient pipelined execution of slid-
ing window queries over data streams. In
http://www.cs.purdue.edu/homes/mhammad/TR.pdf.
Technical Report CSD TR#02-010, June, 2004.

[16] M. A. Hammad, M. F. Mokbel, M. H. Ali, and et al. Nile: A
query processing engine for data streams. In ICDE, Mar.,
2004.

[17] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View
maintenance issues for the chronicle data model. In PODS,
May, 1995.

[18] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating win-
dow joins over unbounded streams. In ICDE, Feb., 2003.

[19] S. Madden and M. Franklin. Fjording the stream: An ar-
chitecture for queries over streaming sensor data. In ICDE,
Feb., 2002.

[20] S. Madden, M. J. Franklin, J. M. Hellerstein, and et al.
The design of an acquisitional query processor for sensor
networks. In SIGMOD, June, 2003.

[21] R. Motwani, J. Widom, A. Arasu, and et al. Query process-
ing, approximation, and resource management in a data
stream management system. In CIDR, Jan., 2003.

[22] P. Seshadri, M. Livny, and R. Ramakrishnan. The design
and implementation of a sequence database system. In
VLDB, Sep., 1996.

[23] R. T. Snodgrass. Developing Time-Oriented Database Ap-
plications in SQL. Morgan Kaufmann, 2000.

[24] D. Terry, D. Goldberg, D. Nichols, and et al. Continuous
queries over append-only databases. In SIGMOD, June,
1992.

[25] P. A. Tucker, D. Maier, T. Sheard, and et al. Exploit-
ing punctuation semantics in continuous data streams. In
TKDE, 15(3):555-568, May, 2003.

[26] D. Zhang, V. J. Tsotras, and B. Seeger. Efficient temporal
join processing using indices. In ICDE, Feb., 2002.

