
CS 354 (Park) Final May 2 (Tue.), 2023

Remarks: Keep the answers compact, yet precise and to-the-point. Long-winded answers that do not address the key
points are of limited value. Binary answers that give little indication of understanding are no good either. Time is
not meant to be plentiful. Make sure not to get bogged down on a single problem.

PROBLEM 1 (40 pts)

(a) Describe a simple example of a deadlock for an app comprised of two processes. How would a kernel detect that
the two processes are deadlocked? What is the rationale for a kernel not to provide deadlock detection service to
app processes? Besides careful programming, what technique can a programmer who codes the app use to guarantee
that the two processes will not deadlock?

(b) What are the two main benefits that DMA provides for supporting video streaming from a digital video camera
(e.g., webcam) by modern kernels? What are the two items commanded by the lower half to a DMA controller to
instruct it what to do? Suppose a producer/consumer kernel buffer is shared between lower half and upper half for
video streaming. Who is the producer (or writer) of the kernel buffer? Who is the consumer (or reader)? Be precise
in characterizing the “who” parts based on our discussion of how IPC coordination/synchronization mechanisms are
borrowed for device I/O.

PROBLEM 2 (40 pts)

(a) What are the similarities and differences between FAT and XINU file systems? What is the main weakness of
both file systems? Despite the weakness, why are FAT file systems relevant in today’s real-world environment? Why
is FAT not suited as the main file system of commodity kernels? How do UNIX/traditional file systems address the
weakness? What are the resultant concrete benefits?

(b) What is the meaning of tickful kernel? Why is the 1 msec granularity counter implemented in lab assignments
in XINU potentially inaccurate as a wall clock timer due to how XINU is designed? How would XINU’s upper and
lower halves need to be changed to mitigate this inaccuracy? What is the meaning of a tickless kernel? Describe
the conditions under which a tickless design may be preferable to a tickful design, and why. What is the role of an
interval timer in a tickless kernel?

PROBLEM 3 (20 pts)

What is the technical meaning of page fault? What is the rationale behind kernels handling page faults instead of
hardware? Assuming a free frame is available, what tasks are performed by a kernel when a page fault occurs up
until the moment the page faulting process becomes ready to resume executing? How is context-switching overhead
affected in kernels that support virtual memory? Why is the practice of mapping kernel memory to the same virtual
memory address space across all processes beneficial for reducing context-switch overhead?

BONUS PROBLEM (10 pts)

When discussing design and implementation of kernels we considered correctness and performance as key criteria
where the latter pertained to overhead (i.e., time complexity) of algorithms to carry out a task. Describe two examples
we discussed where “performance” had a different aspect or meaning, not related to overhead of code implementing
an algorithm.


