

Light Transport

CS434

Daniel G. Aliaga
Department of Computer Science
Purdue University

Topics

- Local and Global Illumination Models
- Helmholtz Reciprocity
- Dual Photography/Light Transport (in Real-World)

FUR

Diffuse Lighting

- A.k.a. Lambertian illumination
- A fraction of light is radiated in every direction
- Intensity varies with cosine of the angle with normal

Specular Lighting

 The most common lighting model was suggested by Phong

$$I_{spec} = \rho_{spec} I_{Light} (\cos \phi)^{n_{shiny}}$$

- The n_{shiny} term is an empirical constant to model the rate of falloff
- The model has no exact physical basis, but it "sort of works"

Scattering

Without (subsurface) scattering

With (subsurface) scattering

Scattering

BRDF

Without (subsurface) scattering

BSSRDF

With (subsurface) scattering

Hu et al. 2010

Scattering through participating media with volume caustics...

Rendering Equation (also known as the light-transport equation)

Illumination can be generalized to

$$\begin{split} L_r(x,\omega_r) = L_e(x,\omega_r) + \int\limits_{\Omega} L_r(x',-\omega_i) f(x,\omega_i,\omega_r) \cos\theta_i d\omega_i \\ \text{Reflected Light Emission Reflected BRDF Cosine of } \\ \text{(Output Image)} & \text{Light Incident angle} \end{split}$$

(note: equation is recursive)

...but it does not model all illumination effects!

Conclusion

- Modeling physical illumination is hard
- "Undoing" physically-observed illumination in order to discover the underlying geometry is even harder

Insight: let's sample it and "re-apply" it!

Recall the Linear Operator Equation...

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \int\limits_{\Omega} L_r(x',-\omega_i) f(x,\omega_i,\omega_r) \cos\theta_i d\omega_i$$
 Reflected Light Emission Reflected BRDF Cosine of Incident angle
$$L = E + KL$$

where K can be thought of as the "light transport matrix"; i.e., it transports light from the previous surface (=light) to the next surface

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

PU

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

$$C = TP$$

Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C

[Sen et al., SIGGRAPH 2005] (slides based on those from the paper)

Helmholtz Reciprocity

Helmholtz Reciprocity

Measuring transport along a set of path

Reversing the paths

scene

Forming a dual photograph

Forming a dual photograph

- light replaced with projector
- camera replaced with photocell
- projector scanned across the scene

conventional photograph, with light coming from right

aph, dual photograph, right as seen from projector's position and as illuminated from photocell's position

- time-of-flight scanner
 - if they return reflectance as well as range
 - but their light source and sensor are typically coaxial

scanning electron microscope

Velcro® at 35x magnification, Museum of Science, Boston

scene

$$\begin{bmatrix} C \\ C \end{bmatrix} = \begin{bmatrix} T \\ T \end{bmatrix} \begin{bmatrix} P \\ P \end{bmatrix}$$
mn x 1 pq x 1

$$\begin{bmatrix} C \\ C \end{bmatrix} = \begin{bmatrix} T \\ D \\ D \end{bmatrix}$$
mn x 1 pq x 1

applying Helmholtz reciprocity...

$$\begin{bmatrix} C' \\ C' \end{bmatrix} = \begin{bmatrix} pq x mn \\ T^T \\ P' \end{bmatrix}$$

$$pq x 1 \qquad mn x 1$$

Example

conventional photograph with light coming from right

dual photograph as seen from projector's position

Example

Can encode light (or projector) to camera "transport" in a

large matrix T

$$\begin{bmatrix} p \end{bmatrix} = \begin{bmatrix} T^t \end{bmatrix} \begin{bmatrix} C \end{bmatrix}$$

As seen from camera... As seen from projector!!!

Dual photography from diffuse reflections

the camera's view

Properties of the transport matrix

- little inter-reflection
 - → sparse matrix
- many inter-reflections
 - \rightarrow dense matrix
- convex object
 - → diagonal matrix
- concave object
 - → full matrix

Can we create a dual photograph entirely from diffuse reflections?

Relighting

Paul Debevec's Light Stage 3

- subject captured under multiple lights
- one light at a time, so subject must hold still
- point lights are used, so can't relight with cast shadows

With Dual Photography...

With Dual Photography...

With Dual Photography...

The 6D transport matrix

The advantage of dual photography

 capture of a scene as illuminated by different lights cannot be parallelized

 capture of a scene as viewed by different cameras <u>can</u> be parallelized

Measuring the 6D transport matrix

projector

Relighting with complex illumination

projector

scene

- step 1: measure 6D transport matrix T
- step 2: capture a 4D light field
- step 3: relight scene using captured light field

Running time

 the different rays within a projector can in fact be parallelized to some extent

 this parallelism can be discovered using a coarse-to-fine adaptive scan

can measure a 6D transport matrix in 5 minutes

Can we measure an 8D transport matrix?

projector array

camera array

scene

Demos

- Metropolis Light Transport
 - http://www.youtube.com/watch?v=3Xo0qVT3nxg
 - http://www.youtube.com/watch?v=GMDfy_B0rvQ

- Faster acquisition:
 - http://www.youtube.com/watch?v=fVBICVBEGVU&playne
 xt=1&list=PL361744591665D18D&feature=results_video