Light Transport

CS434

Daniel G. Aliaga
Department of Computer Science
Purdue University

Topics

- Local and Global Illumination Models
- Helmholtz Reciprocity
- Dual Photography/Light Transport (in Real-World)

Diffuse Lighting

- A.k.a. Lambertian illumination
- A fraction of light is radiated in every direction
- Intensity varies with cosine of the angle with normal

Specular Lighting

- The most common lighting model was suggested by Phong

$$
I_{\text {spec }}=\rho_{\text {spec }} I_{\text {Light }}(\cos \phi)^{n} \text { shiny }
$$

- The $n_{\text {shiny }}$ term is an empirical constant to model the rate of falloff
- The model has no exact physical basis, but it "sort of works"

Example

Inter-reflections

Scattering

Scattering

Without (subsurface) scattering

With (subsurface) scattering

Scattering

BRDF
Without (subsurface) scattering

BSSRDF
With (subsurface) scattering

Scattering

Hu et al. 2010

Scattering through participating media with volume caustics...

Rendering Equation (also known as the light-transport equation)

- Illumination can be generalized to

$$
\begin{aligned}
& \qquad L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i} \\
& \text { Reflected Light Emission } \begin{array}{l}
\text { Reflected } \\
\text { (Output Image) }
\end{array} \\
& \text { Light }
\end{aligned}
$$

(note: equation is recursive)
...but it does not model all illumination effects!

Conclusion

- Modeling physical illumination is hard
- "Undoing" physically-observed illumination in order to discover the underlying geometry is even harder
- Insight: let’s sample it and "re-apply" it!

Recall the Linear Operator Equation...

$$
L_{r}\left(x, \omega_{r}\right)=L_{e}\left(x, \omega_{r}\right)+\int_{\Omega} L_{r}\left(x^{\prime},-\omega_{i}\right) f\left(x, \omega_{i}, \omega_{r}\right) \cos \theta_{i} d \omega_{i}
$$

| Reflected Light
 (Output Image) | Emission | Reflected
 Light | BRDF |
| :--- | :--- | :--- | :--- | | Cosine of |
| :--- |
| Incident angle |

where K can be thought of as the "light transport matrix"; i.e., it transports light from the previous surface (=light) to the next surface

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C
- Thus rendering equation is now...

$$
C=T P
$$

Dual Photography

- Compute a light transport matrix T that "transports light" from an illumination vector P to a camera image vector C

[Sen et al., SIGGRAPH 2005] (slides based on those from the paper)

Helmholtz Reciprocity

light

scene

Helmholtz Reciprocity

camera
(D)

scene

Measuring transport along a set of pathe

Reversing the paths

camera

Forming a dual photograph

"dual" camera

Physical demonstration

- light replaced with projector
- camera replaced with photocell
- projector scanned across the scene

conventional photograph, with light coming from right

dual photograph, and as illuminated from photocell's position

Related imaging methods

- time-of-flight scanner
- if they return reflectance as well as range
- but their light source and sensor are typically coaxial
- scanning electron microscope

Velcro® at $35 x$ magnification, Museum of Science, Boston

The 4D transport matrix

projector
prantrexall

The 4D transport matrix

projector
camera

scene

The 4D transport matrix

> mn x pq
> mn x 1
> $p q \times 1$

The 4D transport matrix

mn x pq

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathrm{C}
\end{array}\right]=\left[\begin{array}{llll}
& & \\
& \mathbf{T} & \\
& &
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& m n \times 1 \\
& p q \times 1
\end{aligned}
$$

The 4D transport matrix

$$
\begin{aligned}
& \text { mn x pq } \\
& {[\mathbf{C}]=\left[\begin{array}{lll}
& & \\
& \mathbf{T}
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]} \\
& \text { mn x } 1 \\
& p q \times 1
\end{aligned}
$$

The 4D transport matrix

$$
\begin{aligned}
& \text { mn x pq } \\
& {[\mathbf{C}]=\left[\begin{array}{lll}
\\
& \mathbf{T}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]} \\
& \text { mn x } 1 \\
& p q \times 1
\end{aligned}
$$

The 4D transport matrix

> mn x pq
> mn x 1
> $p q \times 1$

The 4D transport matrix

mn x pq

applying Helmholtz reciprocity...

Example

conventional photograph with light coming from right

dual photograph as seen from projector's position

Example

- Can encode light (or projector) to camera "transport" in a large matrix T

Camera c

Projector p

$$
[p]=\left[T^{t}\right]\left[\begin{array}{l}
c \\
\end{array}\right]
$$

As seen from camera... As seen from projector!!!

Dual photography from diffuse reflections

the camera's view

Properties of the transport matr

- little inter-reflection
\rightarrow sparse matrix
- many inter-reflections
\rightarrow dense matrix
- convex object
\rightarrow diagonal matrix
- concave object
\rightarrow full matrix
Can we create a dual photograph entirely from diffuse reflections?

Relighting

Paul Debevec's Light Stage 3

- subject captured under multiple lights
- one light at a time, so subject must hold still
- point lights are used, so can’t relight with cast shadows

Relighting

With Dual Photography...

Relighting

With Dual
Photography...

Relighting

(a)

(b)

With Dual
Photography...

The 6D transport matrix

The 6D transport matrix

The advantage of dual photography

- capture of a scene as illuminated by different lights cannot be parallelized
- capture of a scene as viewed by different cameras can be parallelized

Measuring the 6D transport matrix

projector

caimerararayay

Relighting with complex illuminationt

scene
camera array

- step 1: measure 6D transport matrix T
- step 2: capture a 4D light field
- step 3: relight scene using captured light field

Running time

- the different rays within a projector can in fact be parallelized to some extent
- this parallelism can be discovered using a coarse-to-fine adaptive scan
- can measure a 6D transport matrix in 5 minutes

Can we measure an 8D transport matrix?
projector array

camera array

scene

Demos

- Metropolis Light Transport
- http://www.youtube.com/watch?v=3Xo0qVT3nxg
- http://www.youtube.com/watch?v=GMDfy BOrvQ
- Faster acquisition:
- http://www.youtube.com/watch?v=fVBICVBEGVU\&playne $\underline{x t=1 \& l i s t=P L 361744591665 D 18 D \& f e a t u r e=r e s u l t s ~ v i d e o ~}$

