
 1

CS 251
Spring 2009
Voicu Popescu
Assignment 6
Due Friday March 6, 11:59PM

Priority queues

Part 1: Implementing a min priority queue as a min heap

Implement a Heap class using a binary tree (and not an array) with the following functionality:

 Constructor: Heap()

 Creates and initializes the heap. This function must run in O(1) time.

 Destructor: ~Heap()

 Deallocates any memory used and destroys the heap in O(n) time when there are n

elements in the heap.

 Insert: void insertElement(int key, int data)

 Puts data in the heap using key to determine its location. If there is already an entry

with key key you will still create an entry in the heap with that (key,data) pair (that is,

insert as you would normally). This function must run in O(log n) time.

 Minimum element: const int minElement() const

 Returns the data of the element in the heap with the smallest key. This function must run

in O(1) time.

 Extract minimum element: int extractMinElement()

 Returns and removes the data in the heap with the smallest key. This function should

ensure that the heap properties are maintained. This function must run in O(log n) time.

Additional Clarifications:

 Your Heap should have NO upper limit to the number of elements it can hold (if you had an

infinite amount of memory available). That is, it should be dynamic.

 Your Heap class should be independent of the rest of the project (Part 2 below) and will be

tested individually. That is, someone else should be able to use Heap in their program and have

it function as a min priority queue.

 DO NOT change any of the function signatures including const modifier. Doing so will most

likely lead to a compile error and a 0 for your overall program grade. Your functions must run in

the stated time requirements. If they do not, then you will receive no credit for that function.

 There is no “main” for this part of the project. You are creating the Heap class which you will

use in Part 2 below. The corresponding files for Part 1 are Heap.h and Heap.cpp (Skeleton

code is provided). You may use the file heaptest.cpp to add your test cases and test Heap class.

“make heaptest” will create the executable heaptest. heaptest.cpp will be replaced when

grading your assignment.

Part 2: Sorting and finding the k minimum elements using a priority queue

You will create two applications in this part utilizing your Heap class from Part 1. To use Heap, you

will probably want to use the number that you are storing in the heap as both the key and the data.

Application 1: heapsort

 2

Take n integers and print them out sorted in ascending order. The running time should be O(n log n).

The details are as follows:

 This program will read from a file given on the command line which contains n integers where

n is greater than or equal to 1. The integers will be separated by whitespace which you will need

to handle. Assume that the input will be in the proper format. An arbitrary file name can be

given on the command line.

 The program will then use the Heap class and will write to a file named heapsortoutput the

result of sorting the n numbers in ascending order. The output should be listed on one line with

a single space separating numbers. No whitespace/newlines should precede the first number or

come after the last number.

 Example input and output are provided in the files heapsortsampleinput and

heapsortsampleoutput. Please make sure that your program can EXACTLY reproduce that

output file given the input file. You may want to use the `diff' program to test this.

 A skeleton heapsort.cpp file is provided. “make heapsort” will create the executable

heapsort.

 An example of how this application will be run is:

 heapsort inputfile

Application 2: kmin

Take n integers and print out in sorted ascending order the k smallest among them. The running time

should be O(n log n + k log n). The details are as follows:

 This program will read from a file given on the command line which contains n integers where

n is greater than or equal to 1. The integers will be separated by whitespace which you will need

to handle. Assume that the input will be in the proper format. An arbitrary file name can be

given on the command line.

 The program will also read from the command line a number k which is the number of elements

to output. k will be greater than or equal to 1 and less than or equal to n.

 The program will then use the Heap class to write to a file named kminoutput the result of

outputting the minimum k elements in sorted ascending order. The output should be listed on

one line with a single space separating numbers. No whitespace/newlines should precede the

first number or come after the last number.

 Example input and output are provided in the files kminsampleinput and

kminsampleoutput_k=5. Please make sure that your program can EXACTLY reproduce that

output file given the input file. You may want to use the `diff' program to test this.

 A skeleton kmin.cpp file is provided. “make kmin” will create the executable kmin.

 An example of how this application will be run is below, where 3 is an example k

 kmin kminsampleinput 3

Extra credit 1: compile-time simplification of expression trees [3%]

A binary expression tree is built from a perfectly parenthesized string like for A5 (assignment five). In

addition to the possible input for A5, the expression can also contain the variables „a‟, „b‟, „c‟, and „d‟.

Simplify the tree by replacing any subtree that does not contain variables (but only numbers and can

therefore be evaluated) with a leaf that stores its value. Also simplify the tree by replacing a subtree

with a leaf storing 0 when the tree multiplies one of its children with the constant 0. Print your tree as

in A5. The details are as follows.

 Extend the constructor of the BinaryTree class you developed for A5 to build the simplified

tree. (Hint: Build the tree as in A5 and then prune the tree to get the simplified tree.)

 3

 Assume that sub-expressions evaluate to less than 10 so that you don‟t need to change the draw

method in A5.

 When simplify-tree.cpp (provided) is compiled, it should draw the simplified tree to tree.txt

file. (Uncomment the relevant entries in the Makefile to compile it as “make simplify-tree” and

produce the executable simplify-tree)

 Some examples are given below:

 Input expression = (a + (2 * 3)) Simplified expression = (a + 6)

 Input expression = (a + (b * 0)) Simplified expression = (a)

 Input expression = (a + (b * 5)) Simplified expression = Input expression

 Input expression = ((2 + 2) * (1 + 1)) Simplified expression = (8)

Extra credit 2: an efficient kmin [5%]

Implement a O(n + k log k) solution to the kmin problem (see above). It is OK to assume that n is of

the form 2
i
 -1. Provide a high level description of your algorithm.

Hint 1: You will probably have to use bottom-up heap construction (see your text for details).

Hint 2: Think divide and conquer.

Details are as follows:

 Provide ekmin.cpp for this. (Uncomment the relevant entries in the Makefile to compile it as

“make ekmin” and produce the executable ekmin)

 Explain your algorithm in ekmin.txt file.

Turn in Instructions

 Your codes MUST compile on lore.cs.purdue.edu for it to be graded.

 All of your documents (Heap.h, Heap.cpp, heapsort.cpp, kmin.cpp, BinaryTree.h (optional),

BinaryTree.cpp (optional), ekmin.cpp (optional), ekmin.txt (optional)) MUST be in the

directory A6.

 Read General turnin instructions parts E, F and G very carefully, on the website.

 In the directory above A6, run the command on lore.cs.purdue.edu

 turnin -c cs251 -p A6 A6

 Optionally run the following command to verify what files were submitted

 turnin -c cs251 -p A6 –v

 Warning: turnin will be automatically disabled at 03/06/2009 at 11:59 PM EST and you will be

unable to turnin your assignment after this time.

 Warning: turning in multiple times is ok but only the last one will be graded as each turnin

permanently overwrites the previous one.

 Warning: failure to turnin exactly according to the instructions given above will result in your

A6 receiving a grade of 0.

