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Why High-Dimensional?
• Data samples with many attributes
• Tables with many columns, medical 

records, ... 

• Amalgamate individual properties 
into high-dimensional feature 
vectors

3



CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture  16: Dimensionality Reduction

Challenges
• “Curse of dimensionality”
• Sampling becomes exponentially costly 
• Space accumulates in“corners” of hypercube 
• Data processing becomes extremely expensive / 

intractable 

• How to visualize?
• Missing intuition
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Curse of Dimensionality
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Curse of Dimensionality
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Dimension Reduction
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PCA
• Assume a point cloud 
• Interpret these points as observations of a 

random variable 
• The empirical mean (centroid) is
• The covariance matrix is given by  
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PCA
• The eigenvectors of the covariance matrix 

form a data-dependent coordinate system
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• The first m eigenvectors (in 
decreasing order of 
associated eigenvalues) span 
the m principal dimensions of 
the point cloud.
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MDS
Multidimensional Scaling
• Input: dissimilarity matrix 
                       with          and                  

• Goal: find                          such that  
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MDS
Method:  
• Center(*):                    where
• Spectral decomposition:         
• Clamp(*): 
• Solution: first d columns of  

This is a PCA!
(*): if      measures Euclidean distances,     is positive semidefinite
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Manifold Learning
• Move away from linear assumption
• Assume curved low-dimensional               

geometry
• Assume smoothness
➡ MANIFOLD
• Manifold learning

12

terminology from geometry and topology in order to
crystallize this notion of dimensionality.

Definition 1. A homeomorphism is a continuous

function whose inverse is also a continuous function.

Definition 2. A d-dimensional manifold M is set

that is locally homeomorphic with Rd
. That is, for

each x ∈ M , there is an open neighborhood around

x, Nx, and a homeomorphism f : Nx → Rd
. These

neighborhoods are referred to as coordinate patches,
and the map is referred to a a coordinate chart. The

image of the coordinate charts is referred to as the

parameter space.

Manifolds are terrifically well-studied in mathe-
matics and the above definition is extremely general.
We will be interested only in the case where M is a
subset of RD, where D is typically much larger than
d. In other words, the manifold will lie in a high-
dimensional space (RD), but will be homeomorphic
with a low-dimensional space (Rd, with d < D).

Additionally, all of algorithms we will look at
require some smoothness requirements that further
constrain the class of manifolds considered.

Definition 3. A smooth (or differentiable) manifold

is a manifold such that each coordinate chart is dif-

ferentiable with a differentiable inverse (i.e., each co-

ordinate chart is a diffeomorphism).

We will be using the term embedding in a number
of places, though our usage will be somewhat loose
and inconsistent. An embedding of a manifold M
into RD is a smooth homeomorphism from M to a
subset of RD. The algorithms discussed on this paper
find embeddings of discrete point-sets, by which we
simply mean a mapping of the point set into another
space (typically lower-dimensional Euclidean space).
An embedding of a dissimilarity matrix into Rd, as
discussed in section 3.1.2, is a configuration of points
whose interpoint distances match those given in the
matrix.

With this background in mind, we proceed to the
main topic of this paper.

2.3 Manifold Learning

We have discussed the importance of dimensionality
reduction and provided some intuition concerning the
inadequacy of PCA for data sets lying along some
non-flat surface; we now turn to the manifold learning
approach to dimensionality reduction.

We are given data x1, x2, . . . , xn ∈ RD and we wish
to reduce the dimensionality of this data. PCA is ap-
propriate if the data lies on a low-dimensional sub-
space of RD. Instead, we assume only that the data
lies on a d-dimensional manifold embedded into RD,
where d < D. Moreover, we assume that the mani-
fold is given by a single coordinate chart.1 We can
now describe the problem formally.

Problem: Given points x1, . . . , xn ∈ RD

that lie on a d-dimensional manifold M
that can be described by a single coordi-
nate chart f : M → Rd, find y1, . . . , yn ∈
Rd, where yi

def= f(xi).

Solving this problem is referred to as manifold
learning, since we are trying to “learn” a manifold
from a set of points. A simple and oft-used example
in the manifold learning literature is the swiss roll, a
two-dimensional manifold embedded in R3. Figure 3
shows the swiss roll and a “learned” two-dimensional
embedding of the manifold found using Isomap, an
algorithm discussed later. Notice that points nearby
in the original data set neighbor one another in the
two-dimensional data set; this effect occurs because
the chart f between these two graphs is a homeomor-
phism (as are all charts).

Though the extent to which “real-world” data sets
exhibit low-dimensional manifold structure is still be-
ing explored, a number of positive examples have
been found. Perhaps the most notable occurrence is
in video and image data sets. For example, suppose
we have a collection of frames taken from a video of
a person rotating his or her head. The dimensional-
ity of the data set is equal to the number of pixels
in a frame, which is generally very large. However,
the images are actually governed by only a couple of
degrees of freedom (such as the angle of rotation).
Manifold learning techniques have been successfully
applied to a number of similar video and image data
sets [Ple03].

3 Algorithms

In this section, we survey a number of algorithms
proposed for manifold learning. Our treatment goes
roughly in chronological order: Isomap and LLE were
the first algorithms developed, followed by Laplacian

1
All smooth, compact manifolds can be described by a sin-

gle coordinate chart, so this assumption is not overly restric-

tive.
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ISOMAP
• Form k-NN graph of input points
• Form dissimilarity matrix      as 
square of approximated geodesic 
distance between points

• Compute MDS!
13
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ISOMAP
• Computing geodesic distance
• standard graph problem in CS

14
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ISOMAP
• Successful in computer vision 
problems

15

tion to geodesic distance. For faraway points,
geodesic distance can be approximated by
adding up a sequence of “short hops” be-
tween neighboring points. These approxima-
tions are computed efficiently by finding
shortest paths in a graph with edges connect-
ing neighboring data points.

The complete isometric feature mapping,
or Isomap, algorithm has three steps, which
are detailed in Table 1. The first step deter-
mines which points are neighbors on the
manifold M, based on the distances dX (i, j)
between pairs of points i, j in the input space

X. Two simple methods are to connect each
point to all points within some fixed radius !,
or to all of its K nearest neighbors (15). These
neighborhood relations are represented as a
weighted graph G over the data points, with
edges of weight dX(i, j) between neighboring
points (Fig. 3B).

In its second step, Isomap estimates the
geodesic distances dM (i, j) between all pairs
of points on the manifold M by computing
their shortest path distances dG(i, j) in the
graph G. One simple algorithm (16 ) for find-
ing shortest paths is given in Table 1.

The final step applies classical MDS to
the matrix of graph distances DG " {dG(i, j)},
constructing an embedding of the data in a
d-dimensional Euclidean space Y that best
preserves the manifold’s estimated intrinsic
geometry (Fig. 3C). The coordinate vectors yi

for points in Y are chosen to minimize the
cost function

E ! !#$DG% " #$DY%!L2 (1)

where DY denotes the matrix of Euclidean
distances {dY(i, j) " !yi & yj!} and !A!L2

the L2 matrix norm '(i, j Ai j
2 . The # operator

Fig. 1. (A) A canonical dimensionality reduction
problem from visual perception. The input consists
of a sequence of 4096-dimensional vectors, rep-
resenting the brightness values of 64 pixel by 64
pixel images of a face rendered with different
poses and lighting directions. Applied to N " 698
raw images, Isomap (K" 6) learns a three-dimen-
sional embedding of the data’s intrinsic geometric
structure. A two-dimensional projection is shown,
with a sample of the original input images (red
circles) superimposed on all the data points (blue)
and horizontal sliders (under the images) repre-
senting the third dimension. Each coordinate axis
of the embedding correlates highly with one de-
gree of freedom underlying the original data: left-
right pose (x axis, R " 0.99), up-down pose ( y
axis, R " 0.90), and lighting direction (slider posi-
tion, R " 0.92). The input-space distances dX(i, j )
given to Isomap were Euclidean distances be-
tween the 4096-dimensional image vectors. (B)
Isomap applied to N " 1000 handwritten “2”s
from the MNIST database (40). The two most
significant dimensions in the Isomap embedding,
shown here, articulate the major features of the
“2”: bottom loop (x axis) and top arch ( y axis).
Input-space distances dX(i, j ) were measured by
tangent distance, a metric designed to capture the
invariances relevant in handwriting recognition
(41). Here we used !-Isomap (with ! " 4.2) be-
cause we did not expect a constant dimensionality
to hold over the whole data set; consistent with
this, Isomap finds several tendrils projecting from
the higher dimensional mass of data and repre-
senting successive exaggerations of an extra
stroke or ornament in the digit.

R E P O R T S
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Wbszjoh!qptf Iboexsjujohifolds, a guarantee of asymptotic conver-
gence to the true structure; and the ability to
discover manifolds of arbitrary dimensional-
ity, rather than requiring a fixed d initialized
from the beginning or computational resourc-
es that increase exponentially in d.

Here we have demonstrated Isomap’s per-
formance on data sets chosen for their visu-
ally compelling structures, but the technique
may be applied wherever nonlinear geometry
complicates the use of PCA or MDS. Isomap
complements, and may be combined with,
linear extensions of PCA based on higher
order statistics, such as independent compo-
nent analysis (31, 32). It may also lead to a
better understanding of how the brain comes
to represent the dynamic appearance of ob-
jects, where psychophysical studies of appar-
ent motion (33, 34 ) suggest a central role for
geodesic transformations on nonlinear mani-
folds (35) much like those studied here.
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Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
dG(i, j) # 0 otherwise. Then for each value of k #
1, 2, . . ., N in turn, replace all entries dG(i, j) by
min{dG(i, j), dG(i,k) / dG(k, j)}. The matrix of final
values DG # {dG(i, j)} will contain the shortest path
distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.
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graph will (with high probability) have a path not
much longer than the true geodesic, but small
enough to prevent edges that “short circuit” the true
geometry of the manifold. More precisely, given ar-
bitrarily small values of '1, '2, and (, we can guar-
antee that with probability at least 1 $ (, estimates
of the form

)1 ! '1*dM)i, j* " dG)i, j* " )1 # '2*dM)i, j*

will hold uniformly over all pairs of data points i, j. For
!-Isomap, we require

! " )2/+*r0!24'1, ! $ s0,

& % ,log)V/(-d)'2!/16*d*./-d)'2!/8*d

where r0 is the minimal radius of curvature of the
manifold M as embedded in the input space X, s0 is
the minimal branch separation of M in X, V is the
(d-dimensional) volume ofM, and (ignoring boundary
effects) -d is the volume of the unit ball in Euclidean
d-space. For K-Isomap, we let ! be as above and fix
the ratio (K / 1)/& # -d(!/2)d/2. We then require

e!)K#1*/4 " (-d)!/4*d/4V,

)e/4*)K#1*/ 2 " (-d)!/8*d/16V,

& % ,4 log)8V/(-d)'2!/32+*d*./-d)'2!/16+*d

The exact content of these conditions—but not their
general form—depends on the particular technical
assumptions we adopt. For details and extensions to
nonuniform densities, intrinsic curvature, and bound-
ary effects, see http://isomap.stanford.edu.

19. In practice, for finite data sets, dG(i, j) may fail to
approximate dM(i, j) for a small fraction of points that
are disconnected from the giant component of the
neighborhood graph G. These outliers are easily de-
tected as having infinite graph distances from the
majority of other points and can be deleted from
further analysis.

20. The Isomap embedding of the hand images is avail-
able at Science Online at www.sciencemag.org/cgi/
content/full/290/5500/2319/DC1. For additional
material and computer code, see http://isomap.
stanford.edu.
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Table 1. The Isomap algorithm takes as input the distances dX(i, j ) between all pairs i, j from N data points
in the high-dimensional input space X, measured either in the standard Euclidean metric (as in Fig. 1A)
or in some domain-specific metric (as in Fig. 1B). The algorithm outputs coordinate vectors yi in a
d-dimensional Euclidean space Y that (according to Eq. 1) best represent the intrinsic geometry of the
data. The only free parameter (! or K ) appears in Step 1.

Step

1 Construct neighborhood graph Define the graph G over all data points by connecting
points i and j if [as measured by dX(i, j )] they are
closer than ! (!-Isomap), or if i is one of the K
nearest neighbors of j (K-Isomap). Set edge lengths
equal to dX(i, j).

2 Compute shortest paths Initialize dG(i, j) # dX(i, j) if i, j are linked by an edge;
dG(i, j) # 0 otherwise. Then for each value of k #
1, 2, . . ., N in turn, replace all entries dG(i, j) by
min{dG(i, j), dG(i,k) / dG(k, j)}. The matrix of final
values DG # {dG(i, j)} will contain the shortest path
distances between all pairs of points in G (16, 19).

3 Construct d-dimensional embedding Let 'p be the p-th eigenvalue (in decreasing order) of
the matrix "(DG) (17 ), and v p

i be the i-th
component of the p-th eigenvector. Then set the
p-th component of the d-dimensional coordinate
vector yi equal to 1'pvp

i .

Fig. 4. Interpolations along straight lines in
the Isomap coordinate space (analogous to
the blue line in Fig. 3C) implement perceptu-
ally natural but highly nonlinear “morphs” of
the corresponding high-dimensional observa-
tions (43) by transforming them approxi-
mately along geodesic paths (analogous to
the solid curve in Fig. 3A). (A) Interpolations
in a three-dimensional embedding of face
images (Fig. 1A). (B) Interpolations in a four-
dimensional embedding of hand images (20)
appear as natural hand movements when
viewed in quick succession, even though no
such motions occurred in the observed data. (C)
Interpolations in a six-dimensional embedding of
handwritten “2”s (Fig. 1B) preserve continuity not
only in the visual features of loop and arch artic-
ulation, but also in the implied pen trajectories,
which are the true degrees of freedom underlying
those appearances.
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• smooth manifold is locally close to linear 

Method
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such that                              is minimized 
• Find d-dimensional   ‘s that minimize   
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• Solution is obtained as first d eigenvectors of 

function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6 ) are found
by solving a least-squares problem (7 ).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis1 and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts—including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations—in
effect, to reason about the world—depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional “description” space with as many

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors !Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

ε"W # ! !
i

" !Xi$%jWij
!Xj" 2

(1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

1Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab—Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (L.K.S.)

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.
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function subject to two constraints: first, that
each data point !Xi is reconstructed only from
its neighbors (5), enforcing Wij ! 0 if !Xj does

not belong to the set of neighbors of !Xi;
second, that the rows of the weight matrix
sum to one: "jWij ! 1. The optimal weights

Wij subject to these constraints (6 ) are found
by solving a least-squares problem (7 ).

The constrained weights that minimize
these reconstruction errors obey an important
symmetry: for any particular data point, they
are invariant to rotations, rescalings, and
translations of that data point and its neigh-
bors. By symmetry, it follows that the recon-
struction weights characterize intrinsic geo-
metric properties of each neighborhood, as
opposed to properties that depend on a par-
ticular frame of reference (8). Note that the
invariance to translations is specifically en-
forced by the sum-to-one constraint on the
rows of the weight matrix.

Suppose the data lie on or near a smooth
nonlinear manifold of lower dimensionality d
## D. To a good approximation then, there
exists a linear mapping—consisting of a
translation, rotation, and rescaling—that
maps the high-dimensional coordinates of
each neighborhood to global internal coordi-
nates on the manifold. By design, the recon-
struction weights Wij reflect intrinsic geomet-
ric properties of the data that are invariant to
exactly such transformations. We therefore
expect their characterization of local geome-
try in the original data space to be equally
valid for local patches on the manifold. In
particular, the same weights Wij that recon-
struct the ith data point in D dimensions
should also reconstruct its embedded mani-
fold coordinates in d dimensions.

LLE constructs a neighborhood-preserving
mapping based on the above idea. In the final
step of the algorithm, each high-dimensional
observation !Xi is mapped to a low-dimensional
vector !Yi representing global internal coordi-
nates on the manifold. This is done by choosing
d-dimensional coordinates !Yi to minimize the
embedding cost function

$%Y & ! !
i

" !Yi " "jWij
!Yj" 2

(2)

This cost function, like the previous one, is
based on locally linear reconstruction errors,
but here we fix the weights Wij while opti-
mizing the coordinates !Yi. The embedding
cost in Eq. 2 defines a quadratic form in the
vectors !Yi. Subject to constraints that make
the problem well-posed, it can be minimized
by solving a sparse N ' N eigenvalue prob-
lem (9), whose bottom d nonzero eigenvec-
tors provide an ordered set of orthogonal
coordinates centered on the origin.

Implementation of the algorithm is
straightforward. In our experiments, data
points were reconstructed from their K near-
est neighbors, as measured by Euclidean dis-
tance or normalized dot products. For such
implementations of LLE, the algorithm has
only one free parameter: the number of
neighbors, K. Once neighbors are chosen, the
optimal weights Wij and coordinates !Yi are

Fig. 2. Steps of locally lin-
ear embedding: (1) Assign
neighbors to each data
point !Xi (for example by
using the K nearest neigh-
bors). (2) Compute the
weights Wij that best lin-
early reconstruct !Xi from
its neighbors, solving the
constrained least-squares
problem in Eq. 1. (3) Com-
pute the low-dimensional
embedding vectors !Yi best
reconstructed by Wij, mini-
mizing Eq. 2 by finding the
smallest eigenmodes of
the sparse symmetric ma-
trix in Eq. 3. Although the
weights Wij and vectors Yi
are computed by methods
in linear algebra, the con-
straint that points are only
reconstructed from neigh-
bors can result in highly
nonlinear embeddings.

Fig. 3. Images of faces (11) mapped into the embedding space described by the first two
coordinates of LLE. Representative faces are shown next to circled points in different parts of the
space. The bottom images correspond to points along the top-right path (linked by solid line),
illustrating one particular mode of variability in pose and expression.
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Laplacian Eigenmaps
• Graph Laplacian of       is 

        with      diagonal and 
• Define       as either binary indicator of connectivity or 

through heat kernel  
• Solve for  
• Compute eigenvectors    of Laplacian associated with non-
zero eigenvalue

18

L = D �WW

Dii =
X

j

WijD

W

y

X

i,j

Wij ||yi � yj ||2 = tr(Y TLY )

Cfmljo-!Ojzphj-!Bewbodft!jo!Ofvsbm!Jogpsnbujpo!Qspdfttjoh!Tztufnt-!3112!



CS49000-VIZ Intro to Data Visualization / Fall 2020; Lecture  16: Dimensionality Reduction

Laplacian Eigenmaps
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Computation
•Spectral decomposition intractable 
for large problems 

•Approximate method can be used  
•Nyström method + column 
sampling
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