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ABSTRACT 

Modem generational garbage collectors look for garbage among the 
young objects, because they have high mortality; however, these ob- 
jects include the very youngest objects, which clearly are still live. We 
introduce new garbage collection algorithms, called age-bused, some 
of which postpone consideration of the youngest objects. Collecting 
less than the whole heap requires write barrier mechanisms to track 
pointers into the collected region. We describe here a new, efficient 
write barrier implementation that works for age-based and traditional 
generational collectors. To compare several collectors, their configu- 
rations, and program behavior, we use an accurate simulator that mod- 
els all heap objects and the pointers among them, but does not model 
cache or other memory effects. For object-oriented languages, our 
results demonstrate that an older-first collector, which collects older 
objects before the youngest ones, copies on average much less data 
than generational collectors. Our results also show that an older-first 
collector does track more pointers, but the combined cost of copy- 
ing and pointer tracking still favors an older-first over a generational 
collector in many cases. More importantly, we reopen for considera- 
tion the question where in the heap and with which policies copying 
collectors will achieve their best performance. 

Keywords 
Garbage collection, object behavior, write barrier, generational and 
copying collection. 

1 INTRODUCTION 

Dynamic memory management (management of heap-allocated ob- 
jects) using garbage collection has become part of mainstream com- 
puting with the advent of Java, a language that uses and requires 
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garbage collection. This wider use of garbage collection makes it 
more important to ensure that it is fast. Garbage collection has been 
investigated for decades in varying contexts of functional and object- 
oriented language implementation (e.g., Lisp, ML, Smalltalk). The 
consensus, for uniprocessor systems operating within main memory, 
is that a class of algorithms known as generational copying collection 
performs quite well in most situations. While the breadth of variation 
within the class is considerable, the algorithms have this in common: 
objects are grouped according to their age (time elapsed since object 
allocation), and the younger groups or generations are examined more 
often than older ones. In particular, the most recently allocated objects 
are collected first. In this paper, we present a new copying collection 
algorithm, called Older-First, that maintains the grouping by age, but 
chooses to collect older objects (following a particular policy which 
we describe in Section 2). Our algorithm achieves lower total cost, 
sometimes dramatically, than traditional copying generational collec- 
tion for a number of Java and Smalltalk programs. Why does it im- 
prove performance? 

Let us consider the costs that copying garbage collection imposes 
on the run-time system. First, there is the cost of copying objects 
when they survive a collection. Second, to allow the collector to ex- 
amine only a portion of the heap at a time, bookkeeping actions must 
log changes to pointers (references) that go from one portion to an- 
other; we call this pointer-tracking. Some of the pointer-tracking is 
interleaved with program execution whenever the program writes a 
pointer (i.e., the write bnrrier), while some is done at garbage collec- 
tion time. Third, the program itself and the garbage collection algo- 
rithm(s) have different cache and memory behaviors, which interact 
in complex ways. These effects are beyond the scope of this paper 
and are left for future work. In this paper, the total cost of collection 
refers to combined cost of the pointer tracking and copying collection. 

Generational copying collection performs better than non- 
generational, i.e., full heap, copying collection because it achieves 
markedly lower copying costs. On the other hand, it must incur the 
cost of pointer tracking, whereas non-generational collection has no 
need to track pointers because it always examines the entire heap. 
Thus, generationaI collection incurs a pointer-tracking cost that is off- 
set by a much reduced copying cost. We have discovered that there is 
a trade-off between copying and pointer-tracking costs that can be ex- 
ploited beyond generational copying collection. Our Older-First (OF) 
algorithm usually incurs much higher pointer-tracking costs than gen- 
erational algorithms, but also enjoys much lower copying costs. We 
find that most pointer stores and the objects they point to are among 
the youngest objects, and by moving the collected region outside these 
youngest objects, OF must track more pointers. However, OF lowers 
copying costs because it gives objects more time to die, and does not 
collect the very youngest objects which clearly have not had time to 
die. In the balance, its total cost is usually lower than the total cost 
of generational copying collection, in some cases by a factor of 4. In 
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itself, OF is very promising, but, more importantly, its success reveals 
the potential for other flexible collection policies to exploit this trade- 
off and further improve garbage collection performance. 

In Section 2 we describe our new collection algorithm within a 
broader classification of age-based algorithms. We present our bench- 
mark suite in Section 3, and assess the copying performance of the 
family of age-based collectors in Section 4. We then consider imple- 
mentation issues, including a new fast write barrier in Section 5. Sec- 
tion 6 evaluates the combined costs of copying and pointer-tracking. 
The results call for a reevaluation of the premises and explanations of 
observed performance of copying collectors, which is the subject of 
Section 7. 

2 AGE-BASED GARBAGE COLLECTION 

Upon a garbage collection, each scheme we consider partitions the 
heap into two regions: the collected region C, in which the collector 
examines the objects for liveness, and if live, they survive the cohec- 
tion; and the uncollected remainder region U, in which the collector 
assumes the objects to be live and does not examine them. The non- 
generational collector is a degenerate case in which the uncollected 
region is empty. The collector further partitions the set C into the set 
of survivor objects S and the set of garbage objects G, by computing 
root pointers into C and the closure of the points-to relation within C. 
To make the freed space conveniently available for future allocation, 
the collector manipulates the survivors S by copying (or compacting) 
them. 

The amount of work involved is, to a first approximation, propor- 
tional to the amount of survivor data, and so that should be minimized. 
Ideally we choose C so that S is empty; in the absence of some ora- 
cle, we must look for schemes that organize heap objects so that the 
partition into C and U is trivial, and then find heuristics that make S 
small. 

We restrict attention to a class of schemes that keep objects in a 
linear order according lo their age. Imagine objects in the heap as if 
arranged from left to right, with the oldest on the left, and the youngest 
on the right, as in Figure 1. The region collected, C, is restricted to be 
a contiguous subsequence of this sequence of heap objects, thus the 
cost of the initial partition is practically nil. We call these schemes 
age-based collection. 

Traditional generational coilection schemes are, in the main, age- 
based: the region collected is some subsequence of youngest (most 
recently aIlocated) objects. Copying collectors may reorder ob- 
jects somewhat during copying since they typically follow pointers 
breadth-first instead of in age order. In compacting collectors, re- 
ordering does not occur. 

In this paper, we introduce and categorize alternative collection 
schemes according to their choice of objects for collection. In all 
these collectors, we fix the size of the collected region rather than 
allowing it to vary during program execution, to simplify our analysis. 
Previous research shows that dynamically sizing the collected region 
can improve performance [23, 36, 34, 1, 51, but this investigation is 
beyond the scope of our paper. 

A youngest-only (YO) collector always chooses some youngest 
(rightmost) subsequence of the sequence of heap objects (Figure 2). 
In our implementation, the YO collector fills the entire heap and then 
repeatedly collects the youngest portion of the heap including objects 
surviving the last collection. The time in allocation between collec- 
tions is the amount the YO collector frees. This collector might have 
good performance if object death is only, or mainly, among the new 
objects. 

Generational collector schemes are variants of youngest-only col- 
lection, differing however in how they trigger collections [5]. In the 
basic design [17, p.1471, new allocation is into one fixed-size part of 
the heap (the nursery), and the remainder is reserved for older objects 

oldest youngest 

Figure 1: Viewing the heap as an age-ordered list. 

(C( : collected region U: region(s) not collected) 
S 0: region of survivors : : area freed for new allocation I 

Legend for Figures 2-5. 
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Figure 2: Youngest-only (YO) collection. 
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Figure 3: Generational youngest-only collection. 
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(the older generation). Whenever the nursery fills up, it is collected, 
and the survivors are promoted to the older generation (Figure 3). 
When the older generation fills up, then the following collection col- 
lects it together with the nursery. In a two-generation collector, that 
collection considers the entire heap. 

Note that the generational collector deliberately does not allocate 
directly into the space reserved for the older generations, so that, 
unlike YO, the region chosen for collection contains exactly the ob- 
jects allocated since the last collection (except for full heap collec- 
tions). We study two and three generation schemes: 2G (2 Genera- 
tions; youngest-only) and 3G. We assume the size of each generation 
is strictly greater than 0, and therefore 3G never degenerates into 2G.’ 

An oldest-only (00) collector always chooses an oldest (leftmost) 
subsequence of the sequence of heap objects (Figure 4). In our imple- 
mentation, the 00 collector initially waits for the entire heap to fill 
and then repeatedly examines the oldest objects including those sur- 
viving the previous collection. As in the YO collector, only the result- 
ing free amount is available for allocation. An object is more likely 
to be dead the longer we wait, hence the 00 collector might have 
good performance. Of course, it will suffer if there are any objects 
that survive the entire length of the program because it will copy them 
repeatedly. 

An older-first (OF) collector chooses a middle subsequence of 
heap objects, which is immediately to the right of the survivors of the 
previous collection (Figure 5). Thus the region of collection sweeps 
the heap rightwards, as a window of collection. The resulting free 
blocks of memory move to the nursery. Initially, objects fill the entire 
heap and the window is positioned at the oldest end of the heap. After 
collecting the youngest or right end of the heap, the window is reset 
to the left or old end. 

The intuition for the potentially good performance of this collector 
can be gleaned from the diagram in Figure 6, which shows a series of 
eight collections, and indicates how the window of collection moves 
across the heap when the collector is performing well. If the window 
is in a position that results in small survivor sets (Collections 4-8), 
then the window moves by only that small amount from one collection 
to the next. The remaining window size is freed and becomes available 
for allocation. As the window continues to move slowly, it remains 
for a long time in the same region, corresponding to the same age of 
objects. A great deal of allocation takes place without many objects’ 
being copied; almost a window size between successive collections. 
How long the window remains in a good position, and how long it 
takes to find this “sweet spot” again once it leaves, will determine the 
performance of the collector for a particular workload, heap size, and 
window size. 

We refer to the OF, 00, and YO collectively as FC collectors 
(Fixed-size Collection window). The base point of our comparisons is 
the non-generational collector (NG), which considers the entire heap 
in each collection. Note that it is possible for an FC collector to find 
no garbage in the collected region. If that happens, we let the collector 
fail for the purposes of this study. (An implementation could increase 
the heap size temporarily, or retry collection on another region, per- 
haps the whole heap, or increase the window size adaptively.) Because 
generational schemes by design occasionally consider the whole heap, 
they enjoy an advantage over the new schemes as simulated here. 

3 BENCHMARKS 

Table 1 lists our benchmarks, which include Smalltalk and Java pro- 
grams and their basic properties relevant to garbage collection perfor- 
mance: amount of data allocated in words (each word being 4 bytes), 
number of objects allocated, maximum live amount (which is also 

‘We also examined a scheme in which the older generation is al- 
lowed to grow into the nursery, and vice versa [l], but it performed 
similarly to 2G and 3G. 
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Figure 4: Oldest-only collection. 
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Figure 5: Older-first collection. 
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Figure 6: Older-first window motion example. 

372 



Benchmark 

JavaBYTEmark 
Bloat-Bloat 
Toba 

Pointer stores 
Words allot. Objects allot. Max. live total alloc./st. non-null % 

Java 
1161949 109 896 59 728 49061 23.68 48 835 99.5 

37 364458 3 429 007 202 435 4 921497 7.58 4376798 88.8 
38 897 724 4 168 057 290 276 3 027 982 12.85 2944612 97.2 

Table 1: Benchmark Properties 

the minimum required heap size to execute the program), total num- 
ber of pointer stores, words of allocation per pointer store, number of 
non-null pointer stores, and the percentage of pointer stores that are 
non-null. 

We now describe individual benchmarks, providing where possi- 
ble details of their structure. Our set of Java programs is as follows: 

l JavaBYTEmark. A port of the BYTEmark benchmarks to Java, 
from the BYTE Magazine Web-site. 

l Bloat-Bloat. The program Bloat, version 0.6, [21] analyzing 
and optimizing the class files from its own distribution. 

l Toba. The Java-bytecode-to-C translator Toba working on 
Pizza [22] class files [23]. 

Our set of Smalltalk programs is as follows: 

StandardNonlnteractive. A subset of the standard sequence of 
tests as specified in the Smalltalk- image [12], comprising 
the tests of basic functionality. 

HeapSim. Program to simulate the behavior of a garbage- 
collected heap, not unlike the simplest of the tools used in this 
study. It is however instructed to simulate a heap in which ob- 
ject lifetimes follow a synthetic (exponential) distribution, and 
consequently the objects of the simulator itself exhibit highly 
synthetic behavior. 

Lambda-Fact5 and Lambda-Fact& An untyped larnbda- 
calculus interpreter, evaluating the expressions 5! and 6! in the 
standard Church numerals encoding [4, p. 1401. Previously used 
in Ref. [15]. We used both input sizes to explore the effects of 
scale. 

Swim, The SPEC95 benchmark, translated into Smalltalk by 
the authors: shallow water model with a square grid. 

Tomcat-v. The SPEC95 benchmark, translated into Smalltalk by 
the authors: a mesh-generation program. 

Tree-Replace-Binary. A synthetic program that builds a large 
binary tree, then repeatedly replaces randomly chosen subtrees 
at fixed height with newly built subtrees. (This benchmark was 
named Destroy in Ref. [15, 141.) Tree-Replace-Random is a 
variant which replaces subtrees at randomly chosen heights. 

Richards. The well-known operating-system event-driven sim- 
ulation benchmark. Previously used in Ref. [15]. 

4 ESTIMATING COPYING COSTS 

The idea of Older-First collection sufficiently diverges from estab- 
lished practice that it is instructive first to determine whether it is 
feasible in principle, before going into the details of an implemen- 
tation. With the understanding that pointer-tracking costs are likely 
to be higher in older-first collection than in generational collection, 
we sought a quick estimate of copying cost to discover if the promise 
of Figure 6 is delivered on actual programs. We built an object-level 
simulator that executes the actions of each of the collectors exactly as 
depicted in Figures 2-5. The simulator is much simpler than the actual 
implementation: objects and collection windows of arbitrary sizes are 
allowed, the age order is perfectly preserved on collection, and point- 
ers are not tracked. This simulator can produce the statistics of the 
amount of data copied over the run of a program, which, divided by 
the amount allocated, gives the “mark/cons” ratio, traditionally used 
as a first-order measure of garbage collector performance. 

We now discuss the copying cost estimate results for two Java 
benchmarks, JavaBYTEmark and Bloat-Bloat, then summarize and 
make some general observations. Figures 7 and 8 each present two 
graphs: Graph (a) compares the best performance of each collection 
scheme (00, YO, OF, 2G, 3G), plotting the mark/cons ratio (the copy- 
ing cost that we would like to minimize), relative to NG, against heap 
size. Performance depends on the heap size available to the collector, 
which is laid along the horizontal axis. For each heap size, we simu- 
lated many configurations of each collection scheme. This graph only 
includes the best configuration of each collector. Graph (b) provides 
details of different configurations of each collector for one represen- 
tative heap size, plotting the relative mark/cons ratio against the size 
of the collected region or nursery as fraction of the heap size. 

JavaBYTEmark. For this program, the OF scheme copies signif- 
icantly less data than all other schemes under all configurations. In 
fact, it copies over a factor of 10 fewer objects than the 3G collector. 
As we see in Figure 7(b), it attains this performance even while keep- 
ing the window of collection small: 20% of total heap size. In smaller 
heaps not shown here, the best window size for OF grows up to 40% 
of the heap. The generational collectors in Figure 7(b) only approach 
their best configurations when the nursery constitutes over 50% of the 
heap. Thus, the OF scheme copies much less using a smaller win- 
dow size. Small window sizes are desirable because they contribute 
to keeping pause times for collection short, which is especially impor- 
tant in interactive programs. 

The reason for this dramatic reduction in copying cost is exactly 
the scenario described in Figure 6. Many objects wait until middle 
age to die, and the OF collector is able to find them just as they die, 
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JavaBYTEmark Bloat-Bloat 

1 OOCOO 150000 200000 250000 300000 350000 4OGQOO 
Heap size (words) 

(a) Best configuration. 

JavaWTEmark 

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 
Fraction collected (of total heap size 238885) Fraction collected g (of total heap size 446984) 

(b) Representative heap size. (b) Representative heap size. 

Figure 7: Copying cost estimates, JavaWTEmark. Figure 8: Copying cost estimates, Bloat-Bloat. 

and to stay in a sweet spot for a long time. The OF collector does 
occasionally sweep through the heap and as a result revisits the oldest 
objects repeatedly. When we examine the lifetimes of the objects in 
this program [25] we find there are a number of long lived objects. 
Thus, the OF collector is repeatedly copying these objects (whereas 
generational collectors 6y design rarely copy these objects); neverthe- 
less it copies a factor of 10 less data. 

As it is the trend in most of the benchmarks, OF collection out- 
performs 00 and YO. OF collection achieves similarly low copying 
costs that are also integer factors better than the generational collec- 
tors using a small window size on StandardNonInteractive, HeapSim, 
Richards, Lambda-Fact6, and Lambda-Fact5. 

Bloat-Bloat. Figure 8(a) illustrates that the best configurations of 
OF, 2G, and 3G, all exhibit comparable and low copying cost. Fur- 
thermore, Figure 8(b) shows that these 3 collectors achieve close to or 
their minimums with a window size around 40% of the entire heap. 
The OF collector (as simulated for this study) fails with a window 
size below 20%, because long-lived data spans more than the collec- 
tion window [25]. These results are representative of the remaining 8 
programs. Comparing 2G with 3G collection in Figure 8(a) and (b) 
reveals no significant differences in the best configurations, but many 
configurations of the 3G collector perform worse, sometimes much 
worse, than the 2G collector. 

0.8 

0.6 

2.5 

00 - 
b-7-. +--- . yo -.+-... 

OF ..D.... 

‘\ 
‘?r/*‘-“-.* ._..___. 

2(3 ..“.... 

+ _._._ -e-e+ ..-..__..___ + _.__.___..___._ t 3G -..-.-- 

400000 600ooo 800000 
Heap size (words) 

(a) Best configuration. 

Bloat-Bloat 

4.1 Comparing 2 and 3 Generations 
Several of the programs follow the trend we see in Figure 7(a) for 
JavaEWTEmark, in which 3G copies fewer objects than 2G. Jav- 
aBYTEmark is the program in our suite in which the 3G collector 
enjoys the largest advantage over the 2G collector. The more detailed 
presentation in Figure 7(b) reveals however that there are many con- 
figurations of the 3G collector that the 2G collector outperforms. This 
trend is true for the other programs as well, and demonstrates the diffi- 
culty of configuring generations well. For the remaining 9 programs, 
Toba, Bloat-Bloat, Lambda-Fact5, Lambda-Fact6, HeapSim, Swim, 
Tomcatv, Tree-Replace-Binary, and Tree-Replace-Random, the 2G 
collector copies the same amount or less than a 3G collector. 

4.2 Comparing FC Collectors. 
As it is demonstrated by JavaBYTEmark and Bloat-Bloat, the OF col- 
lector usually copies significantly less data than the 00 and YO collec- 
tors. There are however a few programs for which the 00 collector 
performs the best: Tree-Replace-Random and Tree-Replace-Binary, 
In these programs, there is very little long-lived data [25]. Random 
replacement of random subtrees or the interior node connected to the 
leaves of the binary tree does indeed imply that the longer the collector 
waits the more likely an object will be garbage. However, such syn- 
thetic programs are probably not representative of behaviors in users’ 
programs, and most programs do have some very long-lived data [IO]. 
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4.3 Conclusion. 
The copying cost estimates show great promise for the Older-First 
algorithm on a set of benchmarks. We therefore consider the issues 
involved in an actual implementation, and then proceed to the evalu- 
ation of a prototype. To simplify the investigation and the presenta- 
tion, we will focus on the two-generation collector 2G (since we have 
found that it is usually comparable to the three-generation one) and 
the Older-First algorithm OF. 

5 WRITE BARRIER 

While OF collection reduces copying costs, it may increase write bar- 
rier costs. This potential increase prompted us to consider carefully 
which pointer stores need to be remembered in our prototype imple- 
mentation. Generational collectors remember pointers from older to 
younger generations, but not within generations. Thus, stores into the 
youngest generation, including objects just allocated (in the nursery), 
never need to be remembered. The corresponding rule for OF col- 
lection is based on the following observation: when a store creates 
a reference p + q, then we need to remember it only if q might be 
collected before p. Figure 9 shows diagrammatically which pointers 
an OF collector must remember, according to their direction between 
different regions of the heap. For example, the pointer store that cre- 
ates the pointer p + q need not be remembered, because object 

00 
@ will necessarily fall into the collected region earlier than a will. 

Figure 9: Directional filtering of pointer stores: crossed-out pointers 
need not be remembered. 

youngest 

high addresses 

1 
region of LJ 
next collection 

oldest 

low addresses 

. . . 

Figure 10: Directional filtering with an address-ordered heap. 

At first glance, it would appear complex and expensive to do the 
filtering suggested by Figure 9, although not more than in flexible 
generational collectors [ 151. However, if we reorder the regions of the 
heap physically as shown in Figure 10, then the test can be simpler 
still: we need only test if the store creates a pointer in a particular di- 
rection and possibly crossing a region boundary. A large zone of the 
virtual address space is set aside for allocation from higher addresses 
to lower. The collection region also moves from higher addresses to 
lower, but lags behind the allocation; the survivors are evacuated into 
the next similarly sized zone at lower addresses. If the collection re- 
gion catches up with allocation (equivalent to reaching the right end 
in the logical layout of Figure 9), the former allocation zone is re- 
leased, the former copying zone becomes the allocation zone, and a 
new copying zone is acquired. The organization of Figure 10 is es- 
pecially attractive with a very large address space and with some co- 
operation from the operating system, to acquire and release address 
space as the heap progresses from higher to lower addresses. 

Our implementation is based on allocating fixed-size blocks to the 
various heap re@ons, with the collector constrained to collect an inte- 
gral number of blocks. This structure, with a block table, simply and 
quickly maps from addresses to remembered sets. 

Since the block size is a power of two, blocks are aligned by block 
size, and the collection window moves from higher to lower addresses, 
we essentially test if p < q: 

// write barrier for: *p = q 
// mask == 2^k - 1 
if (p < (q & “mask)) 

remember p in q’s remset; 

Adjusting one of the pointers using the mask eliminates stores 
within the same block. This test is important, since the vast majority 
of stores are to nearby objects, and thus tend not to cross block bound- 
aries [25]. The directional test (<) also reduces the number of pointers 
remembered. 

This write barrier, then, filters stores inline so that out-of-line code 
to remember a pointer is only executed for those cross-block pointers 
where the source block of the pointer may be collected after its tar- 
get block. The test above also filters out stores of null pointers. In 
essence, it is treating the null pointer value of 0 as referring to an ob- 
ject that will never be collected, without the need for an additional 
explicit test. 

Assuming that p and q are in registers and that the mask fits in the 
immediate field of an instruction, the above sequence requires only 
three instructions: mask, compare, and conditional branch. On the 
Alpha processor we indeed obtain such a sequence. The SPARC re- 
quires an additional instruction to construct the mask, since the imme- 
diate fields are too small for reasonable block sizes. One can dedicate 
a register to hold the mask, and thereby reduce the sequence to three 
instructions. 

The slow path to remember a pointer at the write barrier consists 
of the following: determine the target object’s block (shift the address 
right), index a block table (the base of which is in a register), load a 
pointer into the block’s remembered set, decrement the remembered 
set pointer and check for underflow (explained in a moment), save the 
pointer to be remembered, and store the decremented remembered set 
pointer back into the block table. We organize each block’s (genera- 
tion’s, in a generational collector) remembered set as a linked list of 
chunks, where each chunk holds 15 remembered pointers in sequen- 
tial memory addresses. We allocate these chunks on aligned memory 
boundaries, so the underAow test consists of checking if some low bits 
of the remembered set pointer are all 0. 

Garbage collection requires a space overhead for its auxiliary data 
structures for pointer remembering; since our evaluation of the time 
overhead is with respect to a given heap size, a fair comparison of 
different collectors requires the space allowed each collector for or- 
dinary data to be diminished by the amount needed for auxiliary data 
(which it is difficult to do a priori). In our study, OF collectors have 
a greater space overhead than 2G because their pointer filtering is less 
efficient. However, we measured the space overhead of OF on our 
suite of benchmarks to be only 1% of heap size-therefore the conse- 
quent time overheads are negligible. 

6 EVALUATING TOTAL COLLECTION 

COSTS 

We evaluate our proposed collection algorithm and write barrier on 
our benchmark suite using a combination of simulation and prototyp- 
ing. We obtained heap traces (described in detail below) from program 
runs in a Smalltalk and a Java virtual machine. These tracer are inde- 
pendent of the storage management scheme of the system from which 
they were collected. For each collection algorithm we study, we pro- 
cess the traces using a driver routine, which performs relevant actions 
(such as object allocation and mutation) on objects in a heap. An 
actual implementation of the particular collection algorithm manages 
the heap. From this implementation, we obtain exact counts of vari- 
ous relevant quantities, such as the number of objects copied, number 
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of bytes copied, and write barrier actions, which we use to estimate 
execution times. 

6.1 Obtaining Counts and Volumes 
We now describe in more detail how we obtained the counts and vol- 
umes we report in our results. 

Traces. Our traces indicate each object allocation (with the size 
of the object), each update of a pointer field of a heap object, and 
each object “death” (an object dies when it ceases to be reachable). 
Object death is precise-in the tracing system we perform a com- 
plete garbage collection immediately before each object allocation, 
and note in the trace the objects that have died since the previous allo- 
cation. While this tracing technique is time-consuming, it does mean 
that when we present the traces to any actual collection algorithm, we 
will observe ~xucfZy the collection behavior we would have obtained 
from the corresponding program (but without running the program). 

Driver. The driver routine is straightforward in concept: it simply 
reads and obeys each trace record, by taking appropriate action on the 
prototype heap implementation. A key difference between the driver 
and a live program is that, since our traces do not include manipu- 
lations of local and global variables, the driver keeps a table (on the 
side) of all live objects. When the driver processes an object death 
record, it deletes the corresponding object from the table of live ob- 
jects. From the point of view of the collector, the driver thus differs 
from a live program only in that more objects are referred to directly 
rather than reached only via other objects. 

Prototype heap implementations and write barriers. All the 
heap implementations share some common infrastructure. Each heap 
consists of a collection of blocks, which are aligned, 2k-byte portions 
of memory. We varied the block size in some experiments. Each heap 
also has remembered set data structures and write barriers appropriate 
to that heap. For example, the generational heap uses a generationaf 
comparison, whereas the OF heap uses the same-block and directional 
filtering. We note that these implementations are highly instrumented, 
so that we can tell how many pointer stores go down each filtering 
path of each write barrier. Likewise, the collector cores are highly 
instrumented to obtain accurate counts of copying actions. We do not 
obtain wall-clock timings from these prototype heap implementations. 

6.2 Estimating Execution Times 
Pending a complete implementation, we carefully implemented the 
write barriers and other actions and timed them. All code fragments 
have the same advantages, i.e., they execute in tight loops with impor- 
tant quantities in registers, so we argue that the ratio of their timings 
gives a reasonable order-of-magnitude estimate of the ratio we would 
expect in an actual implementation, even though the absolute values 
of the timings are optimistic. 

We used a 292MHz Alpha 21164. We took a cycle count mea- 
surement by running a piece of code, with and without the fragment 
we wished to measure, for many iterations of a loop, then taking the 
difference in times and dividing by the clock period. 

Write barrier. Depending on the details of the loop in which we 
embedded the barrier, the fast path took 1, 2, or 3 cycles, which we 
expected since the original sequence is 3 instructions and the Alpha 
has an issue width of 4 (i.e., the alignment matters). We use 2 cycles 
in our estimates. Remembering a pointer on the slow path of the write 
barrier takes an average of 11 cycles (including the original test, and 
the time needed for chunk management on overflow). Finally, to fetch 
a remembered set entry, examine the target object, and possibly start 
to copy the object takes 13 cycles on average. Thus the total cost to 
create and process a remembered set entry, exclusive of copying its 
target object, is 24 cycles. 

Copying timing. Object copying involves more than simply 
copying some bytes from one place to another. One must also: de- 
code the object header, determine which fields of the object contain 
pointers, and handle each one of those pointers, thus accomplishing 
the transitive closure of the points-to relation in a breadth-first man- 
ner [9]. Since our prototype heaps were slightly simplified from actual 
language implementations (i.e., we did not deal with all special cases 
that arise in Java, such as finalization and locks), any comparisons 
are IikeIy to underestimate copying cost, and thus underestimate the 
benefits of OF. 

We modelled the total copying and collection processing costs us- 
ing this equation: 

c=aobj.nobj+aw. ‘+v + askp . %kp + adup ’ ndup 

Here the a are the costs per occurrence of each case and the n 
are the number of times that case occurs. The subscript obj concerns 
the number of objects processed, w the number of words copied, skp 
the number of pointer fields skipped because they are null or do not 
point into the collected region, and dup the number of pointers into 
the collected region but to objects already copied. Note that when we 
encounter a pointer to an object in the collected region but not yet 
copied, we charge our cost of discovery to the copying of that object. 

We measured the following values (for operation with all data 
structures in primary cache): ao@ = 65 cycles, CX, = 2.5 cycles, 
a,kp = 15 cycles. and adUp = 17 cycles. As an aside, we note that 
these costs indicate that copying the words is not a large component 
of the cost of processing pointer-rich objects. 

Given our instrumentation to gather counts (the n as well as the 
number of times the different write barrier actions occur) and our care- 
ful estimates of the times for the various collector and write barrier 
operations, we can project cycle costs for each collection algorithm. 
As previously mentioned, we would not claim that the difference in 
predicted cycle counts would exactly match that in practice, but that 
ratios of predicted cycle costs would be reliable to an order of magni- 
tude. Put another way, if we predict a ratio of collection costs of 2:l 
or more, then it would be surprising if an implementation showed an 
inversion of costs of the schemes. 

6.3 Results 
We applied the block-based evaluator to our benchmark suite. We now 
examine the resulting evaluation of the older-first and generational 
collectors with the detailed cost model just described which takes into 
account both copying and pointer-tracking costs. 

Similar to the mark/cons ratio plots we examined in Section 4, the 
plots of total cost in Figures 11-22 show the lowest total cost that each 
collector can achieve, among all examined configurations for a given 
heap size. The minimum heap size equals the maximum amount of 
live data, and evaluated heap sizes range from 2 to 6 times that min- 
imum. While pointer costs work in favor of the 2G and against the 
OF collector, and diminish the advantages that OF enjoyed in the esti- 
mate of copying costs in Section 4, nevertheless they do not succeed in 
changing the qualitative relationship that we observed previously. On 
one subset of benchmarks (JavaBYTEmark, StandardNonlnteractive, 
HeapSim, Lambda-Fact% Lambda-Fact6,Richards) the OF collector 
has a clear advantage, except with very small heap sizes. On the re- 
maining benchmarks, the performance of the two collectors is similar. 

376 



JavaBYTEmark 

2e+O6 

P 
z 
.$ 1.5e+O6 
al 

; 
s 
E le+O6 

I 
8 

1 500000 
I-” 

1.2e+O6 ,, 
StandardNonlnteractive 

2G + 

P le+06 
E 
‘3 800000 
; 
fi? YJ 800000 
; 
5 8 400000 
i5 

E 200000 

I 
250000 300000 350000 400000 

Heap size (words) 

0 
2000 3000 4000 5000 8000 7000 8000 

Heap size (words) 

Figure 11: Total collection cost, JavaBYTEmark. 

2.5e+08 

3 2e+O8 
E -= 
s 
- 

P 
1.5e+O8 

2 
E le+08 

:: 
5 
g 5e+07 

Bloat-Bloat 

J 
2&&O 400000 800000 800000 le+06 1.2e+O6 

Heap size (words) 

2e+O8 

P 
$ 1.5e+O8 
‘S 
z 

3 c le+08 
2 
‘j 
8 
i5 5e+07 
z 

0 

Figure 12: Total collection cost, Bloat-Bloat. Figure 15: Total collection cost, HeapSim. 

500000 t e+06 1.5e+06 
Heap size (words) 

Figure 14: Total collection cost, StandardNonlnteractive. 

1.2e+08 

E le+OB 
2 
‘2 8e+07 
; 
z 5 6e+07 
5 
Tii 8 4e+07 
m 
‘ii 
i- 2e+07 

HeapSim 

* 

&mo 200000 300000 400000 500000 600000 
Heap size (words) 

9e+O6 
Lambda-Fact5 

2G - 
(-,F .t.__. 

le+O6 - 

0’ 
5000 10000 15000 20000 25000 30000 35000 40000 

Heap size (words) 

Figure 13: Total collection cost, Toba. Figure 16: Total collection cost, Lambda-Fact5. 



3e+07 

H 2.5e+07 
E” 
‘2 2et07 
; 
8 c 15e+o7 
0” 
;i g le+07 
3 
5 
+ 5etO6 

0 

Lambda-Fact6 

10000 20000 30000 40000 50000 60000 70000 80000 90000 
Heap size (words) 

Figure 17: Total collection cost, Lambda-Fact6. 

4.5e+07 
Swim 

3e+07 

2.5e+07 

2et07 

1.5et07 

le+07 

5e+O6 

Tree-Replace-Random 

4et07 - \ 
-0 
2 3.5e+07 \ 
E ‘G I 3et07 - i 

$2.5~07 - 

E 2e+07 - 
77 8 1.5et07 - 
3 2 le+07 - 

5etO6 - 

2G - 
(,F v+.... 

2G - 
OF .+.... 

0 
20000 40000 60000 80000 100000 

Heapsize(w0rd.s) 

\ 

i, 

o- 
20000 30000 40000 50000 6oOOO 70000 80000 90000 

Heap size(words) 

Figure 18: Total collection cost, Swim. Figure 21: Total collection cost, Tree-Replace-Random. 

Tomcatv 

2.5et07 

7J 
# 2e+07 
E 'S 
I 
* 1.5e+07 
al 
B 
v 
tj le+07 
8 
3 
E 5e+O6 

0’ 
60000 80000 100000 120000 140000 160000 180000 200000 

Heap size (words) 

Figure 19: Total collection cost, Tomcatv. 

Tree-Replace-Binary 

:::: : 
P 

z 7etO6 
E 'Z 3 6et06 

Q 5e+O6 - 
a 
0" 4etO6 - 

2 3ecO6 

2 2e+O6 - 
I- 

let06 - 

0’ 
1oOoO 20000 30000 40000 5oQoo 60000 

Heap size (words) 

Figure 20: Total collection cost, Tree-Replace-Binary. 

6e+07 , 
Richards 

m 5e+07 

2G - 2G - 
OF -.+... OF -.+... 

--. -+----- +--- . . ..-.. + -.-..__..___ ..-.. + -.-..--..___ -___+ .____..._______ + -___+ .____..._______ + 
0 
2000 2000 3000 3000 4000 4000 5000 5000 6000 7000 8000 9000 6000 7000 8000 9000 10000 10000 

Heap size (words) Heap size (words) 

Figure 22: Total collection cost, Richards. 

378 



7 DISCUSSION 

Comparing collectors. A straightforward comparison between OF 
and 2G collectors shows that OF achieves lower total costs in many 
cases. The main contributing factor is the reduction of copying cost; 
the supporting factor is the containment of the increase of pointer- 
tracking cost. 

That copying costs can be markedly lower than with generational 
collection, in a collector that scavenges areas other than the youngest, 
is perplexing in the light of widely recognized good performance of 
generational collectors, Nevertheless, it is entirely in accord with the 
intuition that the very youngest objects are live, and to collect them 
is wasteful. In generational collection there is a tension between the 
need to increase the size of the nursery so as to reduce such wasteful 
copying of young objects, and the need to increase the size of older 
generations so that they are not collected frequently-a tension that 
cannot be resolved in a heap of finite size. In contrast, Older-First 
collection is able to focus on an age range where wasteful copying 
is minimized, which results in good performance on those programs 
where such a range prominently exists. Whereas our diagram in Fig- 
ure 6 shows how this desirable behavior may arise, it is tempting to 
consider how a designer could encourage it. For example, further im- 
provements may be achieved by dynamically (adaptively) choosing 
the size of the collection window, and, more ambitiously, looking at 
window motion policies more sophisticated than the one we have de- 
scribed. 

Pointer tracking. While an ever-increasing latitude in collection 
policy may further reduce copying costs below those of generational 
collection and the simple Older-First scheme, it will also be necessary 
to keep the pointer-tracking costs within reason. The pointer-tracking 
costs in OF, albeit high with respect to generational collection, are not 
excessive, because its window motion policy allows efficient pointer 
filtering. Any block-based collector can apply a filter to ignore pointer 
stores that do not cross block boundaries; we found that filter to ehm- 
inate about 60% of stores for reasonable configurations (note that 
blocks cannot be arbitrarily large lest the collector degenerate into a 
non-generational one). Directional filtering (Figure 9), ignores about 
95% of stores: not as many as generational filtering, which ignores 
about 99%, but enough that the cost for the remaining, remembered, 
stores does not substantially offset the copying cost reduction. 

As we developed our directional filtering scheme, we collected 
statistics of pointer stores, according to the position, in an age-ordered 
heap, of the pointer source and target (i.e., the object containing the 
reference, and the referent object), which shed new light on some 
long-held beliefs about the pointer structure of heaps. It has been 
widely assumed that pointers tend to point from younger objects to 
older ones. While this belief is surely justified for functional pro- 
grams, it is not generally true of the object-oriented programs we ex- 
amined. Both younger-to-older and older-to-younger directions are 
well represented, neither dominant, in most of our benchmarks. The 
supposed predominance of younger-to-older pointers is often cited as 
cause and justification of the efficacy of generational pointer filter- 
ing. A more faithful explanation arises from our observations: most 
pointer stores are to objects that are very young, and they install 
pointers to target objects that are also very young (whether relatively 
younger or older than the source), and a generational filter ignores 
these stores because they are between objects of the same generation. 
Figure 23 provides an example: (a) in Bloat-Bloat, older-to-younger 
pointers (negative age distances) account for 40% of the stores; how- 
ever, the histogram of source positions (b) as well as that of target 
positions (c) show that most stores establish pointers between very 
young objects, 

Caching and memory effects. Since copying collectors only 
touch the live data, and leave untouched newly dead objects, collec- 
tors that copy less should also have good locality. However, OF visits 
the entire heap more regularly as compared to generational collectors, 
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which may decrease its locality in the cache and increase its paging 
activity. Clearly, we can only study these effects in the context of a 
complete implementation, and we will do so in future work. 

8 RELATED WORK 

The overwhelming consensus in the studies on generational garbage 
collection has been that a younger-first discipline should be used; i.e., 
that when the collector decides to examine one generation, it must at 
the same time examine all younger generations. The scheme that we 
introduce may be understood (if we ignore policy details), as similar 
to requiring an older generation to be collected apart from younger 
ones. This possibility is indeed mentioned, but dismissed both in Wil- 
son’s survey of garbage collection [32, p. 361 and in Jones and Lins’ 
monograph [17, p.1511, the two most accessible sources on the state 
of the art in uniprocessor garbage collection. 

Generational garbage collection employs fixed boundaries be- 
tween generations, in order to minimize the pointer-tracking effort 
needed for each such boundary. Barrett and Zom explored the pos- 
sibility of using flexible generation boundaries (remaining however 
within the youngest-first discipline), and found that the increase in 
pointer-tracking effort need not be excessive [5]. Our OF scheme uses 
flexible collection region boundaries, but we combine it with efficient 
mechanisms to keep pointer-tracking costs in check, even without the 
youngest-first discipline. 

Clinger and Hansen proposed a collector for Scheme that does 
not base collection decisions on object age, but rather on the time 
elapsed since last collection [l 11, and focuses on objects for which 
that time is longest. (There have been historical precursors to this 
idea [2, 18,6].) Although this algorithm is not age-based, it prompted 
us to investigate similarly flexible age-based ones; in the context of 
object-oriented languages that we examined, we found the latter to be 
superior. 

More generally, schemes have been suggested that divide the heap 
into regions, not necessarily age-based, that can be collected inde- 
pendently and/or incrementally. Bishop proposed such segregation 
in accordance with the usage of objects [8], while Hudson and Moss’s 
mature object space algorithm (for managing very-long-lived data) in- 
troduced policies that approximate the age-order criterion [ 161. 

In garbage collection, there is an inherent trade-off between space 
and time overheads, and there is a trade-off between reducing the to- 
tal time overhead and reducing the time of a single coIlection (for 
incremental operation). Different authors have applied different mea- 
sures in their system evaluation. Our focus is on time overhead of 
collection within given space constraints. Therefore, without mak- 
ing specific comparisons, which are difficult when evaluation met- 
rics as well as underlying languages are widely different, we recog- 
nize that our study draws on previous experience with generational 
garbage collection impiementations [ 19,27,20,24,28,35], their poli- 
cies [29,30,31,34,1,13], their write barrier mechanisms [33,15, 141, 
and their evaluation with respect to object allocation and lifetime be- 
havior [3, 26, 111. 

Achieving performance improvements with generational collec- 
tion critically depends on setting or adapting the configuration pa- 
rameters right-incorrectly chosen generation sizes can cause per- 
formance to degrade severely. We have confnmed these matters 
in our observations of multi-generational collectors on our bench- 
mark traces. Choosing a good regime of generations is not an easy 
task, and it is not yet fully understood despite numerous studies 
[29, 36, 34, 1, 51. However, we can also say that it is a matter of 
tuning the performance within the class of youngest-only collection 
schemes. Our goal in this study has not been to examine how to tune 
a particular scheme, but instead to compare the schemes. Whether 
optimal configurations can be chosen a priori, or how a system might 
adaptively arrive at them are questions for separate investigation. 

9 SUMMARY 

Generational collection achieves good performance by considering 
only a portion of the heap at each collection. It achieves this good 
performance even while imposing additional costs on tbe mutator, 
namely a write barrier to track pointers from older to younger gen- 
erations. We found that we can reduce copying costs further, in many 
cases dramatically, by not including the youngest objects in each col- 
lection, and we call this more general scheme age-based collection 
since it still determines which objects to collect based on age. We con- 
sidered in detail a particular age-based algorithm that we term older- 
first (OF) and found that it never needed to copy substantially more 
data than generational collection, and copied up to ten times less for 
some programs. OF does require more write barrier work than gener- 
ational collection, perhaps ten times more, but the savings in copying 
can outweigh the extra pointer tracking costs. 

We obtained these results with exact heap contents simulation, 
prototype collector implementation, and careful timing of crucial code 
fragments. Given the factor by which OF outperforms generational 
collection--often a factor of 2 or more-it should also perform well 
in actual implementation. Integration with a Java virtual machine is 
in progress. 

While improved performance is one measure of the significance 
of this work, we also feel that it contributes substantially to our un- 
derstanding of memory usage and garbage collector behavior. Put 
another way, garbage collection has a long tradition of study, yet we 
have shown that the widely accepted state of the art, generational col- 
lection, leaves considerable room for improvement. 

We also question some of the widely held beliefs about genera- 
tional collection, offering new intuition. While we cIearly agree with 
the tenet that one should wait for objects to die before collecting them, 
as it has been recognized in the considerable body of work concerning 
the avoidance of early “tenming” of objects, we show that it is practi- 
cal to avoid copying the very youngest objects and that doing so saves 
much work, even though it imposes a heavier burden on the running 
program. In the past the write barrier cost was thought too high to per- 
mit exploring algorithms like OF. Now we have results encouraging 
consideration of a wide range of new techniques. 

Future work should include considering other window motion al- 
gorithms, dynamically changing the window size, using multiple win- 
dows (e.g., one for younger objects and one for mature objects as in 
mature object space collection), and more experimentation and mea- 
surement, for more programs, platforms, and languages. 
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