CS49000-VIZ - Fall 2020 Introduction to Data Visualization Task Abstraction

Lecture 7

September 15, 2020

- consume
- -discover vs present
 - aka explore vs explain
- -enjoy
 - newcomer
 - aka casual, social

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Mai

- Consume
- -discover vs present
 - aka explore vs explain
- -enjoy
 - newcomer
 - aka casual, social

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Mai

Generate new hypotheses
Check existing hypothesis

- Consume
 - -discover vs present
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Mai

→ Discover

→ Present → Enjoy

- · Communicate information
- ·Story telling
- ·Guide audience

- consume
- -discover vs present
 - aka explore vs explain
- -enjoy
 - newcomer
 - aka casual, social

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Mai

Present: Story Telling

714

Babe Ruth

(22)'35 Hit only 20 over first five seasons.

Barry Bonds 708(20)86 '05

Averaged 52 from

Willie Mays

Three 60-homer from 1950-69. seasons is record.

CS49000-VIZ Intro to D

2000 to 2004.

(22)'51 '7B No one hit more

660

(49, 122, .316).

586

'56

23 seasons

Differing Paths to the Top of the Charts The top seven players on the career home run list, along with a look at Griffey (12th), Rodriguez (37th) and Pujols (tied 257th).

755

60

40

20

Amanda Con and Jos World/The New York Timer

Human Development Trends 2005

Baby Name + 0 🔒 Both-O Boys O Gala

Connect mark lines.

Names starting with 'O' pay million babies.

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

BabyNameWizzard

Baby Name x Gul 🖉 😸 Barth () Barya () Carla Carriert sole large and

Names starting with LAT per million bables.

http://www.babynamewizard.com/voyager

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

BabyNameWizzard

😸 Both 🗋 Boys 🗋 Gris Baby Name 1 Jun

Names starting with UAT per million bables

produce

-annotate, record

-derive

crucial design choice

→ Annotate

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

High-level actions: Analyze

\rightarrow Record → Derive

don't just draw what you're given! decide what the right thing to show is

- original dataset
- draw that

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

create it with a series of transformations from the

don't just draw what you're given!

Original Data

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

trade balance = exports – imports

Derived Data

Don't just draw what you're given! One of the four major strategies for handling complexity

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

11

Actions: Mid-level search low-level query What does the user know?

Target, location

	Target known	Target unknown	
Location known	• • Lookup	• • • Browse	
Location unknown	Coc. Locate	Control Explore	

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

12

Actions: low-level query How much of the data matters? • One, some, all → Identify → Compare → Summarize

All Data (\rightarrow) → Trends

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

→ Outliers → Features

→ Distribution \rightarrow *Extremes*

 \rightarrow

→ Paths

ALL DATA (\rightarrow)

→ Trends → Outliers → Features

ATTRIBUTES (\rightarrow)

→ One → Many → Dependency \rightarrow Correlation → Distribution

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 5: Marks and Channels

NETWORK DATA

 \rightarrow Paths

→ Topology

→ Shape

Analysis example: Compare idioms

ins ea Irai um	[SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Grosjean, Plaisant, and Bederson. Proc. InfoVis 2002, p 57–64.]	What? Why?
fian Dica Doc Dipli rifi icu	[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. ACM Trans. on Graphics (Proc. SIGGRAPH) 22:453– 462, 2003.]	How?
ctu		
us iici ⁄rh		
di ici: ilu: yri ?		

SpaceTree

Encode	→ Navigate	→ Select	→ Filter	→ Aggregate
→ ●	<···>	•••	*	

→ TreeJuxtaposer

→ Encode → Navigate → Select → Arrange

19

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute

[Using Strahler numbers for real time visual exploration of huge graphs. Auber.] Proc. Intl. Conf. Computer Vision and Graphics, pp. 56–69, 2002.]

- Output of one is input to next
 - express dependencies
 - separate means from ends

