CS49000-VIZ - Fall 2020 Introduction to Data Visualization Dimensionality Reduction Lecture 16 November 12, 2020

High-dimensional data Dimensionality reduction Manifold learning **Computational aspects**

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Why High-Dimensional? Data samples with many attributes

- Tables with many columns, medical records, ...
- into high-dimensional feature vectors

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Amalgamate individual properties

- "Curse of dimensionality"
 - Sampling becomes exponentially costly

 - intractable
- How to visualize?

Missing intuition

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

• Space accumulates in "corners" of hypercube Data processing becomes extremely expensive /

Volume of unit hyper-ball in n-dimensions: $V_n = \frac{\pi^{n-2}}{\Gamma(\frac{n}{2}+1)}$

$$V_{2k} = \frac{\pi^k}{k!} \qquad V_{2k+1} = -\frac{\pi^k}{k!}$$

Ratio to volume of bounding hyperbox

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Curse of Dimensionality

 $\frac{2(k!)(4\pi)^k}{(2k+1)!}$

$$\frac{V_{2k}}{2^k} = \left(\frac{\pi}{4}\right)^k \frac{1}{k!}$$

Dimension Reduction

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

- Assume a point cloud $(\mathbf{x}_i)_{i=1,..,n} \in \mathbb{R}^k$
- Interpret these points as observations of a random variable $\mathbf{X} \in \mathbb{R}^k$
- The empirical mean (centroid) is $\mathbf{c} = \frac{1}{n} \sum \mathbf{x}_i$ • The covariance matrix is given by $\mathbf{A} = \mathbf{\bar{X}}\mathbf{\bar{X}}^T$

 $A_{jl} = \frac{1}{n} \sum_{i} (x_{ij} - c_j) (x_{il} - c_l)$

- The first *m* eigenvectors (in decreasing order of associated eigenvalues) span the *m* principal dimensions of the point cloud.

The eigenvectors of the covariance matrix form a data-dependent coordinate system

$\Delta_{ij} = \delta_{i,j}$ with $\Delta_{ij} > 0$ and $\Delta_{ii} = 0$

Multidimensional Scaling • Input: dissimilarity matrix $\Delta \in \mathbb{R}^{n \times n}$ • Goal: find $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbb{R}^d$ such that $\forall (i, j) || \mathbf{x}_i - \mathbf{x}_j || \approx \delta i, j$

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Method:

- Center(*): $B = -\frac{1}{2}H\Delta H$ where $H = I \frac{1}{n}\mathbf{1}\mathbf{1}^T$
- Spectral decomposition: $B = U\Lambda U^T$
- Clamp(*): $(\Lambda_+)_{ij} = \max(\Lambda_{ij}, 0)$
- Solution: first d columns of $X = U\Lambda_+^{\frac{1}{2}}$ This is a PCA!

(*): if Δ measures Euclidean distances, B is positive semidefinite

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

11

Manifold Learning

- Move away from linear assumption
- Assume curved low-dimensional geometry
- Assume smoothness
- ➡ MANIFOLD

Manifold learning

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Problem: Given points $x_1, \ldots, x_n \in \mathbb{R}^D$ that lie on a d-dimensional manifold Mthat can be described by a single coordinate chart $f: M \to \mathbb{R}^d$, find $y_1, \ldots, y_n \in$ \mathbb{R}^d , where $y_i \stackrel{\text{def}}{=} f(x_i)$.

- Form k-NN graph of input points
- Form dissimilarity matrix Δ as distance between points Compute MDS!

square of approximated geodesic

Computing geodesic distance standard graph problem in CS

Dijkstra Algorithm O(|E| + |V| log |V|)

1	<pre>function Dijkstra(Graph, source):</pre>	
2	for each vertex v in Graph:	<pre>// Initializations</pre>
3	dist[v] := infinity	<pre>// Unknown distance functi</pre>
4	previous[v] := undefined	<pre>// Previous node in optima</pre>
5	dist[source] := 0	<pre>// Distance from source to</pre>
6	Q := the set of all nodes in Graph	<pre>// All nodes in the graph</pre>
7	while Q is not empty:	// The main loop
8	u := vertex in Q with smallest d	list[]
9	remove u from Q	
10	for each neighbor v of u:	// where v has not yet bee
11	<pre>alt := dist[u] + dist_betwee</pre>	en(u, v) // be careful
12	if alt < dist[v]	// Relax (u,v,a)
13	dist[v] := alt	
14	previous[v] := u	
15	return previous[]	

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

ion from source to v al path from source o source are unoptimized - thus are in Q

en removed from O. in 1st step - dist[u] is infinity yet

Successful in computer vis problems Α

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimer 2014 Lecture

Intuition

smooth manifold is locally close to linear

Method

- such that $||\mathbf{x}_i \sum W_{ij}\mathbf{x}_j||^2$ is minimized
- $(I-W)^T(I-W)$
- Find d-dimensional y's that minimize $\sum ||\mathbf{y}_i \sum W_{ij}\mathbf{y}_j||^2$ Solution is obtained as first d eigenvectors of

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

• Characterize local linearity through weight matrix W

CS49000-VIZ Intro to Data V

Intuition

smooth manifold is locally close to linear

Method

- such that $||\mathbf{x}_i \sum W_{ij}\mathbf{x}_j||^2$ is minimized
- $(I-W)^T(I-W)$
- Find d-dimensional y's that minimize $\sum ||\mathbf{y}_i \sum W_{ij}\mathbf{y}_j||^2$ Solution is obtained as first d eigenvectors of

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

• Characterize local linearity through weight matrix W

LI IF

- with D diagonal and $D_{ii} = \sum W_{ij}$
- Define W as either binary indicator of connectivity or through heat kernel
 - Solve for $\sum W_{ij} ||\mathbf{y}_i \mathbf{y}_j||^2 = \operatorname{tr}(Y^T L Y)$ i, j
 - zero eigenvalue

• Compute eigenvectors y of Laplacian associated with non-

Figure 2: Two-dimensional representations of the "swiss roll" data, for different values of the number of nearest neighbors N and the heat kernel parameter t. $t = \infty$ corresponds to the discrete weights.

ian Eigenmaps

for large problems

- Approximate method can be used Nyström method + column
- sampling

CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture 16: Dimensionality Reduction

Spectral decomposition intractable

