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Shannon Information in Biology

C. Shannon:

“These semantic aspects of communication are irrelevant . . .”

1. In 1949 Henry Quastler launched information theory in biology in “The

Information Content and Error Rate of Living Things”.

2. Henry Linschitz argued that these attempts were rather unsuccessful

since there are difficulties in defining information of a system composed

of functionally interdependent units and channel information (entropy) to

produce a functioning cell.

Life is a delicate interplay of energy, entropy, and information; essential

functions of living beings correspond to the generation, consumption,

processing, preservation, and duplication of information.

M. Eigen

“The differentiable characteristic of the living systems is Information.

Information assures the controlled reproduction of all constituents, thereby

ensuring conservation of viability . . . . Information theory,

pioneered by Claude Shannon, cannot answer this question . . .

in principle, the answer was formulated 130 years ago by Charles Darwin.



What is Information?

C. F. Von Weizsäcker:

“Information is only that which produces information” (relativity).

“Information is only that which is understood” (rationality)

“Information has no absolute meaning.

F. Brooks, jr. (JACM, 50, 2003, “Three Great Challenges for . . . CS ”):

“Shannon performed an inestimable serviceby giving us Information.

We have no theory however that gives us a metric

for the Information embodied in structure . . .
this is the most fundamental gap in the theoretical underpinning of

Information and computer science.

Information Transfer in Biology:

• how information is generated and transferred through underlying

mechanisms of variation and selection?

• how information in biomolecules (sequences and structures) relates to

the organization of the cell?

• whether there are error correcting mechanisms (codes) in biomolecules?

• and how organisms survive and thrive in noisy environments?



Beyond Shannon

Participants of the 2005 Information Beyond Shannon workshop realize:

Time: When information is transmitted over networks of gene regulation,

protein interactions, the associated delay is an important factor.

(e.g., timely information exchange in cells may be responsible for bidirectional

microtubule-based transport in cells).

Space: In networks the spatially distributed components raise fundamental

issues of limitations in information exchange since the available resources

must be shared, allocated and re-used. Information is exchanged in

space and time for decision making, thus timeliness of information delivery

along with reliability and complexity constitute the basic objective.

Structure: We still lack measures and meters to define and appraise the

amount of information embodied in structure and organization.

Semantics. In many scientific contexts, one is interested in signals,

without knowing precisely what these signals represent. What is semantic

information and how to characterize it? How much more semantic

information is there when when compared with its syntactic information?

Limited Computational Resources: In many scenarios, information is limited

by available computational resources (e.g., cell phone, living cell).

Physics of Information: Information is physical (J. Wheeler).
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Darwin Channel

Biomolecular structures, species, and in general biodiversity, have gone

through significant metamorphosis over eons through mutation and

natural selection, which we model by constrained sequences/channels.

To capture mutation and natural selection we introduce

Darwin channel.



Noisy Constrained Channel

1. Binary Symmetric Channel (BSC):

(i) crossover probability ε,

(ii) constrained set of inputs (Darwin preselected) that can be modeled by

a Markov Process,

(ii) Sn denotes the set of binary constrained sequences of length n.

2. Channel Input and Output:

Input: Stationary process X = {Xk}k≥1 supported on S =
S

n>0 Sn.

Channel Output: Hidden Markov Process (HMP)

Zi = Xi ⊕ Ei

where ⊕ denotes addition modulo 2, and E = {Ek}k≥1, independent of

X, with P (Ei = 1) = ε is a Bernoulli process (noise).

Note: To focus, we illustrate our results on

Sn = {(d,k) sequences}

i.e., no sequence in Sn contains a run of zeros of length ishorter than d
or longer than k. Such sequences can model neural spike trains (no two

spikes in a short time).



Noisy Constrained Capacity

C(ε) – conventional BSC channel capacity C(ε) = 1 − H(ε), where

H(ε) = −ε log ε − (1 − ε) log(1 − ε).

C(S, ε) – noisy constrained capacity defined as

C(S, ε) = sup
X∈S

I(X; Z) = lim
n→∞

1

n
sup

Xn
1 ∈Sn

I(X
n
1 , Z

n
1 ),

where the suprema are over all stationary processes supported on S and

Sn, respectively. This is an open problem since Shannon.

Mutual information

I(X; Z) = H(Z) − H(Z|X)

where H(Z|X) = H(ε).

Thus, we must find the entropy H(Z) of a hidden Markov process! (e.g.,

(d, k) sequence can be generated as an output of a kth order Markov

process).



Entropy Rate as a Lyapunov Exponent

Theorem 1 (Furstenberg and Kesten, 1960). Let M1, . . . , Mn form a

stationary ergodic sequence and E[log+ ||M1||] < ∞ Then

lim
n→∞

1

n
E[log ||M1 · · ·Mn||] = lim

n→∞

1

n
log ||M1 · · ·Mn|| = µ a.s.

where µ is called top Lyapunov exponent.

Corollary 1. Consider the HMP Z as defined above. The entropy rate

h(Z) = lim
n→∞

E[−
1

n
log P (Zn

1 ) ]

= lim
n→∞

1

n
E[− log

“

p1M(Z1, Z2) · · ·M(Zn−1, Zn)1
t
”

]

is a top Lyapunov exponent of some random matrices M(Z1, Z2) · · ·M(Zn−1, Zn),

as shown in Jacquet, Seroussi, W.S., (2004, 2008).

Unfortunately, it is notoriously difficult to compute top Lyapunov exponents

as proved in Tsitsiklis and Blondel. Therefore, in next we derive an explicit

asymptotic expansion of the entropy rate h(Z).



Asymptotic Expansion

We now assume that P (Ei = 1) = ε → 0 is small (e.g., ε = 10−12 for

mutation).

Theorem 2 (Seroussi, Jacquet and W.S., 2004). Assume rth order Markov. If

the conditional probabilities in the Markov process X satisfy

P (ar+1|a
r
1) > 0 IMPORTANT!

for all ar+1
1 ∈Ar+1, then the entropy rate of Z for small ε is

h(Z) = lim
n→∞

1

n
Hn(Z

n
) = h(X) + f1(P )ε + O(ε

2
),

where

f1(P ) =
X

z2r+1
1

PX(z2r+1
1 ) log

PX(z2r+1
1 )

PX(z̄2r+1
1 )

= D

“

PX(z2r+1
1 )||PX(z̄2r+1

1 )
”

,

where z̄2r+1=z1 . . . zrz̄r+1zr+2 . . . z2r+1. In the above, h(X) is the entropy

rate of the Markov process X, D denotes the Kullback-Liebler divergence.



Examples

Example 1. Consider a Markov process with symmetric transition

probabilities p01 = p10 = p, p00 = p11 = 1−p. This process has stationary

probabilities PX(0) = PX(1) = 1
2. Then

h(Z) = h(X) + f1(p)ε + f2(p)ε
2
+ O(ε

3
)

where

f1(p) = 2(1 − 2p) log
1 − p

p
, f2(p) = −f1(p) −

1

2

„

2p − 1

p(1 − p)

«2

.

Example 2. (Degenerate Case.) Consider the following Markov process

P =

»

1 − p p

1 0

–

where 0 ≤ p ≤ 1.

Ordentlich and Weissman (2004) proved for this case

H(Z) = H(P ) −
p(2 − p)

1 + p
ε log ε + O(ε)

(e.g., (11 . . .) will not be generated by MC, but can be outputed by HMM

with probability O(εκ)).



Main Asymptotic Results

We observe (cf. Han and Marcus (2007))

H(Z) = H(P ) − f0(P )ε log ε + f1(P )ε + o(ε)

for explicitly computable f0(P ) and f1(P ).

Let P max be the maxentropic maximizing H(P ). Then

C(S, ε)=C(S)−(1 − f0(P
max))ε log ε+(f1(P

max) − 1)ε + o(ε)

where C(S) is known capacity of a noiseless channel.

Example: For (d, k) sequences, we can prove:

(i) for k ≤ 2d
C(S, ε)=C(S) + A · ε + O(ε2 log ε)

(ii) For k > 2d
C(S, ε)=C(S) + B · ε log ε + O(ε),

where A&B are computable constants (cf. also Han and Marcus (2007)).
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Protein Interaction Networks

• Molecular Interaction Networks: Graph theoretical abstraction
for the organization of the cell

• Protein-protein interactions (PPI Network)

– Proteins signal to each other, form complexes to perform a particular

function, transport each other in the cell...

– It is possible to detect interacting proteins through high-throughput

screening, small scale experiments, and in silico predictions

Protein

Interaction

Undirected Graph Model S. Cerevisiae PPI network hspace0.3in
[Jeong et al., Nature, 2001]



Modularity in PPI Networks

• A functionally modular group of proteins (e.g. a protein
complex) is likely to induce a dense subgraph

• Algorithmic approaches target identification of dense
subgraphs

• An important problem: How do we define dense?

– Statistical approach: What is significantly dense?

RNA Polymerase II Complex Corresponding induced subgraph



Significance of Dense Subgraphs

• A subnet of r proteins is said to be ρ-dense if the number of
interactions, F (r), between these r proteins is ≥ ρr2, that is,

F (r) ≥ ρr2

• What is the expected size, Rρ, of the largest ρ-dense
subgraph in a random graph?

– Any ρ-dense subgraph with larger size is statistically significant!

– Maximum clique is a special case of this problem (ρ = 1)

• G(n, p) model

– n proteins, each interaction occurs with probability p

– Simple enough to facilitate rigorous analysis

• Piecewise G(n, p) model

– Captures the basic characteristics of PPI networks

• Power-law model



Largest Dense Subgraph on G(n, p)

Theorem 4. If G is a random graph with n nodes, where every
edge exists with probability p, then

lim
n→∞

Rρ

log n
=

1

Hp(ρ)
(pr.),

where

Hp(ρ) = ρ log
ρ

p
+ (1 − ρ) log

1 − ρ

1 − p

denotes divergence. More precisely,

P (Rρ ≥ r0) ≤ O

(

log n

n1/Hp(ρ)

)

,

where

r0 =
log n − log log n + log Hp(ρ)

Hp(ρ)

for large n.



SIDES

• An algorithm for identification of Significantly Dense
Subgraphs (SIDES)

– Based on Highly Connected Subgraphs algorithm (Hartuv & Shamir,

2000)

– Recursive min-cut partitioning heuristic

– We use statistical significance as stopping criterion

p << 1p << 1

p << 1



Behavior of Largest Dense Subgraph Across Species
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Behavior of Largest Dense Subgraph w.r.t Density

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80
Observed
Gnp model
Piecewise model

Density

S
iz

e
o

f
la

rg
e

st
d

e
n

se
su

b
g

ra
p

h

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60
Observed
Gnp model
Piecewise model

Density

S
iz

e
o

f
la

rg
e

st
d

e
n

se
su

b
g

ra
p

h
S. cerevisiae H. sapiens

Density threshold vs. Size of largest dense subgraph
for Yeast and Human PPI networks


