
Principles of Concurrency

 Principles of Concurrency

Lecture 2

Coroutines, Threads, and Processes

1

Principles of Concurrency, Spring 2022

Coroutines
- Units of work that cooperate with one another to make

progress.

- A generalization of iterators that remembers its state

2

Principles of Concurrency

Basic Idea
8

Procedure calls

what happens when A()
calls B() again?

A() B() C()

When a coroutine returns, it remembers its
program state. Why is this useful?

Coroutines

C()B()A()

Principles of Concurrency, Spring 2022

Coroutines and Concurrency

● How would you implement coroutines?

‣ Typically, implementations of procedures and procedure calls

involving pushing and popping “activation frames” on the
stack

‣ These frames hold the arguments and local variables for the
call.

‣ The frame is popped when the procedure is returned.

‣How do we preserve the state that will be used when we make

the next call?

Keep multiple stacks, one for each coroutine

Essential feature of threads

3

Principles of Concurrency, Spring 2022

Continuations

A reified representation of a program’s control stack.

Example:

4

proc f(x) = { ...
 g(y);
 ... ; A
 }

proc h(y) = { ...
 f(...);
 ... ; B
 }

When g is called, the program stack
retains enough information to
“remember” that A must be executed
and then B.

The stack captures the “rest of the
computation” - it is the continuation of
the call to g().

If the computation were preempted
immediately after the call to g()
returns, its resumption would entail
execution of the continuation

Principles of Concurrency, Spring 2022

Continuations
5

● Can we reify this notion into a source language?

− result is a continuation, a reified representation

 (in the form of an abstraction) of a program control-stack.

− Define a primitive operation called call/cc:

● call-with-current-continuation

● callcc (fn k => e)

− captures the current continuation, binds to k, and evaluate e

− the notation fn k => e defines an anonymous function that takes k as an

argument

● (k x)

− apply continuation k with argument x

Principles of Concurrency, Spring 2022

Examples

(+ (call/cc (lambda (k) (k 3) + 2)) 1)

(let ((f (call/cc (lambda (k)

 (lambda (x)

 (k (lambda (y) (+ x y))))))

 (f 6))

6

Principles of Concurrency, Spring 2022

Example: Samefringe
‣ Two binary trees have the same fringe if they have exactly the same leaves

reading left to right

7

a b

c d e

f
g h

a b c d

e
f g

h

Principles of Concurrency, Spring 2022

Samefringe

First approach:

‣Collect leaves of both trees into two lists, and compare elements

‣What’s wrong with this approach?

8

(define (collect-leaves tree)
 (cond ((empty-tree tree) '())
 ('t (let ((left-leaves (collect-leaves (left tree)))
 (right-leaves (collect-leaves (right tree))))
 (append left-leaves right-leaves)))))

(define (samefringe t1 t2)
 (letrec ((t1-leaves (collect-leaves t1))
 (t2-leaves (collect-leaves t2))
 (compare (lambda (l1 l2)
 (cond ((eq? l1 ‘()) (eq? l2 '()))
 ((eq? l2 '()) #f)
 ('t (cond ((equal? (car l1) (car l2))
 (compare (cdr l1) (cdr l2)))
 ('else #f)))))))
 (compare t1-leaves t2-leaves)))

Principles of Concurrency, Spring 2022

Samefringe Using Coroutines
− Rather than collecting all leaves or transforming tree eagerly, generate leaf

values for two trees lazily

− Create generators for the two trees that yield the next leaf when invoked, and

return control back to the caller, remembering where they are

9

(define samefringe-lazy
 (lambda (tree1 tree2)
 (let ((gen1 (make-generator tree1))

 (gen2 (make-generator tree2)))
 (driver gen1 gen2))))

(define driver
 (lambda (gen1 gen2)
 (let ((leaf1 (gen1))

 (leaf2 (gen2)))
 (if (= leaf1 leaf2)

 (if (zero? leaf1)
 #t
 (driver gen1 gen2))
 #f))))

(define make-generator
 (lambda (tree)
 (letrec
 ((caller '*)

 (generate-leaves
 (lambda ()

 (letrec ((loop (lambda (tree)
 (if (leaf? tree)
 (call/cc

 (lambda (genrest)
 (set! generate-leaves
 (lambda ()

 (genrest '*)))
 (caller tree)))

 (begin (loop (car tree))
 (loop (cadr tree)))))))

 (loop tree)))))
 (lambda ()

 (call/cc (lambda (k)
 (set! caller k)
 (generate-leaves)
 (caller 0)))))))

Principles of Concurrency, Spring 2022

Generators and Coroutines

− Procedures:

single operation: call

single stack, stack frame popped upon return

‣Generators:

two operations: suspend and resume

- assymetric: generator suspends, caller resumes it

single stack, generator is an “object” that maintains local state variables

single entry point

‣Coroutines:

one operation: transfer

- fully symmetric

When A transfers to B it acts like a:

- generator suspend wrt A

- generator resume wrt B

transfer names who gets control next

- non stack-like

10

Can use continuations to model coroutines

Main characteristics:

- cooperative vs preemptive

- scheduling of coroutines determined

 by application logic, not runtime

 - can express concurrency but not parallelism

Principles of Concurrency, Spring 2022

Threads and processes

Thread: an independent unit of execution that shares resources
with other threads

Process: an independent unit of execution isolated from all
other processes and shares no resources with them

Resources:

‣ Registers

‣ Stack

‣Heap

‣ Locks

‣ File descriptors

‣ Shared libraries

‣ Program instructions

11

Principles of Concurrency, Spring 2022

A Process
12

stack

text

data

memory

program

instructions

static variables

symbols

Shared Objects

Files

Locks

Sockets

Signals

Handlers

registers
 R0, … R16

Principles of Concurrency, Spring 2022

Threads Within a Process
13

program

instructions

static variables

symbols

text

data

stack

registers

Thread

Memory

Shared

Principles of Concurrency, Spring 2022

Fork System Call
Most operating systems (e.g., Linux) provide a fork() system call

‣ Spawns a new child process (in a separate address space), identical to the parent

except for a different process id.

‣ Communication typically through file descriptors and system calls

14

#include <unistd.h>
#include <sys/wait.h>
#include <signal.h>
#include <iostream>
using namespace std;

int main(){
 pid_t pid;
 int status, died, val;
 switch(pid=fork()){
 case -1: cout << "can't fork\n";
 exit(-1);
 case 0 : cout << " I'm the child of PID " << getppid() << ".\n";
 cout << " My PID is " << getpid() << endl;
 cout << " What is the exit value you wish to pass to the parent?\n ";
 cin >> val;

 sleep(2);
 exit(val);
 default: cout << "I'm the parent.\n";
 cout << "My PID is " << getpid() << endl;
 died= wait(&status);
 cout << "The child, pid=" << pid << ", has returned " << WEXITSTATUS(status) << endl;
 }
}

 }

Principles of Concurrency, Spring 2022

Exec System Call

Can have child process execute a different image than parent
using exec.

#include <unistd.h>

#include <sys/wait.h>

#include <iostream>

using namespace std;

int main(){

 pid_t pid;

 int status, died;

 switch(pid=fork()){

 case -1: cout << "can't fork\n";

 exit(-1);

 case 0 : execl("/bin/date","date",0); // this is the code the child runs

 default: died= wait(&status); // this is the code the parent runs

 }

}

15

Principles of Concurrency, Spring 2022

Processes

Advantages

‣Operating system responsible for scheduling and resource management

simplifies application responsibility

‣ Each process executes within its own address space

additional protection and security

- error or vulnerability in a process does not immediately compromise integrity of other processes

‣Different processes can run different applications

Disadvantages

‣More heavyweight:

operating system involvement in creation and destruction

inter-process communication more expensive

- less useful when there is lots of communication among tasks

- costs vary among different operating systems

- reliant on provided OS services

‣ less control

scheduling and management controlled by operating system

16

Principles of Concurrency, Spring 2022

Threads

Exists within a process

‣ But, independent control flow

‣ share common process resources (like heap and file descriptors)

changes made by one thread visible to others

pointers have meaning across threads

two threads can concurrently read and write to the same memory location

Maintain their own stack pointer

Local register file

Pending and blocked signals

Scheduling still managed by the operating system

17

Principles of Concurrency, Spring 2022

Threads and Processes

Critical distinction between using processes and threads:

‣ References (i.e., locations) have meaning between threads

‣ They are interpreted independently between processes

Sharing state among processes requires special care

- memory-mapped regions, devices, etc.

18

The state (resources) needed to execute a thread is managed
directly by a process

Alternative: User-level or “Green” threads

‣managed by an underlying runtime or virtual machine

Principles of Concurrency, Spring 2022

Threads	

An initial model

Mediation among threads through explicit synchronization (locks)

Scheduling is asynchronous

‣Very flexible

‣ But, care is needed to deal with

deadlock, livelock, ensure fairness, etc.

19

Why Threads Are A Bad Idea September 28, 1995, slide 3

What Are Threads?

! General-purpose solution for managing concurrency.

! Multiple independent execution streams.

! Shared state.

! Pre-emptive scheduling.

! Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads

Principles of Concurrency, Spring 2022

Desired Structure

Programs can be decomposed into discrete independent tasks

The points where they overlap should be easily discerned and
amenable for protection

Three basic structures

‣master-worker

Master coordinates activities of workers and collects results

Workers perform (mostly independent) tasks concurrently

- what happens when work is not independent

‣ result-oriented

Output of a computation in the form of a data structure

Each concurrent task fills in one part of the structure

‣ pipeline-oriented

assembly line model

- each task specialized to one task, forwarding its output to the next specialized unit

20

Principles of Concurrency, Spring 2022

Issues

Synchronization

‣How should two threads manage communication?

- Shared Memory

- Use a lock

‣What happens if we forget, or we use the wrong lock?

- Race conditions

- Aggressive synchronization can lead to deadlock

21

Principles of Concurrency, Spring 2022

Architectural abstraction

Shared memory

‣ Every thread can observe actions of other threads on non-thread-local data

(e.g., heap)

‣Data visible to multiple threads must be protected (synchronized) to ensure the

absence of data races

A data race consists of two concurrent accesses to the same shared data by two separate
threads, at least one of which is a write

Thread safety

‣ Suppose a program creates n threads, each of which calls the same procedure

found in some library

‣ Suppose the library modifies some global (shared) data structure

‣Concurrent modifications to this structure may lead to data corruption

22

Principles of Concurrency, Spring 2022

Alternative Model …

Message-passing

‣ Threads communicate via messages

‣Data found on messages can either be

copies - typically in distributed memory environments or

references - typical for shared-memory systems

‣ Senders and receivers can coordinate message delivery either

synchronously: sender blocks until receiver available

asynchronously: sender buffers data and proceeds even if receiver not available

‣Don’t have synchronization issues found in shared-memory concurrency, but

program structure more complex and different from sequential version

data consistency is still an issue (multiple copies of the same object)

replace data race concerns with deadlock concerns

- receivers block if there is no message available to read

23

Principles of Concurrency, Spring 2022

Composability

Threads that communicate using locks can easily break
abstractions

‣ Lower layers in the software stack may need to know behavioral properties of

higher layers, and vise versa

24

Why Threads Are A Bad Idea September 28, 1995, slide 7

Why Threads Are Hard, cont'd

! Hard to debug: data dependencies, timing dependencies.

! Threads break abstraction: can't design modules

independently.

! Callbacks don't work with locks.

Module A

Module B

T1 T2

sleep wakeup

deadlock!

Module A

Module B

T1

T2

deadlock!

callbacks

calls

Principles of Concurrency, Spring 2022

Locking
25 Background: lock and unlock

• Suppose that two threads increment a shared memory location:

• If both threads read 0, (even in an ideal world) x == 1 is possible:

x = 0

tmp1 = *x;
*x = tmp1 + 1;

tmp2 = *x;
*x = tmp2 + 1;

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1

7 lec2 - 24 January 2019

Principles of Concurrency, Spring 2022

Locking
26

Background: lock and unlock

• Lock and unlock are primitives that prevent the two threads from
interleaving their actions.

• In this case, the interleaving below is forbidden, and we are
guaranteed that x == 2 at the end of the execution.

x = 0

lock();
tmp1 = *x;
*x = tmp1 + 1;
unlock();

lock();
tmp2 = *x;
*x = tmp2 + 1;
unlock();

tmp1 = *x; tmp2 = *x; *x = tmp1 + 1; *x = tmp2 +1
FORB

IDDEN

8 lec2 - 24 January 2019

Principles of Concurrency, Spring 2022

Subtleties

Lazy initialization

27 Lazy initialisation (an unoptimising compiler breaks your program)

Deferring an object's initialisation util first use: a big win if an object is never
used (e.g. device drivers code). Compare:

 int x = computeInitValue(); // eager initialization
 … // clients refer to x

with:

int xValue() {
 static int x = computeInitValue(); // lazy initialization
 return x;
} ... // clients refer to xValue()

9 lec2 - 24 January 2019

Replace

Principles of Concurrency, Spring 2022

Lazy Initialization

A possible implementation of this behavior:

The singleton pattern

Lazy initialisation is a pattern commonly used. In C++ you would write:

 class Singleton {
 public:
 static Singleton *instance (void) {
 if (instance_ == NULL)
 instance_ = new Singleton;
 return instance_;

 }
… // other methods omitted

 private:
 static Singleton *instance_; // other fields omitted

 };

 …
 Singleton::instance () -> method ();

But this code is not thread safe! Why?

10 lec2 - 24 January 2019

28

But, this is incorrect in the presence of concurrently executing threads.
Why?

Principles of Concurrency, Spring 2022

Double-check locking

An alternative implementation:

Clever programmers use double-check locking

class Singleton {
public:
static Singleton *instance (void) {
// First check
if (instance_ == NULL) {

// Ensure serialization
Guard<Mutex> guard (lock_);
// Double check
if (instance_ == NULL)

instance_ = new Singleton;
}
return instance_;
}

private: [..]
};

Idea: re-check that the Singleton has not been created after acquiring the lock.

13 lec2 - 24 January 2019

29

grab a lock only if the
instance is nil and re-check
its status

Principles of Concurrency, Spring 2022

Double-check locking
Problem:

Double-check locking: clever but broken

The instruction

instance_ = new Singleton;

does three things:

1) allocate memory

2) construct the object

3) assign to instance_ the address of the memory

Not necessarily in this order! For example:

instance_ = // 3
 operator new(sizeof(Singleton)); // 1
new (instance_) Singleton // 2

If this code is generated, the order is 1,3,2.

14 lec2 - 24 January 2019

30

Principles of Concurrency, Spring 2022

Double-check locking
Broken…

 if (instance_ == NULL) { // Line 1
 Guard<Mutex> guard (lock_);
 if (instance_ == NULL) {
 instance_ =
 operator new(sizeof(Singleton)); // Line 2
 new (instance_) Singleton; }}

Thread 1:

 executes through Line 2 and is suspended; at this point, instance_ is non-
NULL, but no singleton has been constructed.

Thread 2:

 executes Line 1, sees instance_ as non-NULL, returns, and dereferences
the pointer returned by Singleton (i.e., instance_).

Thread 2 attempts to reference an object that is not there yet!

15 lec2 - 24 January 2019

31

Solution is still broken …

Need to instruct the compiler to issue a different code sequence for this pattern -
relevant only in the presence of concurrency

