Reflection Rendering

1. Preprocess: render billboard (i.e. texture mapped rectangle), save it to file
2. Run time:
a. For all triangles t of reflector
i. For all pixels p covered by projection of t
1. n = normal at p // fragment shader input
2. xyz = 3D point at p // fragment shader input
3. [bookmark: _GoBack]ev = eye vector at p // eye – xyz; BLUE highlights fragment shader code
4. rv = reflected ray at p
5. for all billboards b
a. ip = b intersected with rv
i. intersect rv with plane of b // set pixels to red
ii. check if intersection is inside rectangle // set to green
iii. check if intersection occurs at occupied (i.e. full, opaque) texel of b // set to blue
b. if ip and ip is closer along rv
i. closest intersection = ip
6. If no intersection with billboards
a. Lookup rv in environment map // set to yellow



Soft Shadow Rendering

Input: Light rectangle L, light rectangle sampling rate nxn (16x16), boxes B, ground plane G, out. view V
Output: Scene (B + G) rendered from V with soft shadows cast from L
Algorithm:
For all triangles t in B and G (i.e. in the scene)
	For all pixels p inside projection of t
		p.shadow = 0; // blue code is what the fragment shader does
		For i = 1 to n // two for loops that sample the light rectangle
			For j = 1 to n
				Lr = light ray defined by Lij and p.xyz // Lij is current light sample;
									// Lr is curr. Light ray
				intFound = false
				For all faces q in B
					If Lr intersects q
						p.shadow++
						break
		p.outColor = p.inColor*ka + (1-ka)*(1-p.shadow/(n*n))
