
Principles of Concurrency

 Principles of Concurrency

Lecture 11

Memory Models: Power and ARM

1

Principles of Concurrency, Spring 2022

The IBM Power Memory Model
2

Highly relaxed, significantly more behaviors than possible under TSO

- Hardware threads can each perform reads and writes out-of-order, or
even speculatively

- Arbitrary local reordering is allowed

- Does not support multi-copy atomicity: a write issued by a processor is not

guaranteed to be visible to all other threads at the same time

RW

W

W

W

W

R

R
R

R W
W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Me
mo
ry4

M
em

or
y 5

Thread
2

Thread3Thr
ead

4

Th
re
ad

5

We speak of the collection of all the memories and their interconnect (i.e., everything except the threads) as the storage
subsystem.

For the thread-local out-of-order (and speculative) execution, in general we can think of each thread, at any point in
time, as having a tree of the committed and in-flight instruction instances. Newly fetched instructions become in-flight,
and later, subject to appropriate preconditions, can be committed. For example, below we show a set of instruction
instances {i1, . . . , i13} with the program-order-successor relation among them. Three of those ({i1, i3, i4}, boxed)
have been committed; the remainder are in-flight.

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Instruction instances i5 and i9 are branches for which the thread has fetched multiple possible successors; here just two,
but a branch with a computed address might in principle fetch many possible successors. A typical implementation
might well explore at most one speculative path at a time. Note that the committed instances are not necessarily
contiguous: here i3 and i4 have been committed even though i2 has not, which can only happen if they are sufficiently
independent. When a branch is committed then any un-taken alternative paths are discarded, and instructions that
follow (in program order) an uncommitted branch cannot be committed until that branch is, so the tree must be linear
before any committed (boxed) instructions.

For a read instruction, as soon as an address for the read is known, the read might be satisfied, binding its value
to one received from the local memory (or in some cases forwarded from earlier in the thread). That value could
immediately be used by later instructions in the thread that depend on it, but it and they are subject to being restarted
or (if this is a speculative path) aborted until the read is committed.

For a write instruction, the key points are when the address and value become determined. After that (subject to
other conditions) the write can be committed, sent to the local memory; this is not subject to restart or abort. After
that, the write might propagate to other threads, becoming readable by them.

7

Principles of Concurrency, Spring 2022

Operational Model
3

Each thread, at each step in time, maintains a tree of committed and in-
flight instruction instances

RW

W

W

W

W

R

R
R

R W
W

W
W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

Memory3Me
mo
ry4

M
em

or
y 5

Thread
2

Thread3Thr
ead

4

Th
re
ad

5

We speak of the collection of all the memories and their interconnect (i.e., everything except the threads) as the storage
subsystem.

For the thread-local out-of-order (and speculative) execution, in general we can think of each thread, at any point in
time, as having a tree of the committed and in-flight instruction instances. Newly fetched instructions become in-flight,
and later, subject to appropriate preconditions, can be committed. For example, below we show a set of instruction
instances {i1, . . . , i13} with the program-order-successor relation among them. Three of those ({i1, i3, i4}, boxed)
have been committed; the remainder are in-flight.

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

Instruction instances i5 and i9 are branches for which the thread has fetched multiple possible successors; here just two,
but a branch with a computed address might in principle fetch many possible successors. A typical implementation
might well explore at most one speculative path at a time. Note that the committed instances are not necessarily
contiguous: here i3 and i4 have been committed even though i2 has not, which can only happen if they are sufficiently
independent. When a branch is committed then any un-taken alternative paths are discarded, and instructions that
follow (in program order) an uncommitted branch cannot be committed until that branch is, so the tree must be linear
before any committed (boxed) instructions.

For a read instruction, as soon as an address for the read is known, the read might be satisfied, binding its value
to one received from the local memory (or in some cases forwarded from earlier in the thread). That value could
immediately be used by later instructions in the thread that depend on it, but it and they are subject to being restarted
or (if this is a speculative path) aborted until the read is committed.

For a write instruction, the key points are when the address and value become determined. After that (subject to
other conditions) the write can be committed, sent to the local memory; this is not subject to restart or abort. After
that, the write might propagate to other threads, becoming readable by them.

7

Instruction i5 and i9 are branches for which the thread has multiple
possible successors

When a branch is committed, all alternative paths are discarded

Actions become committed when the relevant address and value are
determined (“satisfied” for reads, “committed” for writes)

Principles of Concurrency, Spring 2022

Test Execution Diagrams
4

processors, and some more subtle examples in §6, with repre-
sentative experimental data in §7. To ensure that our model
explains the behaviour of tests in a way that faithfully ab-
stracts from the actual hardware, using appropriate con-
cepts, we depend on extensive discussions with IBM staff. To
validate the model against experiment, we built a checker,
based on code automatically generated from the mathemati-
cal definition, to calculate the allowed outcomes of tests (§8);
this confirms that the model gives the correct results for all
tests we describe and for a systematically generated family
of around 300 others.

Relaxed memory models are typically expressed either
in an axiomatic or an operational style. Here we adopt
the latter, defining an abstract machine in §3 and §4. We
expect that this will be more intuitive than typical axiomatic
models, as it has a straightforward notion of global time (in
traces of abstract machine transitions), and the abstraction
from the actual hardware is more direct. More particularly,
to explain some of the examples, it seems to be necessary to
model out-of-order and speculative reads explicitly, which is
easier to do in an abstract-machine setting. This work is an
exercise in making a model that is as simple as possible
but no simpler: the model is considerably more complex
than some (e.g. for TSO processors such as Sparc and x86),
but does capture the processor behaviour or architectural
intent for a range of subtle examples. Moreover, while the
definition is mathematically rigorous, it can be explained
in only a few pages of prose, so it should be accessible to
the expert systems programmers (of concurrency libraries,
language runtimes, optimising compilers, etc.) who have to
be concerned with these issues. We end with discussion of
related work (§9) and a brief summary of future directions
(§10), returning at last to the vendor architecture.

2. Simple Examples
We begin with an informal introduction to Power multipro-
cessor behaviour by example, introducing some key concepts
but leaving explanation in terms of the model to later.

2.1 Relaxed behaviour

In the absence of memory barriers or dependencies, Power
multiprocessors exhibit a very relaxed memory model, as
shown by their behaviour for the following four classic tests.

SB: Store Buffering Here two threads write to shared-
memory locations and then each reads from the other loca-
tion — an idiom at the heart of Dekker’s mutual-exclusion
algorithm, for example. In pseudocode:

Thread 0 Thread 1
x=1 y=1
r1=y r2=x
Initial shared state: x=0 and y=0
Allowed final state: r1=0 and r2=0

In the specified execution both threads read the value from
the initial state (in later examples, this is zero unless oth-
erwise stated). To eliminate any ambiguity about exactly
what machine instructions are executed, either from source-
language semantics or compilation concerns, we take the
definitive version of our examples to be in PowerPC as-
sembly (available online [SSA+11]), rather than pseudocode.
The assembly code is not easy to read, however, so here we
present examples as diagrams of the memory read and write
events involved in the execution specified by the initial and
final state constraints. In this example, the pseudocode r1

and r2 represent machine registers, so accesses to those are
not memory events; with the final state as specified, the
only conceivable execution has two writes, labelled a and c,
and two reads, labelled b and d, with values as below. They
are related by program order po (later we elide implied po
edges), and the fact that the two reads both read from the
initial state (0) is indicated by the incoming reads-from (rf)
edges (from writes to reads that read from them); the dots
indicate the initial-state writes.

Test SB : Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

This example illustrates the key relaxation allowed in Sparc
or x86 TSO models [Spa92, SSO+10]. The next three show
some ways in which Power gives a weaker model.

MP: Message passing Here Thread 0 writes data x and
then sets a flag y, while Thread 1 reads y from that flag write
and then reads x. On Power that read is not guaranteeed
to see the Thread 0 write of x; it might instead read from
‘before’ that write, despite the chain of po and rf edges:

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

In real code, the read c of y might be in a loop, repeated until
the value read is 1. Here, to simplify experimental testing,
we do not have a loop but instead consider only executions
in which the value read is 1, expressed with a constraint on
the final register values in the test source.

WRC: Write-to-Read Causality Here Thread 0 com-
municates to Thread 1 by writing x=1. Thread 1 reads
that, and then later (in program order) sends a message
to Thread 2 by writing into y. Having read that write of
y at Thread 2, the question is whether a program-order-
subsequent read of x at Thread 2 is guaranteed to see the
value written by the Thread 0 write, or might read from
‘before’ that, as shown, again despite the rf and po chain.
On Power that is possible.

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
po

rf

IRIW: Independent Reads of Independent Writes
Here two threads (0 and 2) write to distinct locations while
two others (1 and 3) each read from both locations. In
the specified allowed execution, they see the two writes in
different orders (Thread 1’s first read sees the write to x but
the program-order-subsequent read does not see the write of
y, whereas Thread 3 sees the write to y but not that to x).

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf rf

176

processors, and some more subtle examples in §6, with repre-
sentative experimental data in §7. To ensure that our model
explains the behaviour of tests in a way that faithfully ab-
stracts from the actual hardware, using appropriate con-
cepts, we depend on extensive discussions with IBM staff. To
validate the model against experiment, we built a checker,
based on code automatically generated from the mathemati-
cal definition, to calculate the allowed outcomes of tests (§8);
this confirms that the model gives the correct results for all
tests we describe and for a systematically generated family
of around 300 others.

Relaxed memory models are typically expressed either
in an axiomatic or an operational style. Here we adopt
the latter, defining an abstract machine in §3 and §4. We
expect that this will be more intuitive than typical axiomatic
models, as it has a straightforward notion of global time (in
traces of abstract machine transitions), and the abstraction
from the actual hardware is more direct. More particularly,
to explain some of the examples, it seems to be necessary to
model out-of-order and speculative reads explicitly, which is
easier to do in an abstract-machine setting. This work is an
exercise in making a model that is as simple as possible
but no simpler: the model is considerably more complex
than some (e.g. for TSO processors such as Sparc and x86),
but does capture the processor behaviour or architectural
intent for a range of subtle examples. Moreover, while the
definition is mathematically rigorous, it can be explained
in only a few pages of prose, so it should be accessible to
the expert systems programmers (of concurrency libraries,
language runtimes, optimising compilers, etc.) who have to
be concerned with these issues. We end with discussion of
related work (§9) and a brief summary of future directions
(§10), returning at last to the vendor architecture.

2. Simple Examples
We begin with an informal introduction to Power multipro-
cessor behaviour by example, introducing some key concepts
but leaving explanation in terms of the model to later.

2.1 Relaxed behaviour

In the absence of memory barriers or dependencies, Power
multiprocessors exhibit a very relaxed memory model, as
shown by their behaviour for the following four classic tests.

SB: Store Buffering Here two threads write to shared-
memory locations and then each reads from the other loca-
tion — an idiom at the heart of Dekker’s mutual-exclusion
algorithm, for example. In pseudocode:

Thread 0 Thread 1
x=1 y=1
r1=y r2=x
Initial shared state: x=0 and y=0
Allowed final state: r1=0 and r2=0

In the specified execution both threads read the value from
the initial state (in later examples, this is zero unless oth-
erwise stated). To eliminate any ambiguity about exactly
what machine instructions are executed, either from source-
language semantics or compilation concerns, we take the
definitive version of our examples to be in PowerPC as-
sembly (available online [SSA+11]), rather than pseudocode.
The assembly code is not easy to read, however, so here we
present examples as diagrams of the memory read and write
events involved in the execution specified by the initial and
final state constraints. In this example, the pseudocode r1

and r2 represent machine registers, so accesses to those are
not memory events; with the final state as specified, the
only conceivable execution has two writes, labelled a and c,
and two reads, labelled b and d, with values as below. They
are related by program order po (later we elide implied po
edges), and the fact that the two reads both read from the
initial state (0) is indicated by the incoming reads-from (rf)
edges (from writes to reads that read from them); the dots
indicate the initial-state writes.

Test SB : Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

This example illustrates the key relaxation allowed in Sparc
or x86 TSO models [Spa92, SSO+10]. The next three show
some ways in which Power gives a weaker model.

MP: Message passing Here Thread 0 writes data x and
then sets a flag y, while Thread 1 reads y from that flag write
and then reads x. On Power that read is not guaranteeed
to see the Thread 0 write of x; it might instead read from
‘before’ that write, despite the chain of po and rf edges:

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

In real code, the read c of y might be in a loop, repeated until
the value read is 1. Here, to simplify experimental testing,
we do not have a loop but instead consider only executions
in which the value read is 1, expressed with a constraint on
the final register values in the test source.

WRC: Write-to-Read Causality Here Thread 0 com-
municates to Thread 1 by writing x=1. Thread 1 reads
that, and then later (in program order) sends a message
to Thread 2 by writing into y. Having read that write of
y at Thread 2, the question is whether a program-order-
subsequent read of x at Thread 2 is guaranteed to see the
value written by the Thread 0 write, or might read from
‘before’ that, as shown, again despite the rf and po chain.
On Power that is possible.

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
po

rf

IRIW: Independent Reads of Independent Writes
Here two threads (0 and 2) write to distinct locations while
two others (1 and 3) each read from both locations. In
the specified allowed execution, they see the two writes in
different orders (Thread 1’s first read sees the write to x but
the program-order-subsequent read does not see the write of
y, whereas Thread 3 sees the write to y but not that to x).

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf rf

176

Relations:

- po: program order

- rf: reads-from

https://www.cl.cam.ac.uk/~pes20/ppcmem/

Principles of Concurrency, Spring 2022

Message-Passing
5

Barriers are similar in that they get committed at a thread and sent to the local part of the storage subsystem, before
perhaps propagating to other threads. The constraints on how writes and barriers can propagate are intertwined, as we
shall see.

Aside: other notions of atomicity We introduced multiple-copy atomicity above, but some caution is needed, as
there are many different senses of “atomic” in use. Two other important notions of atomicity are as follows.

A memory read or write by an instruction is access-atomic (or single-copy atomic, in the terminology of Col-
lier [Col92]—though note that single-copy atomic is not the opposite of multiple-copy atomic) if it gives rise to a
single access to the memory. Typically an architecture will specify that certain sizes of reads and writes, subject to
some alignment constraints, (such as 1, 2, 4, 8, and 16-byte accesses with those alignments), are access-atomic, while
other sizes and non-aligned accesses may be split into several distinct subaccesses. For example, two writes of the
same size to the same address are access-atomic iff the result is guaranteed to be either one or the other value, not a
combination of their bits. Of course, in a machine which is not multiple-copy atomic, even if a write instruction is
access-atomic, the write may become visible to different threads at different times (and if a write is not access-atomic,
the individual subaccesses may become visible to different threads at different times, perhaps in different orders).

An instruction that involves more than one memory access, such as an increment that does a read and a write to the
same location, or a load-multiple that reads several words, is instruction-atomic if its accesses are indivisible in time,
with no other intervening access by other threads to their locations. For example, increment is instruction-atomic iff
two concurrent increments to the same location that is initially 0 are guaranteed to result in the location containing 2,
not 1. On x86 INC is not instruction-atomic whereas LOCK;INC is. On POWER an lmw load-multiple instruction is
not instruction-atomic.

Yet another usage is the C11 and C++11 atomic types and operations. These have various properties, including
analogues of access- and instruction-atomicity, that we will not discuss here; see [BA08, BOS+11, Bec11, ISO11] for
details.

3 Introducing Litmus Tests, and Simple Message Passing (MP)

3.1 Message Passing Attempts without Barriers or Dependencies
3.1.1 The Message Passing (MP) Example A simple example illustrating some ways in which ARM and
POWER are relaxed is the classic message passing (MP) example below, with two threads (Thread 0 and Thread 1)
and two shared variables (x and y). This is a simple low-level concurrency programming idiom, in which one thread
(Thread 0) writes some data x, and then sets a flag y to indicate that the data is ready to be read, while another thread
(Thread 1) busy-waits reading the flag y until it sees it set, and then reads the data x into a local variable or processor
register r2. The desired behaviour is that after the reading thread has seen the flag set, its subsequent read of the data
x will see the value from the writing thread, not the initial state (or some other previous value). In pseudocode:

MP-loop Pseudocode
Thread 0 Thread 1

x=1 // write data while (y==0) {} // busy-wait for flag
y=1 // write flag r2=x // read data
Initial state: x=0 ∧ y=0
Forbidden?: Thread 1 register r2 = 0

The test specifies the initial state of registers and memory (x=0 and y=0; henceforth we assume these are zero if not
given explicitly) and a constraint on the final state, e.g. that Thread 1’s register r2 is 0. Here x (or [x] in assembly tests)
is the value of memory location x; later we write 1:r2 for the value of register r2 on hardware thread 1. If one reached
that final state, with r2=0, then the Thread 1 read of x would have to have read x=0 from the initial state despite the
Thread 1 while loop having successfully exit on reading from the Thread 0 write of y=1, program-order-after its write
of x=1.

We can simplify the example without really affecting what is going on by looking at just a single test of the
flag: instead of looking at all executions of the MP-loop busy-waiting loop, we can restrict our attention to just the
executions of the MP program below in which the Thread 1 read of y sees the value 1 written by Thread 0 (we are
effectively considering just the executions of MP-loop in which the while loop test succeeds the first time). In other

8

words, the desired behaviour is that if the read of y saw 1 then the read of x must not have seen 0. Or, equivalently,
the desired behaviour is that final outcomes in which r1=1 and r2=0 should be forbidden.

MP Pseudocode
Thread 0 Thread 1

x=1 r1=y
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden?: 1:r1=1 ∧ 1:r2=0

A litmus test such as this comprises a small multithreaded program, with a defined initial state and with a constraint on
their final state that picks out the potential executions of interest. Given that, for any architecture we can ask whether
such an execution is allowed or forbidden; we can also run the test (in a test harness [AMSS11a]) on particular
processor implementations to see whether it is observed or not observed.

Throughout this document we use the term “thread” to refer to hardware threads on SMT machines and processors
on non-SMT machines. Assuming a correctly implemented scheduler (with appropriate barriers at context switches)
it should be sound to think of software threads in the same way.

3.1.2 Observed Behaviour In a sequentially consistent model, that final outcome of r1=1 ∧ r2=0 is indeed
forbiden, as there is no interleaving of the reads and writes (in which each read reads the value of the most recent write
to the same address) which permits it. To check this, one can just enumerate the six possible interleavings that respect
the program order of each thread:

Interleaving Final register state
x=1; y=1; r1=y; r2=x r1=1 ∧ r2=1
x=1; r1=y; y=1; r2=x r1=0 ∧ r2=1
x=1; r1=y; r2=x; y=1 r1=0 ∧ r2=1
r1=y; r2=x; x=1; y=1 r1=0 ∧ r2=0
r1=y; x=1; r2=x; y=1 r1=0 ∧ r2=1
r1=y; x=1; y=1; r2=x r1=0 ∧ r2=1

On x86-TSO or SPARC TSO that final outcome of r1=1 ∧ r2=0 is also forbidden, as the two writes flow through a
FIFO buffer into the shared memory before becoming visible to the reading thread. But on ARM and POWER, this
final outcome is allowed in the architecture, and it is commonly observable on current processor implementations.
Thread 1 can see the flag y set to 1, and program-order-subsequently see the data x still 0. The table below gives some
sample experimental data, running this test on various processor implementations using a test harness produced by our
litmus tool [AMSS11a]. Each entry gives a ratiom/n, wherem is the number of times that the final outcome of r1=1
∧ r2=0 was observed in n trials.

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

Here we just show the frequency of the outcome identified by the final state constraint, but many other outcomes (all
the sequentially consistent outcomes listed above), are also allowed and observable.

Care is needed in interpreting such results, of course: the specific numbers can be highly dependent on the test
harness; such testing, of highly nondeterministic systems, is not guaranteed to produce all the executions that an imple-
mentation might produce; and the architectures are intentionally looser in some respects than current implementations,
so (as we will see later) some behaviour may be architecturally allowed even though it is never observable in current
processors. Moreover, there might be differences between our architectural models, the vendor’s architectural intent,
and the vendor’s architecture manuals (the ARM ARM [ARM08a] and POWER ISA [Pow09]). And of course, while
our models are based in part on extensive discussion with ARM and IBM architects and designers, we do not speak for
either vendor. All that said, we have reasonable confidence in our models, and we have found our testing process to
be reasonably discriminating. Whereever we mark a test execution as allowed or forbidden, we believe that that does
match the architectural intention, and, unless otherwise stated, everything marked as allowed is observable on some
implementation of one or other architecture, and (modulo processor errata, which we do not discuss here) everything
marked as forbidden has not been observable. We give some summary test data to illustate this in each section.

9

processors, and some more subtle examples in §6, with repre-
sentative experimental data in §7. To ensure that our model
explains the behaviour of tests in a way that faithfully ab-
stracts from the actual hardware, using appropriate con-
cepts, we depend on extensive discussions with IBM staff. To
validate the model against experiment, we built a checker,
based on code automatically generated from the mathemati-
cal definition, to calculate the allowed outcomes of tests (§8);
this confirms that the model gives the correct results for all
tests we describe and for a systematically generated family
of around 300 others.

Relaxed memory models are typically expressed either
in an axiomatic or an operational style. Here we adopt
the latter, defining an abstract machine in §3 and §4. We
expect that this will be more intuitive than typical axiomatic
models, as it has a straightforward notion of global time (in
traces of abstract machine transitions), and the abstraction
from the actual hardware is more direct. More particularly,
to explain some of the examples, it seems to be necessary to
model out-of-order and speculative reads explicitly, which is
easier to do in an abstract-machine setting. This work is an
exercise in making a model that is as simple as possible
but no simpler: the model is considerably more complex
than some (e.g. for TSO processors such as Sparc and x86),
but does capture the processor behaviour or architectural
intent for a range of subtle examples. Moreover, while the
definition is mathematically rigorous, it can be explained
in only a few pages of prose, so it should be accessible to
the expert systems programmers (of concurrency libraries,
language runtimes, optimising compilers, etc.) who have to
be concerned with these issues. We end with discussion of
related work (§9) and a brief summary of future directions
(§10), returning at last to the vendor architecture.

2. Simple Examples
We begin with an informal introduction to Power multipro-
cessor behaviour by example, introducing some key concepts
but leaving explanation in terms of the model to later.

2.1 Relaxed behaviour

In the absence of memory barriers or dependencies, Power
multiprocessors exhibit a very relaxed memory model, as
shown by their behaviour for the following four classic tests.

SB: Store Buffering Here two threads write to shared-
memory locations and then each reads from the other loca-
tion — an idiom at the heart of Dekker’s mutual-exclusion
algorithm, for example. In pseudocode:

Thread 0 Thread 1
x=1 y=1
r1=y r2=x
Initial shared state: x=0 and y=0
Allowed final state: r1=0 and r2=0

In the specified execution both threads read the value from
the initial state (in later examples, this is zero unless oth-
erwise stated). To eliminate any ambiguity about exactly
what machine instructions are executed, either from source-
language semantics or compilation concerns, we take the
definitive version of our examples to be in PowerPC as-
sembly (available online [SSA+11]), rather than pseudocode.
The assembly code is not easy to read, however, so here we
present examples as diagrams of the memory read and write
events involved in the execution specified by the initial and
final state constraints. In this example, the pseudocode r1

and r2 represent machine registers, so accesses to those are
not memory events; with the final state as specified, the
only conceivable execution has two writes, labelled a and c,
and two reads, labelled b and d, with values as below. They
are related by program order po (later we elide implied po
edges), and the fact that the two reads both read from the
initial state (0) is indicated by the incoming reads-from (rf)
edges (from writes to reads that read from them); the dots
indicate the initial-state writes.

Test SB : Allowed

Thread 0

a: W[x]=1

b: R[y]=0

Thread 1

c: W[y]=1

d: R[x]=0

po po

rf rf

This example illustrates the key relaxation allowed in Sparc
or x86 TSO models [Spa92, SSO+10]. The next three show
some ways in which Power gives a weaker model.

MP: Message passing Here Thread 0 writes data x and
then sets a flag y, while Thread 1 reads y from that flag write
and then reads x. On Power that read is not guaranteeed
to see the Thread 0 write of x; it might instead read from
‘before’ that write, despite the chain of po and rf edges:

Test MP : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

In real code, the read c of y might be in a loop, repeated until
the value read is 1. Here, to simplify experimental testing,
we do not have a loop but instead consider only executions
in which the value read is 1, expressed with a constraint on
the final register values in the test source.

WRC: Write-to-Read Causality Here Thread 0 com-
municates to Thread 1 by writing x=1. Thread 1 reads
that, and then later (in program order) sends a message
to Thread 2 by writing into y. Having read that write of
y at Thread 2, the question is whether a program-order-
subsequent read of x at Thread 2 is guaranteed to see the
value written by the Thread 0 write, or might read from
‘before’ that, as shown, again despite the rf and po chain.
On Power that is possible.

Test WRC : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
po

rf

IRIW: Independent Reads of Independent Writes
Here two threads (0 and 2) write to distinct locations while
two others (1 and 3) each read from both locations. In
the specified allowed execution, they see the two writes in
different orders (Thread 1’s first read sees the write to x but
the program-order-subsequent read does not see the write of
y, whereas Thread 3 sees the write to y but not that to x).

Test IRIW : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf rf

176

Is this outcome possible under SC?

Allowed because (a) writes by Thread 0 are to distinct addresses and can
be committed out-of-order; (b) reads performed by Thread 1 can be
satisfied out-of-order

Principles of Concurrency, Spring 2022

Iterated Message-Passing
6

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M
MP+dmb/sync+po Allow 670k/2.4G 0/26GU 13M/39G 3.1M/3.9G 50/28M 69k/743M 249k/195M
MP+dmb/sync+addr Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G 0/26G 0/2.2G
MP+dmb/sync+ctrl Allow 363k/5.5G 0/43GU 27M/167G 5.7M/3.9G 1.5k/53M 556/748M 1.5M/207M
MP+dmb/sync+ctrlsib/isync Forbid 0/6.9G 0/40G 0/252G 0/29G 0/39G 0/26G 0/2.2G
S+dmb/sync+po Allow 0/2.4GU 0/18GU 0/35GU 271k/4.0G 84/58M 357/1.8G 211k/202M
S+dmb/sync+ctrl Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G 0/2.2G
S+dmb/sync+data Forbid 0/2.1G 0/14G 0/29G 0/24G 0/39G 0/26G 0/2.2G

The experimental data shows that the forbidden results are all non-observable. Some of the allowed results, on the
other hand, are not observable on some implementations, as highlighted in blue and tagged with a superscript U
(allowed-Unseen): for MP+sync+po and MP+sync+ctrl POWER 6 does not exhibit the allowed behaviour (in this
sense it has a more in-order pipeline than either POWERG5 or POWER 7), and forS+sync+po none of these POWER
implementations do. It appears that these implementations do not commit writes when there is an outstanding program-
order-earlier read, even to a different address; though of course other and future implementations may differ.

These are all cases where the particular implementations are tighter than the architectural intent, and the fact that
this can and does change from one processor generation to another reinforces the fact that programmers aiming to
write portable code must be concerned with the architectural specification, not just their current implementation.

5 Iterated Message Passing on more than two threads and Cumulativity
(WRC and ISA2)

Up to this point, all our examples have used only two threads. Generalising to three or four threads reveals a new
phenomenon: on POWER and ARM, two threads can observe writes to different locations in different orders, even in
the absence of any thread-local reordering. In other words, the architectures are not multiple-copy atomic [Col92]. To
see this, consider first a three-thread variant of MP in which the first write has been pulled off to another thread, with
Thread 1 busy-waiting to see it before doing its own write:

WRC-loop Pseudocode
Thread 0 Thread 1 Thread 2

x=1 while (x==0) {} while (y==0) {}
y=1 r3=x

Initial state: x=0 ∧ y=0
Forbidden?: 2:r3=0

This test was known as WRC, for ‘write-to-read causality’ in Boehm and Adve [BA08].
As before, we simplify the example without really affecting what is going on by removing the loops, replacing

them by a final-state constraint that restricts attention to the executions in which Thread 1 reads x=1 and Thread 2
reads y=1. The question is whether such an execution can also see x=0 (instead of reading from the Thread 0 write of
x=1).

WRC Pseudocode
Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y
y=1 r3=x

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0 Test WRC: Allowed

Thread 0
a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1
Thread 2

e: R[x]=0

rf
po

rf
porf

Without any dependencies or barriers, this is trivially allowed: the Thread 1 read and write are to different addresses
and can be reordered with each other, and likewise the Thread 2 reads can be satisfied out of program order. Adding
artificial dependencies to prevent those reorderings gives us theWRC+addrs test below.

18

Thread 1 reads and writes to different addresses and can be thus
reordered

of the test to be the POWER and ARM assembly code, as on the right below, not the pseudocode above and on the
left. The assembly code can be harder to read for those unfamiliar with it, but as we usually use execution diagrams
as above, this is not often a problem.
MP Pseudocode

Thread 0 Thread 1
x=1 r1=y
y=1 r2=x
Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0

MP ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 1:R0=1 ∧ 1:R1=0

MP POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 1:r1=1 ∧ 1:r3=0

3.1.6 Undefined behaviour and data races By focussing on the execution of machine code, we can also sidestep
the fact that in some high-level languages certain programs have undefined behaviour. For example, in C11/C++11,
unless y were declared to be atomic, the code above would give rise to a data race, making any program that executed
it undefined, and if it was declared atomic the compiler might introduce various assembly-language fences (depending
on the memory-order parameters of the atomic accesses). At the machine-code level, all programs have well-defined
(albeit typically nondeterministic) behaviour even if they have races.

3.1.7 Real usage of theMP idiom In theMP test as shown above, the data x is just a single memory location, but
in real usage one might have multi-word data. For most or all of the MP variations that we explore later, that should
make no difference.

3.1.8 Running the example in ppcmem To interactively explore the behaviour of this example using our
ppcmem tool, go to http://www.cl.cam.ac.uk/˜pes20/ppcmem, click on Change to ARM model if de-
sired, click on Select POWER/ARM Test and select MP from the menu, and click on Interactive. The screen will
show the state of our model (we do not give all the details here, but they are described in our PLDI 2011 and PLDI
2012 papers [SSA+11, SMO+12]) running that test, with the green underlined options the possible model transi-
tions; one can click on those to explore particular possible behaviours. Alternatively, there is a direct link to run
ppcmem on each POWER test via the Tests and Test Results link at http://www.cl.cam.ac.uk/˜pes20/
ppc-supplemental.

3.2 Enforcing Order with Strong (dmb/sync) Barriers
To regain order, the programmer must defend against all of the above out-of-order possibilities. A strong memory
barrier (or fence) instruction inserted between the two writes on Thread 0, and between the two reads on Thread 1,
suffices. On POWER this would be the sync instruction (also written as hwsync), and on ARM it would be DMB.
The resulting litmus tests are given below.

MP+dmb/syncs Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync dmb/sync
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] DMB
DMB LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) sync
sync lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 1:r1=1 ∧ 1:r3=0

We illustrate the execution of interest as below, with green dmb/sync arrows to indicate memory accesses sepa-
rated by a sync or a DMB instruction.

Test MP+dmbs/syncs: Forbidden

Thread 0
a: W[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: R[x]=0

dmb/sync
rf

dmb/sync

rf

11

of the test to be the POWER and ARM assembly code, as on the right below, not the pseudocode above and on the
left. The assembly code can be harder to read for those unfamiliar with it, but as we usually use execution diagrams
as above, this is not often a problem.
MP Pseudocode

Thread 0 Thread 1
x=1 r1=y
y=1 r2=x
Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0

MP ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 1:R0=1 ∧ 1:R1=0

MP POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 1:r1=1 ∧ 1:r3=0

3.1.6 Undefined behaviour and data races By focussing on the execution of machine code, we can also sidestep
the fact that in some high-level languages certain programs have undefined behaviour. For example, in C11/C++11,
unless y were declared to be atomic, the code above would give rise to a data race, making any program that executed
it undefined, and if it was declared atomic the compiler might introduce various assembly-language fences (depending
on the memory-order parameters of the atomic accesses). At the machine-code level, all programs have well-defined
(albeit typically nondeterministic) behaviour even if they have races.

3.1.7 Real usage of theMP idiom In theMP test as shown above, the data x is just a single memory location, but
in real usage one might have multi-word data. For most or all of the MP variations that we explore later, that should
make no difference.

3.1.8 Running the example in ppcmem To interactively explore the behaviour of this example using our
ppcmem tool, go to http://www.cl.cam.ac.uk/˜pes20/ppcmem, click on Change to ARM model if de-
sired, click on Select POWER/ARM Test and select MP from the menu, and click on Interactive. The screen will
show the state of our model (we do not give all the details here, but they are described in our PLDI 2011 and PLDI
2012 papers [SSA+11, SMO+12]) running that test, with the green underlined options the possible model transi-
tions; one can click on those to explore particular possible behaviours. Alternatively, there is a direct link to run
ppcmem on each POWER test via the Tests and Test Results link at http://www.cl.cam.ac.uk/˜pes20/
ppc-supplemental.

3.2 Enforcing Order with Strong (dmb/sync) Barriers
To regain order, the programmer must defend against all of the above out-of-order possibilities. A strong memory
barrier (or fence) instruction inserted between the two writes on Thread 0, and between the two reads on Thread 1,
suffices. On POWER this would be the sync instruction (also written as hwsync), and on ARM it would be DMB.
The resulting litmus tests are given below.

MP+dmb/syncs Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync dmb/sync
y=1 r2=x
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM
Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]
STR R0,[R2] DMB
DMB LDR R1,[R2]
MOV R1,#1
STR R1,[R3]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER
Thread 0 Thread 1

li r1,1 lwz r1,0(r2)
stw r1,0(r2) sync
sync lwz r3,0(r4)
li r3,1
stw r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 1:r1=1 ∧ 1:r3=0

We illustrate the execution of interest as below, with green dmb/sync arrows to indicate memory accesses sepa-
rated by a sync or a DMB instruction.

Test MP+dmbs/syncs: Forbidden

Thread 0
a: W[x]=1

b: W[y]=1

c: R[y]=1
Thread 1

d: R[x]=0

dmb/sync
rf

dmb/sync

rf

11

Memory fences

(barriers) enforce

ordering. Called

“sync” on Power

and “dmb” on ARM

maintains local ordering and fixes

propagation order to other threads

Principles of Concurrency, Spring 2022

IRIW and Coherence Ordering
7

SB Pseudocode
Thread 0 Thread 1

x=1 y=1
r1=y r2=x
Initial state: x=0 ∧ y=0
Allowed: 0:r1=0 ∧ 1:r2=0

SB ARM
Thread 0 Thread 1

MOV R0,#1 MOV R0,#1
STR R0,[R2] STR R0,[R3]
LDR R1,[R3] LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Allowed: 0:R1=0 ∧ 1:R1=0

SB POWER
Thread 0 Thread 1

li r1,1 li r1,1
stw r1,0(r2) stw r1,0(r2)
lwz r3,0(r4) lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Allowed: 0:r3=0 ∧ 1:r3=0

Test SB: Allowed

Thread 0
a: W[x]=1

b: R[y]=0

Thread 1
c: W[y]=1

d: R[x]=0

po po

rf rf

Without any barriers or dependencies, that outcome is allowed, and, as there are no dependencies from writes, the
only possible strengthening of the code is to insert barriers. Adding a DMB or sync on both threads suffices to rule
out the unintended outcome:
SB+dmbs/syncs Pseudocode

Thread 0 Thread 1
x=1 y=1
dmb/sync dmb/sync
r1=y r2=x
Initial state: x=0 ∧ y=0
Forbidden: 0:r1=0 ∧ 1:r2=0

SB+dmbs ARM
Thread 0 Thread 1

MOV R0,#1 MOV R0,#1
STR R0,[R2] STR R0,[R3]
DMB DMB
LDR R1,[R3] LDR R1,[R2]
Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y
Forbidden: 0:R1=0 ∧ 1:R1=0

SB+syncs POWER
Thread 0 Thread 1

li r1,1 li r1,1
stw r1,0(r2) stw r1,0(r2)
sync sync
lwz r3,0(r4) lwz r3,0(r4)
Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x
Forbidden: 0:r3=0 ∧ 1:r3=0

Test SB+dmbs/syncs: Forbidden

Thread 0
a: W[x]=1

b: R[y]=0

Thread 1
c: W[y]=1

d: R[x]=0

dmb/sync dmb/sync

rf rf

Here the dmb or sync barriers ensure that the program-order-previous writes must have propagated to all threads
before the reads are satisfied, ruling out the given execution. On POWER, it does not suffice here to use lwsync
barriers (or one lwsync and one sync barrier): the POWER lwsync does not ensure that writes before the barrier have
propagated to any other thread before subsequent actions, though it does keep writes before and after an lwsync in
order as far as all threads are concerned.

6.1 Extending SB to more threads: IRIW and RWC
Just as we extended the MP example by pulling out the first write to a new thread, to give the WRC example, we
can extend SB by pulling out one or both writes to new threads. Pulling out both gives the Independent Reads of
Independent Writes (IRIW) example below (so named by Lea). Threads 0 and 2 write to x and y respectively; Thread 1
reads x then y; and Thread 3 reads y then x.

IRIW Pseudocode
Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y
r2=y r4=x

Initial state: x=0 ∧ y=0
Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0 Test IRIW: Allowed

Thread 0
a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2
d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
po

rf
po

rf
rf

This gives us a striking illustration of the fact that writes can be propagated to different threads in different orders:
in IRIW+addrs below (where we add dependencies to the reading threads to rule out the trivial executions in which
the reads are locally reordered), Thread 1 sees the write to x but not that to y, while Thread 3 sees the write to y but
not that to x.

21

Writes can be propagated to different threads in different orders

Coherence Despite all the above, one does get a guaran-
tee of coherence: in any execution, for each location, there is
a single linear order (co) of all writes (by any processor) to
that location, which must be respected by all threads. The
four cases below illustrate this: a pair of reads by a thread
cannot read contrary to the coherence order (CoRR1); the
coherence order must respect program order for a pair of
writes by a thread (CoWW); a read cannot read from a write
that is coherence-hidden by another write program-order-
preceding the read (CoWR), and a write cannot coherence-
order-precede a write that a program-order-preceding read
read from. We can now clarify the ‘before’ in the MP and
WRC discussion above, which was with respect to the co-
herence order for x.

Test CoRR1 : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[x]=0

rf
po

rf

Test CoWW : Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

Test CoWR : Forbidden

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

Test CoRW : Forbidden

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po co

rf

2.2 Enforcing ordering

The Power ISA provides several ways to enforce stronger
ordering. Here we deal with the sync (heavyweight sync, or
hwsync) and lwsync (lightweight sync) barrier instructions,
and with dependencies and the isync instruction, leaving
load-reserve/store-conditional pairs and eieio to future work.

Regaining sequential consistency (SC) using sync
If one adds a sync between every program-order pair
of instructions (creating tests SB+syncs, MP+syncs,
WRC+syncs, and IRIW+syncs), then all the non-SC results
above are forbidden, e.g.

Test MP+syncs : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

sync

rf

Using dependencies Barriers can incur a significant
runtime cost, and in some cases enough ordering is guaran-
teed simply by the existence of a dependency from a memory
read to another memory access. There are various kinds:

• There is an address dependency (addr) from a read to
a program-order-later memory read or write if there
is a data flow path from the read, through registers
and arithmetic/logical operations (but not through other
memory accesses), to the address of the second read or
write.

• There is a data dependency (data) from a read to a
memory write if there is such a path to the value written.
Address and data dependencies behave similarly.

• There is a control dependency (ctrl) from a read to a
memory write if there is such a dataflow path to the
test of a conditional branch that is a program-order-
predecessor of the write. We also refer to control depen-
dencies from a read to a read, but ordering of the reads
in that case is not respected in general.

• There is a control+isync dependency (ctrlisync) from a
read to another memory read if there is such a dataflow
path from the first read to the test of a conditional branch
that program-order-precedes an isync instruction before
the second read.

Sometimes one can use dependencies that are naturally
present in an algorithm, but it can be desirable to introduce
one artificially, for its ordering properties, e.g. by XOR’ing a
value with itself and adding that to an address calculation.

Dependencies alone are usually not enough. For exam-
ple, adding dependencies between read/read and read/write
pairs, giving tests WRC+data+addr (with a data depen-
dency on Thread 1 and an address dependency on Thread
2), and IRIW+addrs (with address dependencies on Threads
1 and 3), leaves the non-SC behaviour allowed. One cannot
add dependencies to SB, as that only has write/read pairs,
and one can only add a dependency to the read/read side
of MP, leaving the writes unconstrained and the non-SC be-
haviour still allowed.

In combination with a barrier, however, dependencies can
be very useful. For example, MP+sync+addr is SC:

Test MP+sync+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

addr

rf

Here the barrier keeps the writes in order, as seen by any
thread, and the address dependency keeps the reads in order.

Contrary to what one might expect, the combination of
a thread-local reads-from edge and a dependency does not
guarantee ordering of a write-write pair, as seen by another
thread; the two writes can propagate in either order (here
[x]=z initially):

Test MP+nondep+sync : Allowed

Thread 0

a: W[x]=y

b: R[x]=y

c: W[y]=1

d: R[y]=1

Thread 1

e: R[x]=z

rf

addr
rf

sync

rf

Control dependencies, observable speculative reads,
and isync Recall that control dependencies (without
isync) are only respected from reads to writes, not from
reads to reads. If one replaces the address dependency
in MP+sync+addr by a dataflow path to a conditional
branch before the second read (giving the test named
MP+sync+ctrl below), that does not ensure that the reads
on Thread 1 bind their values in program order.

Test MP+sync+ctrl : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

ctrl

rf

177

Coherence

constraints

Principles of Concurrency, Spring 2022

Dependency Ordering
8

- Address dependency: value loaded by a read is used to compute the address
used in a subsequent read or write

We show a case where the weakness of lwsync really matters in test SB+lwsyncs, in Section 6. ARM does not
have an analogue of lwsync.

3.4 Observed Behaviour
Below we show experimental data for these tests: for MP+dmbs and MP+syncs on ARM and POWER, and for
MP+lwsyncs just on POWER.

POWER ARM
Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M
MP+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G
MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G — — — —

Here the allowed result forMP is observable on all platforms, while the forbidden results for the variants with barriers
are not observable on any platform.

4 Enforcing Order with Dependencies
In fact, on the read side of the message-passing example, the sync, lwsync, and DMBmemory barriers used above are
stronger than necessary: one can enforce enough ordering to prohibit the undesired outcome just by relying on various
kinds of dependency in the code. In this section we explain what those are and what their force is. In later sections
we use dependencies in examples that illustrate some other relaxed-memory properties of the machines. For POWER,
in all the examples of this section one could replace the sync on the writing thread with lwsync without affecting the
results.

4.1 Address Dependencies
The simplest kind of dependency is an address dependency. There is an address dependency from a read instruction
to a program-order-later read or write instruction when the value read by the first is used to compute the address
used for the second. In the variation of MP below, instead of writing a flag value of 1, the writer Thread 0 writes
the address of location x, and the reader Thread 1 uses that address for its second read. That dependency is enough
to keep the two reads satisfied in program order on Thread 1: the second read cannot get started until its address is
(perhaps speculatively) known, so the second read cannot be satisfied until the first read is satisfied (in other words,
the ARM and POWER architectures do not allow value speculation of addresses). Combining that with the dmb/sync
on Thread 0 (which keeps the write to x and the write to y in order as far as any other thread is concerned) is enough
to prevent Thread 1 reading 0 from x if it has read &x from y.

MP+dmb/sync+addr′ Pseudocode
Thread 0 Thread 1

x=1 r1=y
dmb/sync
y=&x r2=*r1
Initial state: x=0 ∧ y=0
Forbidden: 1:r1=&x ∧ 1:r2=0 Test MP+dmb/sync+addr’: Forbidden

Thread 0
a: W[x]=1

b: W[y]=&x

c: R[y]=&x
Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

Note that there is a slight mismatch here between the C-like syntax of our pseudocode, in which x is a C variable and
&x its address, and the notation of our assembly examples, in which x is a location.

4.1.1 Compound Data To see that this message-passing-with-dependency idiom can still work correctly if the
data (the value stored at x) were multi-word, note that all the writes to the parts of the data would precede the dmb/sync
on Thread 0, while all the reads of the parts of the data should each be address-dependent on the value read from y on
Thread 1, by some offset calculation from that value.

13

- Control dependency: value loaded by a read is used to compute the value of a
conditional that is program-order-before another read or write

Coherence Despite all the above, one does get a guaran-
tee of coherence: in any execution, for each location, there is
a single linear order (co) of all writes (by any processor) to
that location, which must be respected by all threads. The
four cases below illustrate this: a pair of reads by a thread
cannot read contrary to the coherence order (CoRR1); the
coherence order must respect program order for a pair of
writes by a thread (CoWW); a read cannot read from a write
that is coherence-hidden by another write program-order-
preceding the read (CoWR), and a write cannot coherence-
order-precede a write that a program-order-preceding read
read from. We can now clarify the ‘before’ in the MP and
WRC discussion above, which was with respect to the co-
herence order for x.

Test CoRR1 : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[x]=0

rf
po

rf

Test CoWW : Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

Test CoWR : Forbidden

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

Test CoRW : Forbidden

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po co

rf

2.2 Enforcing ordering

The Power ISA provides several ways to enforce stronger
ordering. Here we deal with the sync (heavyweight sync, or
hwsync) and lwsync (lightweight sync) barrier instructions,
and with dependencies and the isync instruction, leaving
load-reserve/store-conditional pairs and eieio to future work.

Regaining sequential consistency (SC) using sync
If one adds a sync between every program-order pair
of instructions (creating tests SB+syncs, MP+syncs,
WRC+syncs, and IRIW+syncs), then all the non-SC results
above are forbidden, e.g.

Test MP+syncs : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

sync

rf

Using dependencies Barriers can incur a significant
runtime cost, and in some cases enough ordering is guaran-
teed simply by the existence of a dependency from a memory
read to another memory access. There are various kinds:

• There is an address dependency (addr) from a read to
a program-order-later memory read or write if there
is a data flow path from the read, through registers
and arithmetic/logical operations (but not through other
memory accesses), to the address of the second read or
write.

• There is a data dependency (data) from a read to a
memory write if there is such a path to the value written.
Address and data dependencies behave similarly.

• There is a control dependency (ctrl) from a read to a
memory write if there is such a dataflow path to the
test of a conditional branch that is a program-order-
predecessor of the write. We also refer to control depen-
dencies from a read to a read, but ordering of the reads
in that case is not respected in general.

• There is a control+isync dependency (ctrlisync) from a
read to another memory read if there is such a dataflow
path from the first read to the test of a conditional branch
that program-order-precedes an isync instruction before
the second read.

Sometimes one can use dependencies that are naturally
present in an algorithm, but it can be desirable to introduce
one artificially, for its ordering properties, e.g. by XOR’ing a
value with itself and adding that to an address calculation.

Dependencies alone are usually not enough. For exam-
ple, adding dependencies between read/read and read/write
pairs, giving tests WRC+data+addr (with a data depen-
dency on Thread 1 and an address dependency on Thread
2), and IRIW+addrs (with address dependencies on Threads
1 and 3), leaves the non-SC behaviour allowed. One cannot
add dependencies to SB, as that only has write/read pairs,
and one can only add a dependency to the read/read side
of MP, leaving the writes unconstrained and the non-SC be-
haviour still allowed.

In combination with a barrier, however, dependencies can
be very useful. For example, MP+sync+addr is SC:

Test MP+sync+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

addr

rf

Here the barrier keeps the writes in order, as seen by any
thread, and the address dependency keeps the reads in order.

Contrary to what one might expect, the combination of
a thread-local reads-from edge and a dependency does not
guarantee ordering of a write-write pair, as seen by another
thread; the two writes can propagate in either order (here
[x]=z initially):

Test MP+nondep+sync : Allowed

Thread 0

a: W[x]=y

b: R[x]=y

c: W[y]=1

d: R[y]=1

Thread 1

e: R[x]=z

rf

addr
rf

sync

rf

Control dependencies, observable speculative reads,
and isync Recall that control dependencies (without
isync) are only respected from reads to writes, not from
reads to reads. If one replaces the address dependency
in MP+sync+addr by a dataflow path to a conditional
branch before the second read (giving the test named
MP+sync+ctrl below), that does not ensure that the reads
on Thread 1 bind their values in program order.

Test MP+sync+ctrl : Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

sync
rf

ctrl

rf

177

Principles of Concurrency, Spring 2022

Cumulativity
9

Adding an isync instruction between the branch and the
second read (giving test MP+sync+ctrlisync) suffices.

The fact that data/address dependencies to both reads
and writes are respected while control dependencies are only
respected to writes is important in the design of C++0x
low-level atomics [BA08, BOS+11], where release/consume
atomics let one take advantage of data dependencies without
requiring barriers (and limiting optimisation) to ensure that
all source-language control dependencies are respected.

Cumulativity For WRC it suffices to have a sync on
Thread 1 with a dependency on Thread 2; the non-SC
behaviour is then forbidden:

Test WRC+sync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
addr

rf

This illustrates what we call A-cumulativity of Power barri-
ers: a chain of edges before the barrier that is respected. In
this case Thread 1 reads from the Thread 0 write before (in
program order) executing a sync, and then Thread 1 writes
to another location; any other thread (here 2) is guaranteed
to see the Thread 0 write before the Thread 1 write. How-
ever, swapping the sync and dependency, e.g. with just an
rf and data edge between writes a and c, does not guarantee
ordering of those two writes as seen by another thread:

Test WRC+data+sync : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
data

rf
sync

rf

In contrast to that WRC+data+sync, a chain of reads-
from edges and dependencies after a sync does ensure that
ordering between a write before the sync and a write after
the sync is respected, as below. Here the reads e and f of z
and x cannot see the writes a and d out of order. We call
this a B-cumulativity property.

Test ISA2+sync+data+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

sync
rf

data
rf

addr

rf

Using lwsync The lwsync barrier is broadly similar to
sync, including cumulativity properties, except that does not
order store/load pairs and it is cheaper to execute; it suf-
fices to guarantee SC behaviour in MP+lwsyncs (MP with
lwsync in each thread), WRC+lwsync+addr (WRC with
lwsync on Thread 1 and an address dependency on Thread
2), and ISA2+lwsync+data+addr, while SB+lwsyncs and
IRIW+lwsyncs are still allowed. We return later to other
differences between sync and lwsync.

3. The Model Design
We describe the high-level design of our model in this sec-
tion, giving the details in the next. We build our model as

a composition of a set of (hardware) threads and a single
storage subsystem, synchronising on various messages:

Write request
Read request

Barrier request

Read response
Barrier ack

Storage Subsystem

ThreadThread

Read-request/read-response pairs are tightly coupled, while
the others are single unidirectional messages. There is no
buffering between the two parts.

Coherence-by-fiat Our storage subsystem abstracts
completely from the processor implementation store-
buffering and cache hierarchy, and from the cache protocol:
our model has no explicit memory, either of the system as
a whole, or of any cache or store queue (the fact that one
can abstract from all these is itself interesting). Instead, we
work in terms of the write events that a read can read from.
Our storage subsystem maintains, for each address, the cur-
rent constraint on the coherence order among the writes it
has seen to that address, as a strict partial order (transitive
but irreflexive). For example, suppose the storage subsystem
has seen four writes, w0, w1, w2 and w3, all to the same ad-
dress. It might have built up the coherence constraint on the
left below, with w0 known to be before w1, w2 and w3, and
w1 known to be before w2, but with as-yet-undetermined
relationships between w1 and w3, and between w2 and w3.

w0

w2 w3

w1

w0

w2 w3

w1

The storage subsystem also records the list of writes that
it has propagated to each thread: those sent in response
to read-requests, those done by the thread itself, and those
propagated to that thread in the process of propagating a
barrier to that thread. These are interleaved with records
of barriers propagated to that thread. Note that this is a
storage-subsystem-model concept: the writes propagated to
a thread have not necessarily been sent to the thread model
in a read-response.

Now, given a read request by a thread tid, what writes
could be sent in response? From the state on the left above,
if the writes propagated to thread tid are just [w1], perhaps
because tid has read from w1, then:

• it cannot be sent w0, as w0 is coherence-before the w1
write that (because it is in the writes-propagated list) it
might have read from;

• it could re-read from w1, leaving the coherence constraint
unchanged;

• it could be sent w2, again leaving the coherence constraint
unchanged, in which case w2 must be appended to the
events propagated to tid; or

• it could be sent w3, again appending this to the events
propagated to tid, which moreover entails committing to
w3 being coherence-after w1, as in the coherence con-
straint on the right above. Note that this still leaves the
relative order of w2 and w3 unconstrained, so another

178

Adding an isync instruction between the branch and the
second read (giving test MP+sync+ctrlisync) suffices.

The fact that data/address dependencies to both reads
and writes are respected while control dependencies are only
respected to writes is important in the design of C++0x
low-level atomics [BA08, BOS+11], where release/consume
atomics let one take advantage of data dependencies without
requiring barriers (and limiting optimisation) to ensure that
all source-language control dependencies are respected.

Cumulativity For WRC it suffices to have a sync on
Thread 1 with a dependency on Thread 2; the non-SC
behaviour is then forbidden:

Test WRC+sync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
addr

rf

This illustrates what we call A-cumulativity of Power barri-
ers: a chain of edges before the barrier that is respected. In
this case Thread 1 reads from the Thread 0 write before (in
program order) executing a sync, and then Thread 1 writes
to another location; any other thread (here 2) is guaranteed
to see the Thread 0 write before the Thread 1 write. How-
ever, swapping the sync and dependency, e.g. with just an
rf and data edge between writes a and c, does not guarantee
ordering of those two writes as seen by another thread:

Test WRC+data+sync : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
data

rf
sync

rf

In contrast to that WRC+data+sync, a chain of reads-
from edges and dependencies after a sync does ensure that
ordering between a write before the sync and a write after
the sync is respected, as below. Here the reads e and f of z
and x cannot see the writes a and d out of order. We call
this a B-cumulativity property.

Test ISA2+sync+data+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

sync
rf

data
rf

addr

rf

Using lwsync The lwsync barrier is broadly similar to
sync, including cumulativity properties, except that does not
order store/load pairs and it is cheaper to execute; it suf-
fices to guarantee SC behaviour in MP+lwsyncs (MP with
lwsync in each thread), WRC+lwsync+addr (WRC with
lwsync on Thread 1 and an address dependency on Thread
2), and ISA2+lwsync+data+addr, while SB+lwsyncs and
IRIW+lwsyncs are still allowed. We return later to other
differences between sync and lwsync.

3. The Model Design
We describe the high-level design of our model in this sec-
tion, giving the details in the next. We build our model as

a composition of a set of (hardware) threads and a single
storage subsystem, synchronising on various messages:

Write request
Read request

Barrier request

Read response
Barrier ack

Storage Subsystem

ThreadThread

Read-request/read-response pairs are tightly coupled, while
the others are single unidirectional messages. There is no
buffering between the two parts.

Coherence-by-fiat Our storage subsystem abstracts
completely from the processor implementation store-
buffering and cache hierarchy, and from the cache protocol:
our model has no explicit memory, either of the system as
a whole, or of any cache or store queue (the fact that one
can abstract from all these is itself interesting). Instead, we
work in terms of the write events that a read can read from.
Our storage subsystem maintains, for each address, the cur-
rent constraint on the coherence order among the writes it
has seen to that address, as a strict partial order (transitive
but irreflexive). For example, suppose the storage subsystem
has seen four writes, w0, w1, w2 and w3, all to the same ad-
dress. It might have built up the coherence constraint on the
left below, with w0 known to be before w1, w2 and w3, and
w1 known to be before w2, but with as-yet-undetermined
relationships between w1 and w3, and between w2 and w3.

w0

w2 w3

w1

w0

w2 w3

w1

The storage subsystem also records the list of writes that
it has propagated to each thread: those sent in response
to read-requests, those done by the thread itself, and those
propagated to that thread in the process of propagating a
barrier to that thread. These are interleaved with records
of barriers propagated to that thread. Note that this is a
storage-subsystem-model concept: the writes propagated to
a thread have not necessarily been sent to the thread model
in a read-response.

Now, given a read request by a thread tid, what writes
could be sent in response? From the state on the left above,
if the writes propagated to thread tid are just [w1], perhaps
because tid has read from w1, then:

• it cannot be sent w0, as w0 is coherence-before the w1
write that (because it is in the writes-propagated list) it
might have read from;

• it could re-read from w1, leaving the coherence constraint
unchanged;

• it could be sent w2, again leaving the coherence constraint
unchanged, in which case w2 must be appended to the
events propagated to tid; or

• it could be sent w3, again appending this to the events
propagated to tid, which moreover entails committing to
w3 being coherence-after w1, as in the coherence con-
straint on the right above. Note that this still leaves the
relative order of w2 and w3 unconstrained, so another

178

Adding an isync instruction between the branch and the
second read (giving test MP+sync+ctrlisync) suffices.

The fact that data/address dependencies to both reads
and writes are respected while control dependencies are only
respected to writes is important in the design of C++0x
low-level atomics [BA08, BOS+11], where release/consume
atomics let one take advantage of data dependencies without
requiring barriers (and limiting optimisation) to ensure that
all source-language control dependencies are respected.

Cumulativity For WRC it suffices to have a sync on
Thread 1 with a dependency on Thread 2; the non-SC
behaviour is then forbidden:

Test WRC+sync+addr : Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
sync

rf
addr

rf

This illustrates what we call A-cumulativity of Power barri-
ers: a chain of edges before the barrier that is respected. In
this case Thread 1 reads from the Thread 0 write before (in
program order) executing a sync, and then Thread 1 writes
to another location; any other thread (here 2) is guaranteed
to see the Thread 0 write before the Thread 1 write. How-
ever, swapping the sync and dependency, e.g. with just an
rf and data edge between writes a and c, does not guarantee
ordering of those two writes as seen by another thread:

Test WRC+data+sync : Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
data

rf
sync

rf

In contrast to that WRC+data+sync, a chain of reads-
from edges and dependencies after a sync does ensure that
ordering between a write before the sync and a write after
the sync is respected, as below. Here the reads e and f of z
and x cannot see the writes a and d out of order. We call
this a B-cumulativity property.

Test ISA2+sync+data+addr : Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[z]=1

e: R[z]=1

Thread 2

f: R[x]=0

sync
rf

data
rf

addr

rf

Using lwsync The lwsync barrier is broadly similar to
sync, including cumulativity properties, except that does not
order store/load pairs and it is cheaper to execute; it suf-
fices to guarantee SC behaviour in MP+lwsyncs (MP with
lwsync in each thread), WRC+lwsync+addr (WRC with
lwsync on Thread 1 and an address dependency on Thread
2), and ISA2+lwsync+data+addr, while SB+lwsyncs and
IRIW+lwsyncs are still allowed. We return later to other
differences between sync and lwsync.

3. The Model Design
We describe the high-level design of our model in this sec-
tion, giving the details in the next. We build our model as

a composition of a set of (hardware) threads and a single
storage subsystem, synchronising on various messages:

Write request
Read request

Barrier request

Read response
Barrier ack

Storage Subsystem

ThreadThread

Read-request/read-response pairs are tightly coupled, while
the others are single unidirectional messages. There is no
buffering between the two parts.

Coherence-by-fiat Our storage subsystem abstracts
completely from the processor implementation store-
buffering and cache hierarchy, and from the cache protocol:
our model has no explicit memory, either of the system as
a whole, or of any cache or store queue (the fact that one
can abstract from all these is itself interesting). Instead, we
work in terms of the write events that a read can read from.
Our storage subsystem maintains, for each address, the cur-
rent constraint on the coherence order among the writes it
has seen to that address, as a strict partial order (transitive
but irreflexive). For example, suppose the storage subsystem
has seen four writes, w0, w1, w2 and w3, all to the same ad-
dress. It might have built up the coherence constraint on the
left below, with w0 known to be before w1, w2 and w3, and
w1 known to be before w2, but with as-yet-undetermined
relationships between w1 and w3, and between w2 and w3.

w0

w2 w3

w1

w0

w2 w3

w1

The storage subsystem also records the list of writes that
it has propagated to each thread: those sent in response
to read-requests, those done by the thread itself, and those
propagated to that thread in the process of propagating a
barrier to that thread. These are interleaved with records
of barriers propagated to that thread. Note that this is a
storage-subsystem-model concept: the writes propagated to
a thread have not necessarily been sent to the thread model
in a read-response.

Now, given a read request by a thread tid, what writes
could be sent in response? From the state on the left above,
if the writes propagated to thread tid are just [w1], perhaps
because tid has read from w1, then:

• it cannot be sent w0, as w0 is coherence-before the w1
write that (because it is in the writes-propagated list) it
might have read from;

• it could re-read from w1, leaving the coherence constraint
unchanged;

• it could be sent w2, again leaving the coherence constraint
unchanged, in which case w2 must be appended to the
events propagated to tid; or

• it could be sent w3, again appending this to the events
propagated to tid, which moreover entails committing to
w3 being coherence-after w1, as in the coherence con-
straint on the right above. Note that this still leaves the
relative order of w2 and w3 unconstrained, so another

178

