
A2—Light Transport & Helmholtz 
Reciprocity 

CS 43400, Spring 2014 

Due on Friday February 21  

Summary: implement a program that computes the (synthetic) light transport of a scene and uses 
Helmholtz Reciprocity to swap the positions of the camera and light source. 

1. Create/define a rendering engine that produces basic gray-scale diffuse scenes and optional 
non-diffuse effects, such as the reflections from the previous assignment.  
a. Setup this project as an extension of your previous assignment or write a new rendering 

engine able to render a 3D scene and produce at least a simple diffuse (e.g., Lambertian) 
rendering --- you may choose the specifics of this rendering engine, but more details later in 
the assignment.  

2. Create sampled light transport matrix 
a. You are to create a sampled light transport matrix 𝑇𝑇, using the aforementioned 

rendering engine, such that 𝑐𝑐 = 𝑇𝑇𝑇𝑇 where 𝑐𝑐 is a camera image and 𝑇𝑇 is a light pattern. To 
make things simpler, we assume a gray-scale rendered world (e.g., one channel per 
pixel). 

b. Choose a location for the single light source 𝑇𝑇 and the single camera 𝑐𝑐; for example, they 
should be approximately 45-60 degrees from each other and the camera seeing ‘one 
side of the scene’ and the light illuminating the ‘other side of the scene’. 

c. Render the light source as an array of small directional lights emanating from the light 
source position 𝑇𝑇 and towards the scene, then bouncing off the scene and towards the 
camera. You can define the light directions 𝑑𝑑𝑖𝑖𝑖𝑖  by imagining a small plane (or curved 
surface) in front of the light position. Similarly can be done for the camera, with pixels 
𝑝𝑝𝑢𝑢𝑢𝑢. The parameterization should be roughly M by N steps for both the camera and light 
source planes. A directional light source can be defined as a ray from 𝑇𝑇 and through 𝑑𝑑𝑖𝑖𝑖𝑖. 
For example, in the following 2D case, you see a light ray from 𝑇𝑇 and through 𝑑𝑑𝑖𝑖. This 
light ray hits the scene somewhere and then bounces to the camera at pixel 𝑝𝑝𝑢𝑢 (or 𝑝𝑝𝑢𝑢𝑢𝑢 
in the full 3D case). 

  

Light 𝑇𝑇 Camera 𝑐𝑐 

Pixel/Direction 𝑑𝑑𝑖𝑖    Pixel/Direction 𝑝𝑝𝑢𝑢   
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d. To produce the light directions/pixels, you can use OpenGL spot lights with a very 
narrow cone or write a simple GPU program such mimics such a narrow spot light 
behavior. Roughly the light ray footprint on the scene surface should be such that it 
does not overlap with the light ray footprint of the adjacent light rays. This only needs to 
be approximate. 

e. To produce the camera pixels/directions, use the rendered image resulting from using 
the aforementioned narrow light ray. The camera pixels associated with the current 
light ray are those pixels whose value are greater than a small threshold (assuming black 
is the background/ambient color. 

f. Thus, as described in class, the camera image resulting from individually illuminating 
each light pixel corresponds to one column of the light transport matrix.  

g. NOTE: while you may implement a sparse-matrix or sparse-image data structure, it is 
sufficient to work at a low resolution such that the matrix 𝑇𝑇 fits in memory. You may 
assume 𝑀𝑀 = 𝑁𝑁 = 128 (so 128x128 pixel camera/light images). 

3. Visualize Light Transport 
a. The first test is to produce a transport visualization of the matrix 𝑇𝑇. The transport matrix 

is 16384𝑥𝑥16384 in size. Please conservatively subsample down to 4096𝑥𝑥4096 (e.g., 
compute the max of every group of adjacent 4𝑥𝑥4 pixels and make it the down-sampled 
value). Then convert the 4096𝑥𝑥4096 matrix to a standard grayscale image format 
normalized to the range [0, 255]. Please output either .jpg, .tif or any other standard 
image format. 

4. Rendering with Light Transport 
a. Now, use the transport matrix to create novel scenes.  

i. First, use 𝑇𝑇 = [1] (a vector of ones) to create a camera image 𝑐𝑐. Please save the 
camera image to a standard image file format. 

ii. Second, use 𝑇𝑇 as a checkerboard pattern (e.g., every 4x4 group of pixels is either 
black or white as in a checkerboard). Please save the camera image to a 
standard image file format. 

iii. Third, setup your program so that we can run it with our illumination image, and 
then save the camera image to a standard image file format. 

b. Next, please transpose the light transport matrix 𝑇𝑇 and repeat the same above output 
images. The light source and camera should have effectively swapped position. 

5. Extra Credit 
a. Support color: extend to multiple channels per pixel (5%) 
b. Accelerate the creation process by, for example, parallelizing which light rays are used 

simultaneously in the same camera image (5%) 
c. Make your rendering engine more complex than a simple diffuse engine: please note 

that the visualization of your transport matrix should reflect this (5%) 
6. Turn in 

a. Transport visualization image 
b. Output images for 2 light patterns (first and second) 
c. Output images for 2 light patterns after transposing 𝑇𝑇. 
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d. A program for which we can specify the illumination image of size 128x128 stored as 
JPG or TIFF.  It may be via a command line argument (“myprogram myilum.jpg”) or via 
the GUI. In all cases, it should be very obvious. To produce the output using the 
transpose of the matrix, the command line argument should be similar to “myprogram 
myilum.jpg –transpose”. If using the GUI, it should be clear as well. 

e. Source files 
f. Executable for program. It will be used for part ‘d’. If you expect a command line 

argument and it is not given, please give an error indicating so. If you want us to put the 
filename using the GUI make sure it is obvious. Do not expect us to know what other 
magical parameters to use. The produced camera image should be put in the current 
directory with the name “output.jpg” or similar. 

g. Extra credit as described above, with appropriate extra image files 
h. Turn in a single zipped archive with all your files via Blackboard 
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