CS 251 Spring 2009

Due: Thursday Jan 22", 11:59PM.

Al1—Basic C++

In a nutshell: extend the functionality of the code developed in class; start from the Al.zip code archive

provided in the same directory as this document.

Specifics:

1.

For our matrix class M2x2, implement:

d.

An operator<< that displays the values stored in the matrix. See sample output for
details on required output formatting. Warning: pay very close attention to the required
output format as an error here can be costly.

A Transpose method that returns a new matrix obtained by transposing the matrix on
which it was called.

A Column(int i) method that returns a new V2 containing column i. The first column is
column O.

A M2x2(float theta) constructor that builds a rotation matrix. theta is in degrees.

Implement a new class Seg2D that models 2-D line segments (NOT lines). The class should store

the two endpoints. The class should provide the following functionality:

A constructor Seg2D(V2 p0, V2 p1) that builds a segment from two endpoints. p0O[0] is
the x coordinate, p0[1] is the y coordinate, etc.

A method Length() that returns the length of the segment

A method bool Intersect(Seg2D s1, V2& intPoint) that computes the intersection
between the current segment and s1. If there is an intersection, the method should
return true and should set intPoint to the intersection point. If there is no intersection,
the method should return false and should not modify intPoint. Assume that s1 and s2
overlap in at most 1 point. Assume infinite precision arithmetic. Remember that the
intersection of line segments is different than the intersection of lines.

OPTIONAL Extra credit 2%:

a.

Implement a method bool Circle::Tangent(V2 pt, V2 tgtPoints[2]) that returns true if
there is a tangent from point pt to the circle and false otherwise. If there are tangents,



the function should set tgPoints to the tangent points. Ignore the case when the point is
on the circle.

b. Your code must work perfectly to receive any extra credit. No partial extra credit.

c. Turnin a blank file named “extracredit” for your extra credit to be graded (do NOT
create this file if you did not attempt the extra credit). Create this file in the Al directory
with the command

touch extracredit

Sample output: for the given main.cpp, the provided file “sampleoutput.txt” contains the

expected output. In particular, use this output to determine the expected output for the <<

operator for M2x2. When your program is correctly working, the unix command “diff” should

report no difference (no output from diff) between your output from “main” saved into a file

“myoutput.txt” and sampleoutput.txt. Test this by:

./main > myoutput.txt
diff myoutput.txt sampleoutput.txt

a. of course once you get this to work you should devise additional test cases to ensure
your program truly works

Requirements:

1.

You MUST use the base code given along with the assignment in the archive Al.zip
Do not change the names of any of the files given.

Do not include code in files other than those given.

Do not change the signatures of any of the functions given.

You may add functions and data as you need.

Use the Makefile given. Do not change it. Your program should compile and produce the
executable “main” by simply typing “make”. This has already been setup for you. Do not
turn in Makefile, we will use our own that is the same as the one given to you.

Your code MUST compile on lore.cs.purdue.edu for it to be graded.

Do not include any code you want graded in main.cpp. It will be replaced during grading. Do
not turnin main.cpp

Turn in instructions



a. any turnininstructions listed here override any “general turnin instructions” listed on
the course webpage.

b. all of your code (circle.cpp, circle.h, m2x2.cpp m2x2.h, seg2d.cpp, seg2d.h, v2.cpp, v2.h,
extracredit(OPTIONAL)) MUST be in the directory Al (the same directory that the
assignment was distributed in). Other files in the directory will not be graded.

c. inthe directory above A1, run the command on lore.cs.purdue.edu
turnin -c cs251 -p A1 Al

d. optionally run the following command to verify what files were submitted
turnin -c ¢cs251 -p Al -v

e. Warning: turnin will be automatically disabled at 01/23/2009 at 12:00 AM EST and you
will be unable to turnin your assignment after this time.

f.  Warning: turning in multiple times is ok but only the last one will be graded as each
turnin permanently overwrites the previous one.

g. Warning: failure to turnin exactly according to the instructions given above will result in
your Al receiving a grade of 0.

7. Grading

a. grading will be primarily through testing the output of each of the required functions
against the desired output via a script. Thus it is important that your output format
match the expected output format.

Voicu Popescu, spring 2009



