

1

A Flexible Framework for Interactive Multiperspective

Visualization

<Author names and affiliations withheld for double-blind review>

Fig. 1. Conventional visualization of terrain dataset (top) and multiperspective visualization constructed with our framework (bottom). The

viewpoint was modified for two regions individually to disocclude a lake (left) and a valley (right).

Abstract—A conventional image can only visualize the parts of a dataset to which there is direct line of sight from the image

viewpoint. In complex datasets, occlusions abound, which limits visualization bandwidth. Multiperspective visualization promises to

remove this single viewpoint limitation by integrating samples captured from multiple viewpoints into a continuous image. We

present a framework for designing multiperspective visualizations with great flexibility by manipulating the underlying camera

model. We construct multiperspective visualizations in one of three ways: in target tracking construction, one or several data

subsets of interest (i.e. targets) are visualized where they would be seen in the absence of occluders, as the user navigates or the

targets move; in top-down construction, the viewpoint is altered for individual image regions to avoid occlusions; in bottom-up

construction, input conventional images are connected into a multiperspective image. The multiperspective images are rendered at

interactive rates, with the help of the GPU, leveraging a fast projection operation provided by the underlying camera model.

Index Terms—Occlusion management, camera models, multiperspective visualization, interactive visualization

1 INTRODUCTION

Most images used in computer graphics and visualization are

computed with the conventional planar pinhole camera model, which

approximates the human eye. Whereas this is essential in

applications such as virtual reality where the goal is to make users

believe that they are immersed in the scene rendered, researchers in

visualization have recognized that the limitations of conventional

images are not always warranted. One such limitation is a reduced

field view, which has been addressed with panoramic camera models

such as fisheyes. A second limitation is that conventional images

sample the dataset uniformly, oblivious to importance variations

within the dataset. The focus plus context research direction

addresses this limitation by devising mechanisms for allocating more

image pixels to data subsets of higher importance.
A third limitation is that a conventional image samples a dataset

from a single viewpoint and occlusions limit the visualization
capability of the image. One approach for overcoming occlusions is

to rely on the user to navigate the viewpoint in order to circumvent
occluders and to establish a direct line of sight to each data subset of
potential interest. One disadvantage of such a sequential exploration
is inefficiency: data subsets are explored one at a time, and the
navigation path has to be retraced to achieve a systematic exploration
of the entire dataset. A second disadvantage is that the user never
sees more than a single data subset at a time and connections
between subsets that are far apart in the visualization sequence can
be missed. The problem is exacerbated in the case of time varying
datasets, where the eloquence of a connection between distant data
subsets could be transient. The problem can be alleviated by
visualizing the dataset in parallel with multiple conventional images.
The user sees several data subsets simultaneously, but the
visualization is discontinuous at the borders of the individual images
and the user has to examine one image at the time which reduces the
benefits of the parallel visualization.

Another approach for overcoming occlusions is multiperspective
visualization, which integrates dataset samples captured from

2

multiple viewpoints into a single, continuous “multiperspective”
image. The multiperspective image enables parallel visualization
without the high cognitive load of the multitude of disparate contexts
presented by individual conventional images. Multiperspective
visualization can be seen as a generalization of focus plus context
visualization. Multiple focus regions are visualized simultaneously
connected by continuous context, but without the restriction that all
focus regions be visualized from the same viewpoint. The challenge
is to construct a multiperspective visualization that provides good
control over the multiple viewpoints from where the dataset is
sampled, while maintaining image continuity, as needed for
visualization efficacy, and while maintaining rendering efficiency, as
needed to support interactive visualization and time-varying datasets.

In this paper we present a flexible framework for interactive
multiperspective visualization. We also refer the reader to the
accompanying video. The multiperspective visualization is
constructed in one of three ways.

In top-down construction, the multiperspective visualization is
obtained by altering the viewpoint for individual regions of an input
conventional image (Fig. 1). Consider a scenario where the user
visualizes a dataset with a high-resolution, large field of view
conventional image. The user can select image regions of interest
and modify the viewpoint for each individual region interactively to
zoom in and to alleviate occlusions.

In bottom-up construction, the multiperspective visualization is
obtained by seamlessly integrating two input conventional images.
Consider a scenario where a user explores a dataset through
conventional interactive visualization; the view parameters of images
of interest are saved as they are encountered; the system allows
constructing automatically a multiperspective visualization that
combines any two of the saved conventional images (Fig. 2). The

input images appear undistorted as subregions of the
multiperspective image.

In target tracking, the visualization is constructed to avoid
occlusions to one or several data subsets of interest, i.e. targets. As
the targets move, the visualization adapts automatically to keep the
targets visible (Fig. 3). The targets are shown where they would be
visible in the conventional image in the absence of occluders, which
conveys to the user the correct direction to the target. When the
targets move to locations where they are visible, the multiperspective
visualization reverts automatically to a conventional visualization, as
no disocclusion is needed anymore.

The multiperspective image is constructed by rendering the
dataset with a camera with piecewise linear rays. Some of the rays
are designed to circumvent occluders and to reach the data subsets of
interest, while the remaining rays are designed to connect the data
subsets of interest with continuous context. The camera is assembled
from a small number of camera segments, i.e. simple cameras with
linear rays, which enables fast construction and fast updates of the
camera model. Moreover, the segments provide fast projection which
allows rendering the multiperspective image efficiently, on the GPU,
by projection followed by rasterization.

2 PRIOR WORK

The more 3D datasets grow in complexity, the more occlusions

stemming from the single viewpoint restriction of conventional

images become a limiting factor in visualization. Occlusions are an

open research problem that has been approached from many

directions [7]. We group prior work occlusion management

techniques based on the approach taken and we review in greater

detail prior multiperspective visualization approaches.

Fig. 2. Conventional images with different viewpoints (left) integrated into a multiperspective visualization (right) of a terrain dataset.

Fig. 3. Multiperspective visualization (left) of an urban dataset showing two targets (red and yellow dots) that are occluded in a conventional

visualization (right). The targets are shown where they would be visible in the conventional visualization in the absence of occluders.

3

2.1 Transparency, Cutaway, & Explosion Techniques

A straightforward approach for alleviating occlusions is to render

occluders transparently (e.g. [9]). The advantage is that the dataset is

visualized without distortions. However, transparency techniques are

limited to one or two occluding layers after which the blended

transparent layers are difficult to discern. For example, visualizing a

target occluded by several buildings in an urban dataset by making

the occluding buildings partially transparent fails to convey the

identity and order of the occluding buildings, as well as the position

of the target relative to the occluding buildings. Compared to

transparency techniques, our approach displaces occluders, which

introduces distortions, but which brings the advantages of

visualization clarity and scalability with occlusion complexity.
Another approach is to remove all but the peripheral region of

occluders, revealing the data subset of interest that would otherwise
be occluded (e.g. [4]). The advantage of such cutaway techniques is
a clear view of the subset of interest, but that comes at the cost of an
incomplete visualization of the occluding layers. The visualization
shows a truncated dataset. In the urban dataset visualization example,
removing the occluding buildings reveals the target but it also
removes the context needed to locate the target. Our approach
“moves” but does not remove occluders, which preserves context.

Explosion techniques subdivide occluders interactively [3] or
algorithmically [10], and then move the parts centrifugally away
from a data subset of interest to remove occlusions. The process can
be repeated two or three times recursively, revealing for example
subsystems, assemblies, and parts of a complex mechanical system.
The occluders are part of the visualization, but the visualization
contributes little more than a sorted inventory of the occluders, as the
topology of the dataset is perturbed by the “explosion”. Our
approach moves occluders without changing the topology of the
dataset.

Transparency, cutaway, and explosion techniques have the
advantage that they do not require access to the occluded data subset
of interest, as they create their own path from the viewpoint to the
subset. Therefore they can disocclude subsets that are completely
enclosed, such as an internal component of an engine. Deformation
and multiperspective techniques, which we discuss next, can only
disocclude if there is an access path to the occluded subset of
interest, with the benefit of a less intrusive, topology preserving
modification of the dataset.

2.2 Deformation and Multiperspective Techniques

Gaining an unobstructed line of sight to a data subset of interest can

also be done by deforming the dataset. The idea was first used in the

context of 2D data visualization, e.g. in the context of graph

visualization [17], and it was subsequently extended to 3D datasets,

e.g. in the context of short route [6] or car navigation [15]

visualization. The goal is to achieve the desired disocclusion by

deforming the dataset as little as possible. The deformation approach

is the dual of the multiperspective approach. Visualizing a distorted

dataset with a conventional camera can be seen as visualizing the

original dataset with a multiperspective camera. For example, the

multiperspective image in Fig. 3 could be obtained by distorting the

urban dataset and then visualizing it with a conventional camera. The

difference is that multiperspective visualizations are constructed by

modifying the underlying camera model. The disocclusion effect is

designed with greater control directly in the image domain, as

opposed to indirectly in the 3D dataset.
Multiperspective visualization originates in art, where the single

viewpoint constraint is occasionally abandoned in the interest of
artistic expression, effects that were replicated by computer graphics
systems [2]. Multiperspective images have also been used to
integrate photographs taken from different viewpoints (e.g. street
panoramas [1, 14]). In 2D animation, a single multiperspective
panorama provides an animation sequence by sliding the frame

rectangle over the panorama on a predefined path [18]. Both street
and 2D animation panoramas are limited to special scenes.

The generality and flexibility of multiperspective visualization
increased through innovations at camera model level. Multiple center
of projection images [13] are obtained by rendering a 3D dataset
with a one-column camera that slides along a path (i.e. a push-broom
camera). Samples from thousands of viewpoints are integrated into a
continuous image. The user has good control over viewpoint
selection by designing the acquisition path. However, rendering the
image is too expensive for interactive visualization or time-varying
datasets, as it involves one rendering pass for each image column.
Our multiperspective rendering framework relies on a more efficient
parameterization of the ray space based on a few (i.e. 10-20) camera
segments, which provides the needed disocclusion flexibility without
sacrificing rendering performance.

The general linear camera (GLC) [19] is at the other end of the
multiperspective camera complexity spectrum by possibly being the
simplest non-pinhole camera. The rays of the GLC are obtained by
interpolating three input non-concurrent rays. The GLC provides fast
projection, which ensures rendering efficiency. Given a 3D point
inside the GLC frustum, one can compute the barycentric
coordinates of the point’s projection on the triangular GLC image by
solving linear equations. However, the original parameterization of
rays does not provide continuity between adjacent GLC’s that share
two construction rays. A continuous GLC parameterization has been
subsequently proposed [11], which comes at the cost of cubic
projection equations. A single GLC doesn’t have the disocclusion
capability needed in multiperspective visualization, but we use
continuous GLC’s in our framework to model camera segments, as
described in Section 3.

Occlusion cameras are a family of non-pinhole cameras designed
to extend the viewpoint of conventional cameras to a view region
[20]. The camera rays are bent at occluder silhouettes to capture
“barely hidden” samples, which are samples that become visible for
small viewpoint translations. The resulting image is a high-quality
aggressive solution to the from-region visibility problem. Occlusion
cameras generalize the viewpoint to a continuum of nearby
viewpoints, whereas what is needed for multiperspective
visualization is a generalization of the viewpoint to a small set of
distant viewpoints.

The needed viewpoint generalization is provided by the graph
camera [12]. Starting from a conventional planar pinhole camera, the
graph camera is constructed through a series of frustum bending,
splitting, and merging operations applied recursively. The resulting
camera is a graph of planar pinhole camera segments. The piecewise
linear rays are designed to circumvent occluders and to reach far into
the dataset. Compared to the graph camera, the camera employed in
our multiperspective framework is built from a mix of planar pinhole
camera and continuous general linear camera (CGLC) segments. The
CGLC segments enable frustum splitting while maintaining image
continuity, thereby overcoming a major shortcoming of the graph
camera (see Section 4.1). Graph cameras can only be constructed
automatically using a 2D maze with right angle intersections as
scaffold, whereas in our framework the multiperspective camera is
built automatically, in 3D, to track targets or to integrate two input
conventional images. Finally, the graph camera does not allow
controlling where a data subset of interest is imaged, whereas our
framework allows imaging a subset where it would be imaged in a
conventional visualization. This enables the user not only to examine
but also to locate the subset of interest.

Inspired by the nonlinear trajectory of light in proximity of large
masses, multiperspective visualizations have been proposed based on
curved rays [8, 16]. Curved rays have later been used for
visualization outside of astronomy using ray segments connected
with Bézier arcs [5]. The advantage of curved rays is that the
transition from one viewpoint to the next is gradual, which reduces
the distortion for objects that are imaged from more than one
viewpoint. The cost is a lower rendering performance due to the
higher camera complexity. We use piecewise linear rays, with C0

4

continuity, but the C1 continuous rays of the curved ray camera [5]
could be integrated into our framework for applications where the
additional cost is warranted .

3 MULTIPERSPECTIVE CAMERA

Our visualization framework is based on a flexible multiperspective

camera. In this section, we first describe the multiperspective camera

model, we then describe how 3D datasets are rendered with the

camera to obtain multiperspective images, and finally we describe

how the camera is constructed in one of three ways to support

interactive multiperspective visualization.

3.1 Camera Model

A camera model is a function that assigns a ray to each image plane

sampling location. We have designed a multiperspective camera

model based on the following considerations.
Flexibility; the camera should be able to integrate conventional

planar pinhole camera frusta in order to generate a multiperspective
image that shows subsets of interest undistorted, each from its own
viewpoint.

Continuity; the camera rays should sample the entire space
subtended by the regions of interest, without gaps, in order to
connect the images of the regions of interest with continuous context.

Projection efficiency; given a 3D point inside its frustum, the
camera model should provide a fast method for computing the image
plane projection of the point in order to support efficient rendering
on the GPU by projection followed by rasterization.

Fig. 4 gives a 2D illustration of our multiperspective camera
model. A root planar pinhole camera segment a with viewpoint V0 is
used to integrate two leaf planar pinhole camera segments b and c
with viewpoints V1 and V2. Segments b and c sample the data subsets
of interest. Segments b and c are connected to a with camera
segments e and f, each implemented with two continuous general
linear camera (CGLC) frusta. Fig. 5 illustrates the two CGLC frusta
of d. The rays of CGLC frustum A1B1C1A2B2C2 are defined by
linearly interpolating the construction rays A1A2, B1B2, and C1C2.

Using Fig. 4 again, camera segments f and g sample the dataset in
between the subsets of interest to connect the two images with
continuous context. Each of them is implemented with two CGLCs.
The camera has piecewise linear rays. Ray L0L1L2L3 has three
segments, one for each of the camera segments it traverses. Line L2L3
passes through V1 and line L0L1 passes through V0. The far planes
F0F1, F1F2, and F2F3 define the far boundary of the camera (here
shown closer for illustration compactness).

The camera model allows tuning the percentage of the
multiperspective image pixels allotted to each subset of interest (b

and c) and to the context (g) by changing how many of the rays of a
are routed to each of the connecting camera segments d, f, and e. Fig.
4 shows a typical case where the context g is sampled at low
resolution in favour of the subsets of interest b and c.

The multiperspective camera can morph to a conventional planar
pinhole camera by straightening its piecewise linear rays to become
single line segments. This is achieved by gradually translating V1 and
V2 to V0 and by aligning the connecting camera segments d, f, and e
with rays from V0, as shown in Fig. 6.

3.2 Rendering

A 3D dataset modeled with triangles is rendered on the GPU by

projection followed by rasterization.
Projection
Given a 3D point P, the point is projected with each camera

segment until a valid projection is found. Planar pinhole camera
segments use the conventional projection. Fig. 5 illustrates CGLC
projection. First we find a plane through P that splits the CGLC
construction ray segments A1A2, B1B2, and C1C2 in the same ratio t:

 Eq. 1

Fig. 4. Camera model that integrates two conventional images

with viewpoints V1 and V2 into a multiperspective image. The

green camera segments are implemented with conventional

planar pinhole cameras. The orange camera segments are

implemented with continuous general linear cameras. The rays

are piecewise linear, e.g. L0L1L2L3 and R0R1R2R3.

Fig. 5. Pair of adjacent continuous general linear camera frusta

A1B1C1A2B2C2 and A1C1D1A2C2D2 like the ones used to model

each of the camera segments e, d, f, and g in Fig. 4. The

endpoints L1 and L2 of ray L1L2 have the same barycentric

coordinates in triangles A1B1C1 and A2B2C2. 3D point P projects at

L1. A, B, and C split segments A1A2, B1B2, and C1C2 in the same

ratio, and P has the same barycentric coordinates in ABC as L1

has in A1B1C1.

Fig. 6. Multiperspective camera model from Fig. 4 morphed to a

conventional planar pinhole camera.

5

Parameter t is computed by solving a cubic equation. Once t is
known, points A, B, and C are known, and one can compute the
barycentric coordinates (α, β, γ) of P in triangle ABC. (α, β, γ) are
found by inverse barycentric interpolation, which implies solving a
quadratic. Once (α, β, γ) are known, the projection L1 of P onto
A1B1C1 can be computed as:

 Eq. 2

However, one does not need to project a point P with each

camera segment upstream of the segment that contains it. Instead, we
map the vertices of the near face of each segment to the output
multiperspective image during camera construction (and for each
camera update). Using Fig. 5 again, let (uA, vA), (uB, vB), and (uC, vC)
be the output image coordinates of A1, B1, and C1. Then the output
image projection (u, v) of P is computed as:

 Eq. 3

Rasterization
The projection of a triangle contained by a CGLC segment has

curved edges. We approximate CGLC rasterization with
conventional rasterization and we control the approximation error by
subdividing any large triangle offline. Visibility is computed as usual
through z-buffering. The z value used is the fractional parameter t
that locates the 3D point within its camera segment, plus the camera
segment index i. Camera segments are depth indexed from the root
to the leaf segments. In Fig. 4, a has depth index 0, d, f, and e have
depth index 1, and b, g, and c have depth index 2.

3.3 Camera Construction

Bottom-up
In bottom-up construction, the two planar pinhole camera

segments b and c are given (Fig. 4), and the system constructs the
remaining segments automatically. A precondition for the bottom-up
construction algorithm is that the input segments b and c do not
intersect. Intersecting segments lead to a redundant multiperspective
image with the data subset inside the intersection being imaged
multiple times. V0 is positioned first in front of the near faces of b

and c. The field of view of a is chosen to encompass the near faces
of b and c, and to capture additional foreground and background
according to user specified parameters. Finally, segments f and g are
constructed to bridge the gap between (d, b) and (e, c). Fig. 7
illustrates the multiperspective camera model from Fig. 4 specialized
for the scenario shown in Fig. 2. Only the central row of rays is
shown.

Top-down
In top-down construction, the user starts with a planar pinhole

camera and the multiperspective camera is built interactively. First,
the user defines regions of interest that creates the partition shown in
Fig. 6. Then the user modifies the viewpoints for each individual
region. V1 and V2 translate away from V0, and the initial planar
pinhole camera morphs into the desired multiperspective camera.
The camera model used to render the multiperspective image shown
in Fig. 1 is similar to the camera model shown in Fig. 7.

Target Tracking
The construction of the multiperspective camera for tracking a

single target is illustrated in Fig. 8. The target T is occluded from V0.
In the absence of the occluder, T would be visible at P. The
construction algorithm reroutes the rays of the pixels around P to

Fig. 7. Multiperspective camera model with the structure shown in Fig. 4 constructed in bottom-up fashion for the scenario shown in Fig. 2.

The green, blue, and red frusta correspond to camera segments a, b, and c in Fig. 4.

Fig. 8. Multiperspective camera disoccluding target T. Only the

part of the camera affected by T is shown for conciseness. T is

imaged where it would be seen in a conventional visualization in

the absence of the occluder.

6

circumvent the occluder. This way the target is visible in the
multiperspective image at P, and the occluder is “pushed aside” (i.e.
to the left). The rays are rerouted using four camera segments a, b, c,
and d. The neighboring camera segments (grey) transition back to the
planar pinhole camera, encapsulating the perturbation needed for
target tracking. All camera segments have parallel near and far base
planes, and plane ABC (Fig. 5) is simply constructed parallel to the
base planes, which saves having to solve the cubic equation to find
parameter t (see the Projection subsection of Section 3.2).

Multiple targets can be tracked at once, and the targets can
converge and then diverge again (see video). We do not construct
one complex multiperspective camera that disoccludes all targets.
Rather we construct one multiperspective camera for each target
independently, and compute the final projection of a vertex by
projecting the vertex with each camera and by computing a weighted
average of the preliminary projections. The weight of a preliminary
projection is based on how much the projection is shifted from where
the vertex would project with a conventional planar pinhole camera.
Larger shifts correspond to larger weights. When targets do not
overlap in the image plane, the projection of a vertex is affected by at
most one target, and the vertex is projected as in the case of a single
target. When two targets overlap, the preliminary and final
projections of a vertex at the region of overlap are the same.

The camera models for each of the two targets tracked in Fig. 3
are constructed according to Fig. 8 except that the rays are bent in

the vertical plane (and not in the horizontal plane), in order to
circumvent the buildings occluding the target. The rays are bent
enough to clear the tallest occluder along the line of sight to the
target. The tallest occluder is found by projecting and tracing the
segment connecting the root eye to the target center onto a height
map of the city that is computed as a preprocess.

4 RESULTS AND D ISCUSSION

We partition the presentation and discussion of our results in three

subsections: quality, performance, and limitations.

4.1 Quality

The major design concerns for our multiperspective visualization

framework are visualization construction flexibility and image

continuity. As shown in the images in this paper and in the

accompanying video, flexibility has been achieved through a camera

model that allows modifying the viewpoint for individual regions of

a given image, connecting two conventional images with continuous

context, and tracking one or more targets while avoiding occlusions.
Fig. 9 shows that our framework can connect two conventional

images with opposite views into a continuous image, whereas a
similar image rendered with the prior work graph camera framework
[12] suffers from discontinuities which cannot always be hidden
behind geometry. Fig. 10 shows that our framework can reveal a
target hidden in a heavily occluded dataset with only minimal image
distortions. The framework supports multiple moving targets, which
can converge to the same image region, and then diverge again.

Fig. 9. Multiperspective image rendered with our framework (top)

that integrates two opposite views (middle), and image rendered

with the prior art graph camera framework for comparison

(bottom). Our image is continuous, whereas the graph camera

image has two vertical discontinuities over the sky (black lines).

Fig. 10. Multiperspective image rendered with our framework that

tracks a target in a heavily occluded dataset (top); conventional

image with hidden target, for comparison (bottom).

7

4.2 Performance

The timing information reported in this paper was collected on an

Intel Xeon E5-1660 3.3GHz workstation with 16GB of memory, and

with an NVIDIA Quadro K5000 4GB graphics card. The

implementation uses OpenGL and Cg GPU shaders. The

multiperspective rendering is implemented with a vertex shader that

implements the multiperspective projection. The vertex is projected

with each camera segment until a valid projection is found. Vertices

outside the 3D axis aligned bounding box of the camera segment are

trivially rejected. We start with the leaf segments (i.e. b, c, and g in

Figs. 4 and 6), which are the largest and are therefore most likely to

contain the vertex. The multiperspective rendering performance of

our framework is given in Table 1.

Table 1. Multiperspective rendering performance

Dataset Tris. x1,000 View Frame rate [fps]

Terrain 2,120
Fig. 1 28

Fig. 2 24

Manhattan 3,692
Fig. 3 19

Fig. 10 39

Eurotown 3,752 Fig. 9 13

The target-tracking multiperspective cameras used on the

Manhattan dataset are the fastest because the near and far planes of
the camera segments are parallel which simplifies projection (see
Sections 3.2 and 3.3). When the cubic projection equation has to be
solved (i.e. for the top-down and bottom-up constructions), we have
found that solving the equation numerically is faster than evaluating
the closed-form solution expression.

 The nonlinear projection of the multiperspective camera implies
that rasterization is not linear as well. In other words, the nonlinear
projection applies not only to the vertices of a triangle, but also to its
interior. There are two major approaches to nonlinear rasterization,
and we have experimented with both of them. One approach is to
actually perform nonlinear rasterization in the fragment shader. First
one has to derive a method for approximating the image plane axis
aligned bounding box of the projection of the triangle. Since the
projected triangle now has curved edges, the approximation has to
consider more than the vertices of the projected triangles. Then
nonlinear rasterization can be performed in 3D, by intersecting the
dataset triangle with the ray of each pixel of the axis aligned
bounding box and interpolating rasterization parameters using the
barycentric coordinates of the intersection point. A second approach
is to approximate nonlinear rasterization with conventional
rasterization but making sure the projected triangles are small
enough. Online subdivision requires a geometry shader that issues a
varying and potentially large number of primitives, which is a severe
performance bottleneck. Offline subdivision has to be done in view
independent way which can result in subdivisions that are either too
coarse or to detailed for a particular viewpoint.

We have chosen the approach of offline subdivision. The cost of
true nonlinear rasterization is unwarranted for the following three
reasons. First, today’s complex datasets are modeled with small
triangles who can be rasterized conventionally with good results,
without subdivision. Second, the focus regions are imaged with
planar pinhole camera segments where conventional rasterization is
accurate, and nonlinear rasterization is only used for regions whose
role is limited to providing context. Third, using conventional
rasterization implies that there are no changes at the fragment shader,
which makes our framework portable to any already implemented
visualization effect.

4.3 Limitations

In all the examples shown in the paper and in the video, the payload

of the multiperspective visualizations is limited to two regions of

interest: the user changes the viewpoint for two regions of an input

conventional image in top-down construction, two conventional

images are connected with continuous context in bottom-up

construction, and two targets are disoccluded in target tracking

construction. The framework is general and it allows extending the

payload of the multiperspective visualization by constructing a

multiperspective camera from any number of camera segments. The

CGLC camera segments are powerful building blocks that can be

assembled as needed by the application and the dataset, with perfect

continuity across shared faces. For example, starting with a

cubemap, camera segments could tile the entire space to obtain a

complete 360o multiperspective panorama.
Whereas for our examples good performance was obtained by

projecting every vertex with every camera segment, scalability with
the number of camera segments requires a faster method for
determining the camera segment that contains a vertex. The frusta of
CGLC segments do not have planar side faces therefore a scheme
that subdivides space hierarchically using planes (e.g. a binary space
partitioning tree, or a kd-tree) will not separate two adjacent camera
segments cleanly. Instead, one should use bounding volume
hierarchies like the ones developed for ray tracing acceleration. The
goal is to achieve an O(log s) projection time, where s is the number
of camera segments.

Our multiperspective visualizations transition abruptly from one
viewpoint to the next, as our camera model employs piecewise linear
rays, with C0 and not C1 continuity. Objects that are imaged with two
viewpoints appear distorted (Fig. 11, video). The graph camera
framework uses curved rays modeled with Bézier arcs to transition

Fig. 11. Fragments of the multiperspective visualization from Fig.

9 showing an airplane flying overt the buildings. The airplane

appears distorted as it crosses from one camera segment to the

next (images with red border) and it is not distorted while

completely contained by one segment (images with black border).

8

from one viewpoint to the next, solution that can be adapted to our
framework. Another solution is to subdivide longitudinally the
connective camera segments (i.e. d, e, f, and g in Fig. 4), in order to
achieve a gradual viewpoint change. The rays remain piecewise
linear, but the ray segments are shorter which reduces the change in
direction from one segment to the next.

5 CONCLUSIONS AND FUTURE WORK

We have presented a framework that advances the state of the art in

multiperspective visualization. The framework allows constructing

continuous multiperspective visualizations by changing the

viewpoint for individual regions of an image, by integrating input

images, and by disoccluding moving targets without distorting or

displacing the target subimages, all of which are beyond the

capabilities of prior art.

The framework relies on a flexible yet fast multiperspective
camera. Whereas a conventional camera has a few parameters with
which the application can interact directly (e.g. three rotations, three
translations, focal length), our multiperspective camera comprises
10-20 camera segments which amounts to hundreds of parameters.
The power of our framework comes from the three constructors that
set all these parameters automatically to construct the desired
multiperspective visualization. The constructors relieve the
application from tedious low-level specification of the camera
model, in favor of formulating high-level constraints that are
satisfied automatically.

We have demonstrated our multiperspective visualization
framework in the context of datasets modeled with triangles. The
framework can be extended to support other geometric primitives,
such as spherical particles, through tessellation. Opacity data can be
integrated by the rays of our camera to achieve multiperspective
volume rendering.

Another direction of future work is the extension to
multiperspective visualization of real-world real-time datasets.
Consider an urban scene captured with video cameras mounted at
intersections, on cars, and on aircraft. The building geometry is
known, for example from off-line LIDAR acquisition and
conventional CAD modeling, like is the case for our Terrain and
Manhattan datasets. The goal is to integrate the real-time video feeds
into a multiperspective visualization that avoids occlusions for one or
more regions of interest.

Our work advocates abandoning the traditional rigidity of the
images used in visualization in favor of flexible images that are
optimized for each viewpoint, dataset, and application.

ACKNOWLEDGEMENTS

<Withheld for double-blind review>

REFERENCES

[1] A. Agarwala, M. Agrawala, M. Cohen, D. Salesin, R. Szeliski.

Photographing long scenes with multi-viewpoint panoramas. ACM

Trans. on Graphics, Vol. 25, No. 3, pp. 853–861, 2006.

[2] M. Agrawala, D. Zorin, T. Munzner. 2000. Artistic Multiprojection

Rendering. In Proc of the EG Workshop on Rendering Techniques, pp.

125-136, 2000.

[3] S. Bruckner, M. E. Groller, Exploded View for Volume Data. IEEE

TVCG, Vol 12, No. 5, pp. 1077-1084, 2006.

[4] M. Burns, A. Finkelstein. Adaptive cutaways for comprehensible

rendering of polygonal scenes. In ACM SIGGRAPH Asia, 2008.

[5] J. Cui, P. Rosen, V. Popescu, and C. Hoffmann 2010. A curved ray

camera for handling occlusions through continuous multiperspective

visualization. IEEE Transactions on Visualization and Computer

Graphics 16 (November), 1235–1242.

[6] P. Degener, R. Schnabel, C. Schwartz, and R. Klein. Effective

visualization of short routes. IEEE TVCG, Vol. 14, No. 6, pp. 1452-

1458, 2008.

[7] N. Elmqvist, P. Tsigas. A Taxonomy of 3D Occlusion Management for

Visualization. IEEE TVCG. Vol 14, No. 5, pp. 1095-1109, 2008.

[8] E. Groller. Nonlinear ray tracing: Visualizing strange worlds. The

Visual Computer, Vol. 11, No. 5, pp. 263-274, 1995.

[9] J. Kruger, J. Schneider, R, Westermann. ClearView: An interactive

context preserving hotspot vis technique. IEEE TVCG, Vol 12, No. 5,

pp. 941-947, 2006.

[10] W. Li, M. Agrawala, B. Curless, D. Salesin. Automated generation of

interactive 3D exploded view diagrams. ACM Trans. Graph. Vol. 27,

No. 3, pp. 1-7, 2008.

[11] V. Popescu, C. Mei, J. Dauble, and E. Sacks 2006. An efficient error-

bounded general camera model. In Proceedings of 3rd International

Symposium on Data Processing, Visualization, and Transmission.

[12] V. Popescu, P. Rosen, N. Adamo-Villani. The Graph Camera.

International Conference on Computer Graphics and Interactive

Techniques, ACM SIGGRAPH Asia, 2009.

[13] P. Rademacher, G. Bishop. Multiple-center-of-projection images. In

Proc of SIGGRAPH ‘98, pp. 199-206, 1998.

[14] A. Román, G. Garg , M. Levoy. Interactive Design of Multi-Perspective

Images for Visualizing Urban Landscapes. In Proc of Visualization '04,

pp. 537-544, 2004.

[15] S. Takahashi, K. Yoshida, K. Shimada, T. Nishita. Occlusion-Free

Animation of Driving Routes for Car Navigation Systems. IEEE TVCG.

Vol 12, No.5, pp. 1141-1148. 2006.

[16] D. Weiskopf, T. Schafhitzel, T. Ertl. GPU-based nonlinear ray tracing.

Computer Graphics Forum 23, 3, pp. 625-633. 2004.

[17] N. Wong, M.S.T. Carpendale, S. Greenberg,. EdgeLens: An interactive

method for managing edge congestion in graphs. In Proc of the IEEE

Symp. on Info Vis, pp. 51–58. 2003.

[18] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer, D. H. Salesin.

Multiperspective panoramas for cel animation. In Proc of SIGGRAPH

’97, pp. 243-250, 1997.

[19] J. Yu, L. McMillan. General Linear Cameras. In Proc of the European

Conference on Computer Vision (ECCV), Vol. 2, pp. 14-27, 2004.

[20] C. Mei, V. Popescu, and E. Sacks. Computer Graphics Forum, Vol. 24,

issue 3, 2005.

