
1

CS 251
Spring 2009
Voicu Popescu
Assignment 5
Due Friday February 20, 11:59PM

Binary trees

1. Implement a C++ binary tree class BinaryTree that models arithmetic expressions. An
internal node stores an operator represented with a character (i.e. ‘+’, ‘-‘, ‘*’, ‘/’) and a leaf
stores an integer. It is OK to provide space for both and derive the type of node from the
presence or absence of children. Provide the following functionality:

1. A constructor that initializes and builds the binary tree from an arithmetic expression
read in from the standard input.

i. The expression has parentheses isolating all (<operand0> <binary operator>
<operand1>) expressions, where <operandi> can be an expression,
recursively. For example 1+2+3 is illegal input that you do not have to worry
about. The legal form is ((1+2)+3).

ii. All numbers are integers between 0 and 9.
iii. Caution: handle space characters correctly. The string defining the expression

could or could not have spaces: ((1 + 2)+3) should work just as well as
((1+2)+3)).

iv. Caution: handle negative numbers correctly: (1*-5) is legal input.
v. You do not have to worry about illegal input.

2. A destructor that frees all dynamically allocated memory.
3. A method evaluate that returns the value of the expression stored in the tree.
4. A method draw that visualizes the binary tree in a text file called `tree.txt', with

characters as pixels.
i. An internal node should be drawn with a 5x5 pixels square, with the operator at

the center. The border of the square should be one character thick, and should
be represented with the character ‘I’.

ii. A leaf should be drawn with a 5x5 pixels square, with the number at the center.
Use ‘E’ for the border.

iii. A node should be drawn midway between its two children; place the square
close to left child if you encounter half pixel issue. (See provided examples)

iv. All nodes with the same depth should appear on the same row
v. Extra credit (2%): Draw a link as a line segment connecting node centers; the

line should stop before entering the node square.

2. Extra credit (2%): Add the member function isBinaryTree(BinaryTree *bTree) to
BinaryTree that verifies that a tree of nodes given by a pointer to its root is indeed a binary
tree. The properties that you have to verify are:

1. All nodes have 0 or 2 children.
2. A node is the parent of its children and of no other node.

3. Turn in instructions
1. Question 1: Name your program file as “binaryTree.cpp”. “binaryTree.cpp” should

implement the operations given in “binaryTree.h”. You may add some code to
“binaryTree.h”, in fact you should. However, do not change the names and signatures

1

of the given operations. A test file “binaryTreeTest.cpp” is also provided to test the
data structure. Examine and run that program to test your operations. You will not
turnin the test file.

2. Turnin a blank file named “extracredit” for your extra credits to be graded (do not
turnin this file if you did not attempt at least one of the extra credit questions). Create
this file in the A5 directory with the following command
touch extracredit

Please provide the following public methods in you BinaryTree class if you are
attempting extra credit Q2. Each method should return a pointer to a BinaryTree
object or null if it does not exist.
BinaryTree*& getRefParent();
BinaryTree*& getRefLeft();
BinaryTree*& getRefRight();

3. Read General turnin instructions parts E, F and G very carefully, on the website.

4. Your codes MUST compile on lore.cs.purdue.edu for it to be graded.

5. All of your documents (binaryTree.h, binaryTree.cpp, extracredit (OPTIONAL)) MUST

be in the directory A5.

In the directory above A5, run the command on lore.cs.purdue.edu

turnin -c cs251 -p A5 A5

Optionally run the following command to verify what files were submitted

turnin -c cs251 -p A5 –v

Warning: turnin will be automatically disabled at 02/20/2009 at 11:59 PM EST and
you will be unable to turnin your assignment after this time.

Warning: turning in multiple times is ok but only the last one will be graded as each
turnin permanently overwrites the previous one.

Warning: failure to turnin exactly according to the instructions given above will result
in your A5 receiving a grade of 0.

