CS49000-VIZ - Fall 2020

Introduction to Data Visualization

Manipulate View

Lecture 14

Slides credit: Tamara Munzner, UBC

How?

Encode

→ Express

→ Order

→ Use

What?
Why?
How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

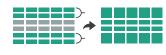
Facet

Reduce

→ Change

Juxtapose

→ Filter


→ Select

→ Partition


Aggregate

→ Navigate

→ Superimpose

How?

Encode

→ Express

→ Order

→ Use

Why?

How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

Facet

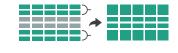
Reduce

→ Change

Juxtapose

The Maria Station of the second of the secon

→ Filter


→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

Manipulate

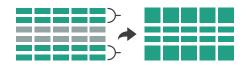
Facet

Reduce

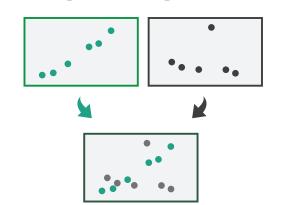
→ Change

Juxtapose

→ Filter


→ Select

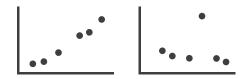
Partition


Aggregate

Navigate

Superimpose

Manipulate

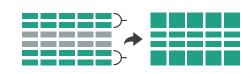

Facet

Reduce

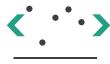
→ Change

Juxtapose

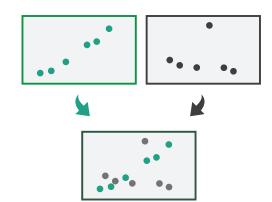
→ Filter


→ Select

→ Partition



→ Aggregate



change view over time

→ Navigate

Superimpose

Manipulate

Facet

Reduce

→ Change

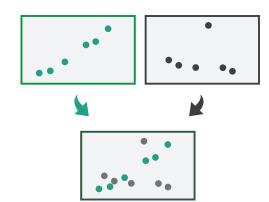
Juxtapose

→ Filter

- **→** Select
 - ••••

Partition

Aggregate



- change view over time
- facet across multiple views

→ Navigate

Superimpose

Embed

Manipulate

Facet

Reduce

→ Change

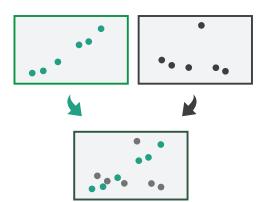
Juxtapose

→ Filter

→ Select

Partition

Aggregate



- change view over time
- facet across multiple views

→ Navigate

Superimpose

→ Embed

reduce items/attributes
 within single view

+ I previous

Manipulate

Facet

Reduce

→ Change

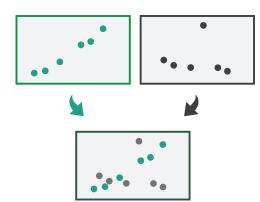
Juxtapose

→ Filter


→ Select

Partition

Aggregate



- change view over time
- facet across multiple views

→ Navigate

Superimpose

→ Embed

reduce items/attributes
 within single view

+ I previous

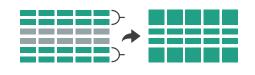
Manipulate

Facet

Reduce

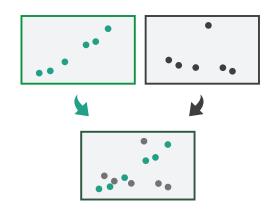
Change

→ Filter


Select

Partition

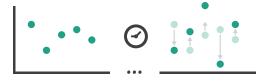
Aggregate



- change view over time
- facet across multiple views

Navigate

Superimpose


- reduce items/attributes
 within single view
- derive new data to show within view

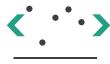
+ I previous

Manipulate

MENTAL A CORNIA ON SALE HOLDE SE

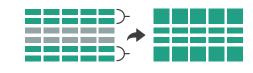
→ Change

Facet


→ Filter

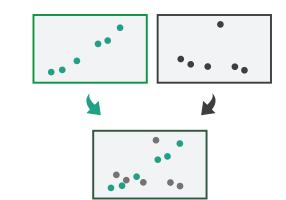
→ Derive

- **→** Select
 - ••••
- **→** Navigate



→ Partition

Juxtapose



Aggregate

- change over time
 - most obvious & flexible of the 4 strategies

Superimpose

Embed

Idiom design choices: Interaction

Manipulate

Facet

Reduce

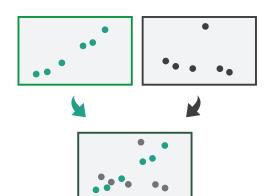
→ Change

Juxtapose

→ Filter

→ Select

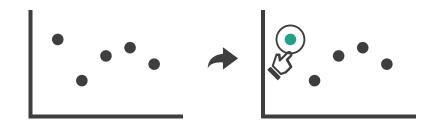
→ Partition


Aggregate

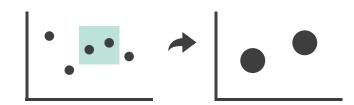
Navigate

Superimpose

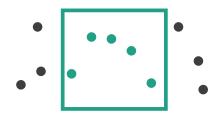
Embed



Manipulate


Change over Time

→ Select


- **→** Navigate
 - → Item Reduction
 - → Zoom
 Geometric or Semantic

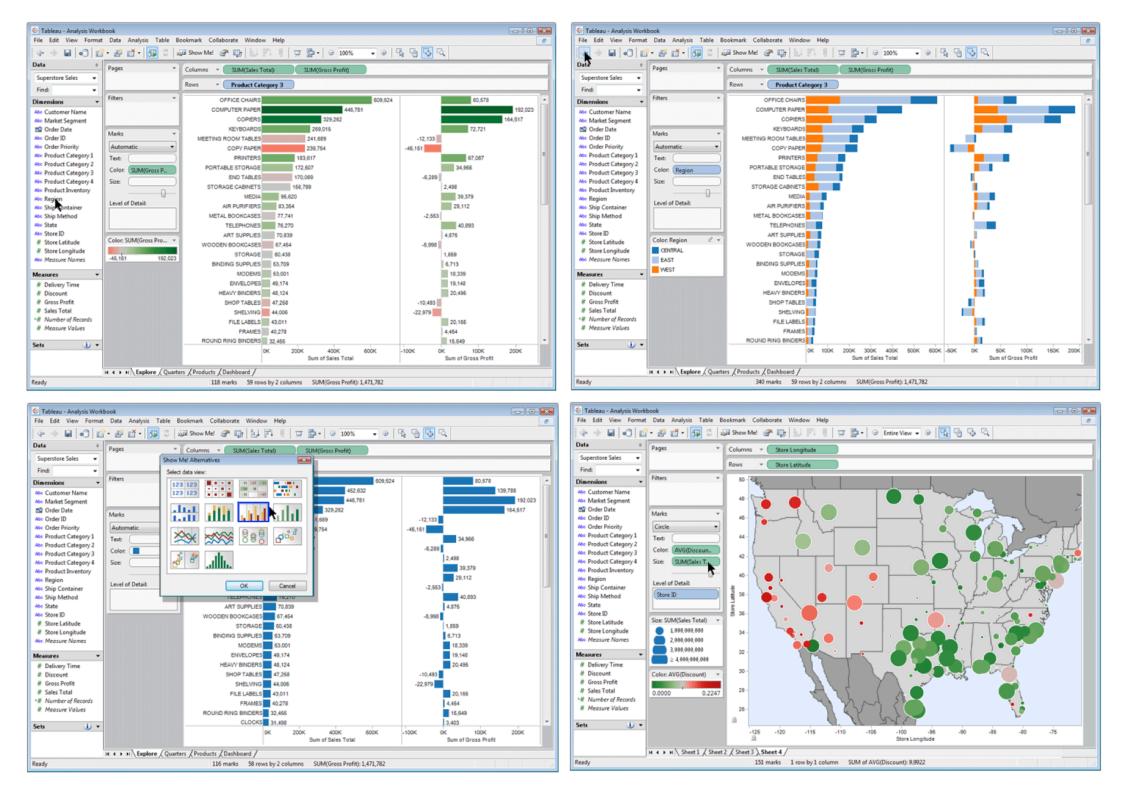
→ Pan/Translate

→ Constrained

- → Attribute Reduction
- → Slice

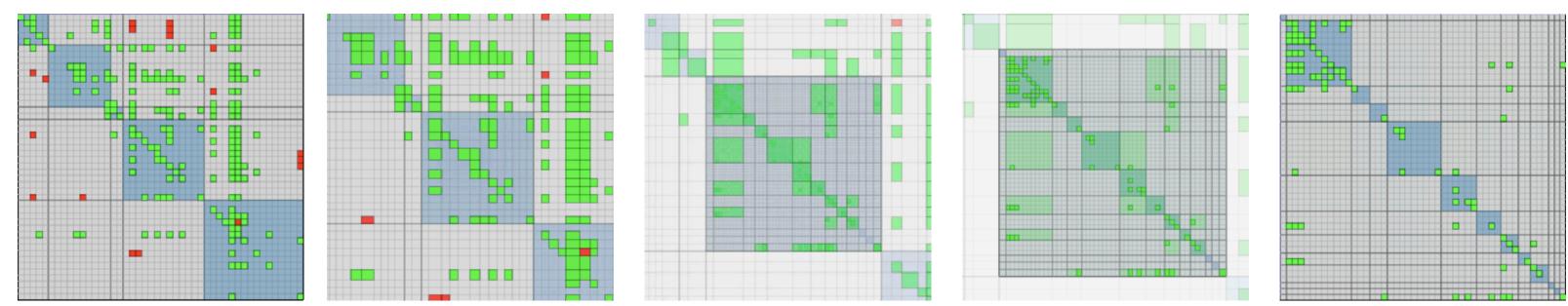
→ Cut

→ Project



Change over time

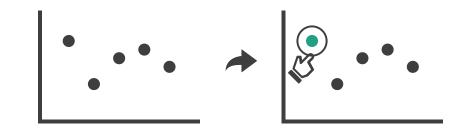
- change any of the other choices
 - encoding itself
 - parameters
 - -arrange: rearrange, reorder
 - -aggregation level, what is filtered...
- why change?
 - -one of four major strategies
 - change over time
 - facet data by partitioning into multiple views
 - reduce amount of data shown within view
 - embedding focus + context together
 - -most obvious, powerful, flexible
 - -interaction entails change


Idiom: Re-encode

System: **Tableau**

Idiom: Animated transitions

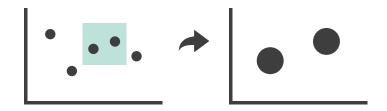
- smooth transition from one state to another
 - -alternative to jump cuts
 - -support for item tracking when amount of change is limited
- example: multilevel matrix views
 - -scope of what is shown narrows down
 - middle block stretches to fill space, additional structure appears within
 - other blocks squish down to increasingly aggregated representations



[Using Multilevel Call Matrices in Large Software Projects. van Ham. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 227–232, 2003.]

Select and highlight

- selection: basic operation for most interaction
- design choices
 - how many selection types?
 - click vs hover: heavyweight, lightweight
 - primary vs secondary: semantics (eg source/target)
- highlight: change visual encoding for selection targets
 - -color
 - limitation: existing color coding hidden
 - other channels (eg motion)
 - -add explicit connection marks between items

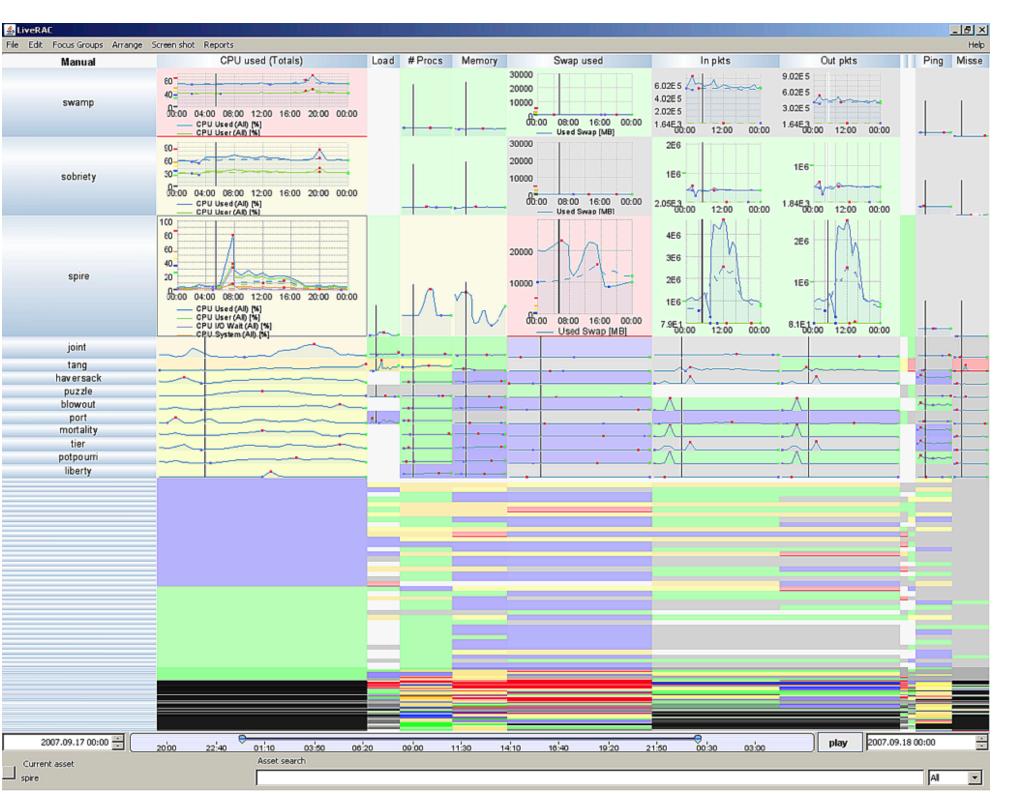


Navigate: Changing item visibility

- change viewpoint
 - -changes which items are visible within view
 - -camera metaphor
 - zoom
 - geometric zoom: familiar semantics
 - semantic zoom: adapt object representation based on available pixelsdramatic change, or more subtle one
 - pan/translate
 - rotate
 - especially in 3D
 - -constrained navigation
 - often with animated transitions
 - often based on selection set

- → Item Reduction
 - → Zoom
 Geometric or Semantic

→ Pan/Translate


→ Constrained

Idiom: Semantic zooming

System: LiveRAC

- visual encoding change
 - colored box
 - -sparkline
 - -simple line chart
 - -full chart: axes and tickmarks

