
For Peer Review

Constant-Time Ray-Scene Intersection for Interactive

Rendering with Thousands of Dynamic Lights

Journal: Transactions on Graphics

Manuscript ID Draft

Manuscript Type: Previously Unpublished Research Paper

Date Submitted by the Author: n/a

Complete List of Authors: wang, lili; Beihang University, State Key Laboratory for Virtual Reality
Technology and Systems, School of Computer Science and Engineering
Meng, Chunlei; Beihang University, State Key Laboratory for Virtual Reality
Technology and Systems, School of Computer Science and Engineering
Popescu, Voicu; Purdue University, Computer Science

Computing Classification

Systems:
Real time rendering, Many lights, Visibility determination, Photorealism

Note: The following files were submitted by the author for peer review, but cannot be converted to
PDF. You must view these files (e.g. movies) online.

manylights-93M.mp4

Transactions on Graphics

For Peer Review

Constant-Time Ray-Scene Intersection
for Interactive Rendering with Thousands of Dynamic Lights
LILI WANG and CHUNLEI MENG
Beihang University
and
VOICU POPESCU
Purdue University

We present a method for constant time approximation of the intersection
between a ray and the geometry of a scene. The scene geometry is approx-
imated with a 2D array of voxelizations, with one voxelization for each
direction from a dense sampling of the 2D space of all possible directions.
The ray/scene intersection is approximated using the voxelization whose
rows are most closely aligned with the ray. The voxelization row that con-
tains the ray is looked up, the row is truncated to the extent of the ray using
bit operations, and a truncated row with non-zero bits indicates that the
ray intersects the scene. We support dynamic scenes with rigidly moving
objects by building a separate 2D array of voxelizations for each type of
object, and by using the same 2D array of voxelizations for all instances of
an object type. We support complex dynamic scenes and scenes with de-
forming geometry by computing and rotating a single voxelization on the
fly. We demonstrate the benefits of our method in the context of interactive
rendering of scenes with thousands of moving lights.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Raytracing

Additional Key Words and Phrases: Real time rendering, Many lights, Vis-
ibility determination, Photorealism

1. INTRODUCTION

Many scenes of interest to computer graphics applications contain
a large number of dynamic light sources. Whereas the interactive
computer graphics pipeline and its hardware implementation can
now handle scenes with complex geometry modeled with millions
of triangles, the number of lights supported in interactive rendering
has not increased at a similar pace. Providing support for a large

Authors’ addresses: land and/or email addresses.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© 2016 ACM 0730-0301/2016/16-ART106 $10.00

DOI 10.1145/1559755.1559763
http://doi.acm.org/10.1145/1559755.1559763

number of light sources is an important way of improving the qual-
ity of imagery rendered at interactive rates.

Lighting is computationally expensive because it implies solving
a visibility problem for every point light source. Even though GPUs
can now render a complex scene multiple times per frame, render-
ing power is not sufficient for a brute force approach that renders
the scene once for everyone of thousands of lights.

In this paper we propose a method for interactive rendering with
thousands of dynamic lights.Given an output image of w × h res-
olution and a scene with n point light sources, one has to intersect
the scene geometry with w × h × n rays from the output image
samples to the lights. For a 1, 024 × 1, 024 resolution and 10,000
lights the number of intersections is 10 billion. Our method is based
on an acceleration scheme that enables a constant-time intersection
between a light ray and the scene geometry. The scene geometry
is approximated with a 2D array of voxelizations corresponding to
the 2D space of ray directions. The intersection between the scene
geometry and a ray is approximated by intersecting the ray with the
voxelization whose rows are most closely aligned with the ray. The
row of the voxelization that is traversed by the ray is looked up,
and the 1-D intersection between the row and the ray is computed
with bit-shift operations. A voxelization stores one bit per voxel so
a voxelization row is looked up and bit-shifted in constant time.

The constant time ray-scene intersection enables rendering with
thousands of dynamic lights at interactive rates (Figure 1). Our
method brings a substantial speedup over ray tracing at the cost of
a small quality trade-off. Our method approximates the ray-scene
intersection by approximating the scene geometry, which is inde-
pendent of the lights. Consequently the lights can change freely
from frame to frame at no additional cost.

Dynamic geometry affects the precomputed array of voxeliza-
tions. We support dynamic scenes in one of two ways. For scenes
with rigid dynamic objects, an array of voxelizations precomputed
for a moving object can be reused by transforming the light ray to
the local coordinate system of each instance of the moving object.
The example shown in Figure 2 left uses two arrays of voxeliza-
tions, one for the city and one for the airplane, and three lookups
per ray, one for the city, and one for each of the two instances of
the airplane. For scenes with deforming geometry (e.g. the running
bear shown in Figure 2 middle), or for complex dynamic scenes
(e.g. the amusement park shown in Figure 2 right), the array of
voxelizations is approximated for every frame by computing one
voxelization and rotating it with two degrees of freedom, which is
substantially less expensive than computing every rotated voxeliza-
tion from the original scene geometry.

In summary, our paper contributes a method for constant time
approximation of the intersection between a ray and a scene’s ge-
ometry. The approximation of the ray-scene intersection proceeds
at two levels. At the first level, scene geometry is approximated us-

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 1 of 9 Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

2 •

Fig. 1: Scenes with 1,024 lights rendered with our method (top), and with ray tracing (bottom). Our average pixel shadow value errors are
0.5%, 2.1%, and 2.2%. Our frame rates are 23fps, 22fps, and 16fps, which corresponds to speedups of 38×, 76×, and 38× versus ray tracing
(i.e. NVIDIA’s Optix with BVH acceleration).

ing a conventional voxelization. This is not enough, however, since
tracing a ray diagonally through the voxelization is still too expen-
sive. At the second level, the ray direction is approximated by dis-
cretizing the 2D space of possible ray directions, and by voxelizing
the scene geometry for each discrete ray direction. This way a ray is
always intersected with a voxelization whose rows are aligned with
the ray, which avoids the expensive diagonal traversal of the vox-
elization. We demonstrate the benefits of our method in the context
of interactive rendering of scenes with thousands of lights. Com-
pared to ray tracing, our method brings substantial performance
gains at the cost of small approximation errors. Compared to prior
techniques for interactive rendering with many lights, our method
brings a significant quality increase for the same performance.

2. PRIOR WORK

The need to estimate visibility to a large number of light sources
arises both in the case of the direct illumination of scenes with com-
plex lighting, and in the case of global illumination where scene
geometry samples turn into secondary light sources. The classi-
cal methods for computing visibility to a light source are shadow
mapping and ray tracing. However, these methods are too slow for
scenes with a large of number of lights. Acceleration was pursued
along two main directions: scene geometry approximation, to re-
duce the cost of estimating visibility to a light source, and light
clustering, to reduce the number of lights. In addition to the brief
overview of prior work given below, we also refer the reader to a

recent survey of techniques for rendering with a large number of
lights [Dachsbacher et al. 2014].

2.1 Shadow map based methods

Shadow mapping is the approach of choice for interactive rendering
with a small number of lights. A shadow map is a view-dependent
approximation of scene geometry that can be naturally computed
on the GPU. However, rendering a shadow map for each one of a
large number of lights is too slow.

Ritschel et al. introduced Coherent Shadow Maps [Ritschel et al.
2007], which are compressed, orthographic depth maps precom-
puted for n viewing directions, with n much smaller than the num-
ber of lights. For each ray, visibility is approximated using the
shadow map with the view direction closest to the direction of the
ray. The method was extended to Coherent Surface Shadow Maps
(CSSM) [Ritschel et al. 008a] to support light sources on scene ge-
ometry as needed for indirect lighting. A virtual area light [Dong
et al. 2009] is a group of virtual point light sources, and the visibil-
ity to a virtual area light is computed using CSSMs extended with
parabolic projection, which avoids having to compute visibility to
each individual virtual point light source.

Imperfect Shadow Maps (ISM) [Ritschel et al. 008b] is a tech-
nique that renders one shadow map for each point light source. To
achieve interactive performance the resolution of the shadow maps
is low, and the shadow maps are rendered from a point-based ap-
proximation of scene geometry by splatting followed by pull-push
reconstruction. ISM is a frequently used method for interactive ren-

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 2 of 9Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Constant-Time Ray-Scene Intersection for Interactive Rendering with Thousands of Dynamic Lights • 3

Fig. 2: Dynamic geometry scenes with 1,024, 1,024, and 7,088 lights, rendered with our method (top), and with ray tracing (bottom). Our
average pixel shadow value errors are 0.8%, 2.1%, and 7.5%. Our frame rates are 11fps, 2fps, and 1fps, which corresponds to speedups of
22×, 6×, and 34× versus ray tracing.

dering with many lights, so we compare our method to ISM in de-
tail in the Results Section. Hierarchical scene geometry approx-
imations have been used to accelerate shadow map computation.
For example, Implicit Visibility [Dong et al. 2007] uses a disk-
based quadtree surface approximation, and ManyLoDs [Hollander
et al. 2011] uses a cut through a bounding volume hierarchy of the
scene geometry. Virtual shadow maps [Olsson et al. 2014] parti-
tion shadow casting scene geometry into clusters for which cube
maps of appropriate resolution are rendered, achieving interactive
performance for complex scenes with hundreds of lights.

Matrix Row-Column Sampling (MRCS) [Hašan et al. 2007]
uses the matrix of all possible output sample/light points pairs to
determine output sample and light clusters for which to compute
a set of representative shadow maps. The visibility of individual
sample/light pairs is interpolated from a few relevant representa-
tive shadow maps. A subsequent light clustering method reduces
the number of representative shadow maps [Davidovič et al. 2010].
The MRCS algorithm is mapped to an out-of-core GPU implemen-
tation [Wang et al. 2013], and its efficiency is improved by reduc-
ing the number of visibility estimates between representative light
clusters and output image samples [Huo et al. 2015].

The use of a large number of shadow maps to approximate vis-
ibility to a large set of lights has the limitation of redundancy be-
tween shadow maps constructed from nearby viewpoints or with
similar orthographic view directions. The higher the complexity of
the scene and the higher the number of lights, the higher the re-
dundancy. Our method uses a 3D approximation of the scene (i.e. a
voxelization) which captures multiple layers of occlusion without

redundancy. Our method introduces redundancy by computing a
2D array of voxelizations, which is needed to achieve the constant-
time ray-scene intersection. However, for our method, redundancy
is bounded by the discretization of all possible ray directions, and it
does not increase with the number of lights or with the complexity
of occlusions in the scene. Our method does not cluster lights, but
rather computes visibility to each one of the scene light sources,
which provides good shadow quality.

2.2 Ray tracing based methods

Several techniques accelerate ray tracing visibility computation
using scene geometry approximation. Micro-rendering [Ritschel
et al. 2009] approximates geometry with a point hierarchy which
accelerates ray traversal and geometry updates for dynamic scenes.
Ray tracing was also accelerated using geometry voxelization
[Nichols et al. 2010]. Our method also relies on geometry voxeliza-
tion, and we further reduce the cost of ray-scene intersection using
a 2D array of voxelizations.

Many ray tracing methods focus on simplifying the set of lights.
An octree light hierarchy was used to cluster lights based on their
positions and their spheres of influence [Paquette et al. 1998].
Lights were grouped in an unstructured light cloud and the light
vectors at each vertex are compressed using PCA, which achieves
high quality and high frame rates for low-frequency lighting envi-
ronments [Kristensen et al. 2005]. Lightcut [Walter et al. 2005]
is a popular method for shading with many lights based on cluster-
ing scene lights in a binary tree. A cut through the tree is selected

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 3 of 9 Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4 •

for each output sample, under the assumption that all lights are
visible. The method is extended to include visibility computation,
i.e. to account for shadows, in Precomputed Visibility Cuts [Aker-
lund et al. 2007] and in Nonlinear Cut Approximation [Cheslack-
Postava et al. 2008], which are suitable for static scenes, and then in
Bidirectional Lightcuts [Walter et al. 2012], which can also handle
dynamic scenes.

Some ray tracing based methods approximate both the lights
and the scene geometry. VisibilityClusters [Wu and Chuang 2013]
group geometry and lights using a sparse matrix whose non-zero
submatrices correspond to visibility interactions between geometry
clusters and light clusters. Such methods trade off approximation
construction complexity for approximation efficiency, which pays
of for scenes with non-uniform light and geometry complexity.

Our method is essentially a ray tracing acceleration method. Un-
like the light clustering ray tracing acceleration schemes discussed
above, our method does not reduce the number of rays by reducing
the number of lights. This brings a quality advantage since we es-
timate visibility for each light individually. Moreover, this also en-
sures good temporal coherence in the case of dynamic lights, where
each light can move independently without abrupt lighting changes
caused by sudden light cluster changes. Compared to approaches
that rely on a hierarchical subdivision of geometry, our method has
the advantage of a small and bounded ray-scene intersection cost.

3. CONSTANT-TIME RAY-SCENE INTERSECTION

The ray-scene intersection is accelerated by approximating the
scene geometry with a 2D array of voxelizations. The voxelizations
are computed as shown in Algorithm 1.

Algorithm 1 Computation of 2D array of voxelizations.

Input: Scene S modeled with triangles
Output: 2D array V of scene voxelizations
1: for θ from 0 to 180 with k degree increment do
2: for φ from 0 to 180 with k degree increment do
3: V[θ/k][φ/k] = ∅
4: previousLayer = near plane
5: repeat
6: layer = DepthPeel(previousLayer, θ, φ)
7: V[θ/k][φ/k] += layer
8: previousLayer = layer
9: until layer == ∅

10: end for
11: end for
12: return V

The scene S is voxelized for a dense discretization of the 2D
space of all directions. The nested for loops (lines 1-2) iterate over
all pairs of angles (θ, φ) with a k degree increment. Given a pair
(θ, φ), the voxelization V [θ/k][φ/k] is computed incrementally by
depth peeling (lines 3-9). Initially, the voxelization is empty (line
3), and the previous layer is the near clipping plane (line 4), as noth-
ing has been peeled away yet. Then the current layer is computed
by depth peeling repeatedly until the last layer (line 6).

Depth peeling is computed with a conventional rendering pass
using the z-buffer of the previous pass that provides a per-pixel near
clipping value. The layer is added to the voxelization (line 7), and
the previous layer is updated to the current layer to prepare for the
next depth peeling pass (line 7). Depth peeling is performed with an
orthographic projection three times (not shown in Algorithm 1 for
simplicity), once for each of the x, y, and z directions, after rotation

Fig. 3: Voxelization selection for ray intersection. The world (left) is rotated
with θ = 30o (middle), and then φ = 42o (right) to find the voxelization
whose rows are aligned with the ray (blue segment).

Fig. 4: Intersection of ray (Figure3) with voxelization row.

by θ and φ. This triple projection makes sampling more robust to
surface orientation. For example, depth peeling only along the z
direction would miss surfaces that are parallel to the z direction.

In practice we use a k = 2o increment, which yields 90 × 90
voxelizations. For a resolution of 128×128×128, one voxelization
row has 128 bits or 4 32-bit integers, one voxelization takes 256KB,
and the 2D array of voxelizations takes slightly less than 2GB.

The intersection between the ray r and the 2D array of voxeliza-
tions V is computed as shown in Algorithm 2. r is intersected with
the voxelization whose row direction most closely approximates
the direction of r. The (θ, φ) angles that define the direction of r
are computed with the same k angle increment that was used when
computing the 2D array of voxelizations (line 1). In Figure 3, the
ray direction is most closely approximated by θ = 30 and φ = 42,
therefore the ray-scene intersection is approximated using the vox-
elization V [30/2][42/2].

Algorithm 2 ConstantTimeRaySceneIntersection(V, k, r)

Input: 2D array of scene voxelizations V , direction discretization
increment k, ray r

Output: boolean that indicates whether r intersects V or not
1: (θ, φ) = DiscretizeDirection(r.direction, k, k)
2: row = V [θ/k][φ/k].LookupRow(r.midpoint)
3: (i, j) = V [θ/k][φ/k].ComputeExtent(r.endpoints)
4: clippedRow = row � i
5: clippedRow = clippedRow � (i+ rowLength− j)
6: return clippedRow 6= 0

The intersection is computed in the row of V [θ/k, φ/k] that con-
tains the midpoint of the ray segment (line 2). The row variable
contains one bit for every row voxel. The voxel bit is 1 if the voxel
contains geometry and 0 otherwise. The ray endpoints are projected
onto the row to define the subset of row voxels (i, j) that is tra-
versed by the ray (line 3). The row voxel data is then clipped to the
extent of the ray with left and right bit shift operations (lines 4-5).
The ray intersects the scene iff the clipped row data contains a non-
zero bit (line 6). In Figure 4 the voxelization row has 32 bits. The
bits of the row containing the ray (blue segment) are 0000 0010
0000 0000 1000 0001 0000 0000, corresponding to two geometry
spans of 1 and 8 voxels for the ear and the body of the bunny. The
ray extends from i = 4 to j = 27, so the clipped row data is 0010
0000 0000 1000 0001 0000, which is not zero, and therefore the
ray intersects the scene (i.e. at the ear and body of the bunny).

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 4 of 9Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Constant-Time Ray-Scene Intersection for Interactive Rendering with Thousands of Dynamic Lights • 5

4. INTERACTIVE RENDERING WITH
THOUSANDS OF DYNAMIC LIGHTS

The constant-time scene-ray intersection enables rendering scenes
with thousands of dynamic lights at interactive rates, according to
Algorithm 3.

Algorithm 3 Lighting using 2D array of scene voxelizations.

Input: scene S, set of n light points L, output image camera C,
2D array of scene voxelizations V , discretization increment k.

Output: S rendered from C lighted with L.
1: I = Render S from C without lighting
2: for every pixel p in I do
3: P = Unproject(p,C)
4: hiddenLightsN = 0
5: for every light Li in L do
6: ray = (P,Li)
7: hiddenLightsN +=
8: ConstantTimeRaySceneIntersection(V, k, ray)
9: end for

10: p.outputColor = Shade(hiddenLightsN, n)
11: end for

The algorithm first renders the output image I without any light-
ing (line 1). Then each pixel p is lit by estimating the visibility of
each light Li from the surface point P acquired at p (line 2-9).
The 3D point P is computed by unprojection (line 3). The number
of lights hidden from P is initialized to 0 (line 4) and then incre-
mented for every light Li for which the ray (P,Li) intersects the
scene (lines 5-9).

5. 2D VOXELIZATION FOR DYNAMIC SCENES

For scenes where geometry is static, a precomputed 2D array of
voxelizations supports a large number of dynamic lights. However,
when geometry changes, recomputing each voxelization of the 2D
arrat using Algorithm 1 is too slow for interactive rendering. We
support dynamic scenes in one of two ways.

5.1 Scenes with dynamic rigid objects

Consider a scene with several types of objects, with each type repli-
cated to several instances, and with each instance moving rigidly
through the scene. We support such dynamic scenes as shown in
Algorithm 4.

The ray is first intersected with 2D array of voxelizations of the
static part of the scene (lines 1-3). If no intersection is found, for
each instance of a dynamic object, the ray is transformed to the lo-
cal coordinate system of the instance, and the transformed ray is
intersected with the 2D array of voxelizations of that object type
(lines 4-10). For example, for the Planes scene in Figure 2 left, we
precompute two 2D array of voxelizations: one for the buildings
without the planes VB , and one for the plane VP ; then the intersec-
tion between a ray r and the scene is computed by intersecting r
once with VB and twice with VP , in the local coordinate systems
of each of the two planes.

5.2 Scenes with deforming objects

For scenes with many moving objects or with objects that deform,
we recompute the scenes 2D array of voxelizations for every frame
as shown in Algorithm 5.

Algorithm 4 Intersection of a ray with a scene with dynamic rigid
objects.

Input: 2D array V0 of voxelizations of the static part of the scene,
2D array Vi of voxelizations for each type of dynamic object
DOTi, current coordinate system CSj of each dynamic object
instance DOj , ray r.

Output: boolean that is true iff the ray intersects the scene.
1: if ConstantTimeRaySceneIntersection(V0, k, rj) then
2: return true
3: end if
4: for all dynamic object instances DOj do
5: rj = Transform(r, CSj)
6: i = DOj .objectType
7: if ConstantTimeRaySceneIntersection(Vi, ki, rj) then
8: return true
9: end if

10: end for
11: return false

Algorithm 5 Recompute the scenes 2D array of voxelizations for
every frame

Input: dynamic scene S updated for current frame, direction dis-
cretization increment k

Output: 2D array of scene voxelizations V for the current frame
1: Compute V [0][0] using depth peeling as shown in Algorithm 1.
2: for θ from 0 to 180 with k degree increment do
3: for φ from 0 to 180 with k degree increment do
4: if (θ, φ) == (0, 0) then
5: continue
6: end if
7: V [θ/k][φ/k] = Rotate(V [0][0], θ, φ)
8: end for
9: end for

Instead of recomputing each voxelization from scratch, we only
use depth peeling to compute an initial voxelization V [0][0] (line
1). V [0][0] is computed as shown in Algorithm 1 (lines 3-10). This
initial voxelization is then rotated to approximate the other vox-
elizations (lines 2-9). The rotation traverses V [0][0], and, for each
occupied voxel [i][j][t], it sets the corresponding voxel [i′][j ′][t′]
in the rotated voxelization V [θ/k][φ/k]. The correspondence is
computed by rotating voxel [i][j][t] about the center of V [0][0]
by (θ, φ). No trigonometric function is evaluated since the rota-
tion matrices are precomputed for all (θ, φ) pairs and stored in a
lookup table. Computing the voxelizations by rotating the initial
voxelization is less accurate but much faster than computing each
voxelization by depth peeling from the original scene geometry.

6. RESULTS AND DISCUSSION

We have tested our approach on several scenes: City (871ktris,
Figure 1 left), Trees (626ktris, middle), Garden (416ktris, right),
Planes (982ktris, Figure 2 left), Bear (1,486ktris, middle), and
Park (499ktris, right). All scenes have 1,024 lights, except for Park
which has 7,088 lights. For City, Garden, and Trees the geometry
is static, and for Planes, Bear, and Park the geometry is dynamic.
We also refer the reader to the video accompanying our paper. All
the performance figures reported in this paper were measured on a
workstation with a 3.5GHz Intel(R) Core(TM) i7-4770 CPU, with
8GB of RAM, and with an NVIDIA GeForce GTX 780 graphics
card.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 5 of 9 Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

6 •

6.1 Quality

We measure the quality produced by our rendering technique using
two error metrics. The first one, εv , is defined as the relative number
of light rays at a pixel for which visibility is evaluated incorrectly.
For example, if there are 1,000 lights, and if at a pixel p 10 lights
were incorrectly labeled as visible from p, and 5 lights were incor-
rectly labeled as invisible from p, εv = (10 + 5)/1, 000 = 1.5%.
The second one, εs, is defined as the relative shadow value error at a
pixel. For the example used above, εs = (10− 5)/1, 000 = 0.5%.
εv is a stricter error measure since for εs errors can cancel each
other out. εs is a better indication of the pixel intensity errors ob-
served in the final image. The correct visibility and shadow values
at each pixel are computed by ray tracing (we use NVIDIA’s Op-
tix ray tracer [Nvidia 2016]). Furthermore, we compare our tech-
nique to Imperfect Shadow Maps (ISM) [Ritschel et al. 008b], a
state of the art method for interactive rendering with a large num-
ber of lights.

Table I. : Average pixel visibility and pixel shadow value errors for our
method and for the prior art Imperfect Shadow Maps method.

Scene City Trees Garden Planes Bear Park

εv [%]
Ours 1.2 4.0 5.7 1.8 3.3 21.0
ISM 5.9 7.5 16.0 5.7 6.1 27.0

εs[%]
Ours 0.5 2.1 2.2 0.8 2.1 7.5
ISM 3.2 4.7 8.8 4.1 4.9 12.1

Table I shows the average pixel visibility error εv and the average
pixel shadow value error εs for our scenes, for both our method and
for ISM. The number of samples used in ISM was chosen to obtain
the same frame rate as our method. In other words, Table I provides
an equal-performance quality comparison between our method and
ISM. As can be seen, the approximation errors produced by our
method are consistently small, and they are consistently smaller
than those produced by ISM. Figure 5 shows the six images from
Figure 1 and Figure 2 rendered with our method, with ray trac-
ing, and with ISM. The approximation errors produced by ISM are
salient: the shadow of the buildings is incorrect and the space in
between the buildings is too bright (row 1), the tree canopies are
too bright (row 2), the flower bed and column shadows are missing
(row 3), the shadow of the low plane is missing (row 4), the bear
shadow is poorly defined and it does not convey the contact with the
ground (row 5), and the train shadow is poorly defined (row 6). Fig-
ure 6 visualizes the approximation errors from Table I, highlighting
the much smaller errors of our method compared to ISM.

Table II. : Errors as a function of the number of lights.

Lights 512 1,024 2,048 4,096 10,000

City
εv [%] 1.3 1.2 1.2 1.2 1.2
εs[%] 0.5 0.5 0.5 0.5 0.4

Garden
εv [%] 5.5 5.7 5.7 5.7 5.7
εs[%] 2.3 2.2 2.2 2.2 2.1

Table II shows the approximation errors of our method as a func-
tion of the number of lights. The errors vary little with the number
of lights, which is expected since the errors are relative measures,
normalized by the number of lights. For all the experiments de-
scribed so far, we used a 128× 128× 128 voxelization to approx-
imate ray-scene intersections, resolution that is sufficient for small
errors. Table III shows the approximation errors of our method for

lower voxelization resolutions. The errors grow, but good results
are also obtained for a coarser 64× 64× 64 resolution.

Table III. : Errors as a function of voxelization resolution.

Voxelization res. 32× 32× 32 64× 64× 64 128× 128× 128

City
εv [%] 4.7 2.2 1.2
εs[%] 2.9 1.1 0.5

Garden
εv [%] 19.7 8.5 5.7
εs[%] 16.0 5.1 2.2

For all the experiments described so far, we used a 90 × 90 2D
array of voxelizations, which corresponds to 2 degree rotation an-
gle increments. Table IV shows the approximation errors of our
method for smaller voxelization arrays, i.e. for larger rotation an-
gle increments. Using 60 × 60 voxelizations, i.e. a rotation angle
increment of 3 degrees, produces similar quality while memory us-
age is reduced by a factor of 2.25.

Table IV. : Errors as a function of the voxelization array resolution.

Voxelization rotation res. 30× 30 60× 60 90× 90

City
εv [%] 2.5 1.5 1.2
εs[%] 0.9 0.6 0.5

Garden
εv [%] 9.0 6.4 5.7
εs[%] 3.2 2.3 2.2

6.2 Speed

We compared the rendering speed of our method to ray tracing
and to ISM. For ray tracing we used NVIDIA’s Optix with BVH
(bounding volume hierarchy) scene partitioning for acceleration,
which yields the fastest Optix rendering times. Table V shows
the frame rendering times for our method and the speedup versus
ray tracing. Our method is subsantially faster than ray tracing. The
Planes scene is rendered using Algorithm 4, which implies two
voxelization sets, one for the buildings and one for the airplane,
and three intersection lookups per ray, one for the buildings and one
for each of the two moving instances of the airplane. The smallest
speedup of 5.6 is obtained for the Bear scene where the non-rigidly
deforming bear model requires computing the voxelizations on the
fly using Algorithm 5.

Table V. : Rendering times of our method and speedup versus ray tracing.

Scene City Trees Garden Planes Bear Park
Ours [ms] 43 46 64 93 586 839

Speedup vs. RT 38.2× 76.4× 37.7× 21.5× 5.6× 33.9×

We have attempted to perform an equal quality comparison to
ISM. However, even when substantially increasing the number of
geometry sample points used by ISM, the quality plateaus, and it
does not reach the quality generated by our method, as shown in
the graph in Figure 7. Furthermore, once the number of samples
increases above what can be handled in a single rendering pass, the
additional rendering pass makes ISM slower than ray tracing. ISM
defines samples relative to scene triangles, therefore the samples
do not have to be recomputed for dynamic scenes, as the updated
vertices of a deforming model implicitly define the updated sample
location. This gives ISM a performance advantage for scenes with

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 6 of 9Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Constant-Time Ray-Scene Intersection for Interactive Rendering with Thousands of Dynamic Lights • 7

Fig. 5: Comparison between our method (left), ray tracing (middle), and imperfect shadow maps (right).
ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 7 of 9 Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

8 •

Fig. 6: Visualization of approximation errors εs for our method (top) and ISM (bottom), for the same frame rate, as reported in Table I. The
images correspond to Figures 1 and 2. Darker and brighter regions are highlighted with blue and red. The error is scaled by a factor of 10 for
illustration purposes.

.

Fig. 7: Pixel shadow value errors for ISM as a function of the number of
samples used, and for our method, for comparison. The ISM errors stop
decreasing as the number of samples increases, and they do not reach the
error values of our method.

deforming geometry like the Bear, where ISM is five times faster
than our method, which comes however at the cost of a shadow er-
ror εs that is twice as large (i.e. 5.4 for ISM vs. 2.1 for our method).
In conclusion, compared to ISM, our method has the advantage of
better quality for equal performance, as shown in Table I, and also
of providing quality levels that cannot be matched by ISM, whereas
ISM has a speed advantage for non-rigidly deforming scenes.

Table VI shows the frame rendering times for our method as a
function of the number of lights. As expected, for static scenes (i.e.
City, Garden, and Trees) and for the scene with rigidly moving ob-
jects (i.e. Planes), the frame times double as the number of lights
doubles, since almost all of the frame time goes to looking up light
ray-voxelization intersections. For the Bear the voxelization com-
putation time dominates, so supporting a larger number of lights
comes at a relatively smaller additional cost.

Table VI. : Rendering times [ms] as a function of the number of lights.

Lights 512 1,024 2,048 4,096 10,000
City 22 42 84 171 416

Garden 33 64 130 262 639
Trees 23 46 93 181 447

Planes 46 93 185 370 895
Bear 547 586 648 787 1,185

6.3 Limitations

Our method relies on several approximations. First, the scene ge-
ometry is approximated by voxelization. Second, the light ray di-
rection is discretized based on angle increments. These approxi-
mation errors are easily controlled and our method will be able to
leverage any advances in GPU storage and computing capability.
Our method reduces the complexity of the per-ray computation at
the cost of storage. The 2D array of voxelizations requires substan-
tial GPU memory resources. Like with any ray tracing acceleration
scheme, our method handles dynamic scenes with the additional
cost of updating the acceleration data structure for every frame. Un-
like hierarchical data structures that do not map well to the GPU,
our voxelization is computed with GPU-friendly depth peeling.

7. CONCLUSIONS AND FUTURE WORK

We have presented a method for interactive rendering with thou-
sands of dynamic lights based on a constant-time approximation of
the intersection between a ray and the scene geometry. Our method
has a significant frame rate advantage over ray tracing, while qual-
ity remains very good. Compared to imperfect shadow maps, our
method produces significantly more accurate results for the same
frame rate. Our method computes visibility for each one of the
many lights, and it does not cluster the lights. As the lights move
from one clustered distribution to another, our method produces
smoothly changing shadows, avoiding the temporal artifacts caused
by sudden changes in light cluster topology. Visibility is not com-
puted by interpolation, as visibility is notoriously discontinuous,
but rather by intersecting individual light rays with the scene.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 8 of 9Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Constant-Time Ray-Scene Intersection for Interactive Rendering with Thousands of Dynamic Lights • 9

Ray-geometry intersection is a primitive operation in computer
graphics and our acceleration scheme could benefit a number of
rendering techniques, including ambient occlusion, soft shadows,
and specular and diffuse reflections. We make the distinction be-
tween the question of whether a ray intersects a scene’s geometry,
and the question of where the ray-scene intersection occurs. Some
applications, including the lighting context explored by this paper,
only need to answer the first question, whereas other applications,
such as for example specular reflections, also need to answer the
second question. The first question is answered by simply testing
whether the voxelization row truncated to the extent of the ray is
non-zero. The second question requires locating the first non-zero
bit in the truncated row, which can be done with a binary search in
logw steps, wherew is the voxelization row resolution (e.g. 7 steps
for our 128bit voxelization rows).

Our method relies on a scene geometry approximation that not
only reduces the complexity of the scene geometry, but that also
anticipates all possible directions of the rays with which the scene
has to be intersected. The scene geometry approximation scheme
is simple and uniform, so its construction, storage, and use map
well to the GPU. The scheme reduces the cost of intersecting a ray
with a scene to the smallest possible value. With a four channel,
32bit per channel lookup, the intersection with a 128× 128× 128
voxelization is essentially obtained with one lookup. The ray-scene
intersection is accelerated by “throwing memory at the problem”.
Our method is already practical in the context of today’s GPUs, and
it has the potential to become the standard approach for estimating
scene-ray intersections in interactive graphics applications, much
the same way trivial z-buffering has supplanted complex polygon
sorting visibility algorithms.

Our method moves towards making complex dynamic lighting
practical in the context of interactive graphics applications. As the
number of supported dynamic lights increases, so does the chal-
lenge of lighting design and animation. An important direction of
future work will have to devise algorithmic approaches for assisting
digital content creators with the complex task of defining, calibrat-
ing, and animating tens of thousands of lights.

ACKNOWLEDGMENTS
This work was supported in part by the National Natu-
ral Science Foundation of China through Projects 61272349,
61190121 and 61190125,by the National High Technology Re-
search and Development Program of China through 863 Program
No.2013AA01A604.

REFERENCES

AKERLUND, O., UNGER, M., AND WANG, R. 2007. Precomputed vis-
ibility cuts for interactive relighting with dynamic brdfs. In Computer
Graphics and Applications, 2007. PG’07. 15th Pacific Conference on.
IEEE, 161–170.

CHESLACK-POSTAVA, E., WANG, R., AKERLUND, O., AND PELLACINI,
F. 2008. Fast, realistic lighting and material design using nonlinear cut
approximation. In ACM Transactions on Graphics (TOG). Vol. 27. ACM,
128.

DACHSBACHER, C., KŘIVÁNEK, J., HAŠAN, M., ARBREE, A., WALTER,
B., AND NOVÁK, J. 2014. Scalable realistic rendering with many-light
methods. In Computer Graphics Forum. Vol. 33. Wiley Online Library,
88–104.

DAVIDOVIČ, T., KŘIVÁNEK, J., HAŠAN, M., SLUSALLEK, P., AND

BALA, K. 2010. Combining global and local virtual lights for detailed

glossy illumination. In ACM Transactions on Graphics (TOG). Vol. 29.
ACM, 143.

DONG, Z., GROSCH, T., RITSCHEL, T., KAUTZ, J., AND SEIDEL, H.-P.
2009. Real-time indirect illumination with clustered visibility. In VMV.
187–196.

DONG, Z., KAUTZ, J., THEOBALT, C., AND SEIDEL, H. P. 2007. In-
teractive global illumination using implicit visibility. In Conference on
Computer Graphics & Applications. 77–86.

HAŠAN, M., PELLACINI, F., AND BALA, K. 2007. Matrix row-column
sampling for the many-light problem. In ACM Transactions on Graphics
(TOG). Vol. 26. ACM, 26.

HOLLANDER, M., RITSCHEL, T., EISEMANN, E., AND BOUBEKEUR, T.
2011. Manylods: Parallel many-view level-of-detail selection for real-
time global illumination. In Computer Graphics Forum. Vol. 30. Wiley
Online Library, 1233–1240.

HUO, Y., WANG, R., JIN, S., LIU, X., AND BAO, H. 2015. A matrix
sampling-and-recovery approach for many-lights rendering. ACM Trans-
actions on Graphics (TOG) 34, 6, 210.

KRISTENSEN, A. W., AKENINE-MÖLLER, T., AND JENSEN, H. W. 2005.
Precomputed local radiance transfer for real-time lighting design. In ACM
Transactions on Graphics (TOG). Vol. 24. ACM, 1208–1215.

NICHOLS, G., PENMATSA, R., AND WYMAN, C. 2010. Interactive, mul-
tiresolution image-space rendering for dynamic area lighting. In Com-
puter Graphics Forum. Vol. 29. Wiley Online Library, 1279–1288.

NVIDIA. 2016. Nvidia optix ray tracing engine.
http://developer.nvidia.com/optix.

OLSSON, O., SINTORN, E., KÄMPE, V., BILLETER, M., AND ASSARS-
SON, U. 2014. Efficient virtual shadow maps for many lights. In Pro-
ceedings of the 18th meeting of the ACM SIGGRAPH Symposium on In-
teractive 3D Graphics and Games. ACM, 87–96.

PAQUETTE, E., POULIN, P., AND DRETTAKIS, G. 1998. A light hierarchy
for fast rendering of scenes with many lights. In Computer Graphics
Forum. Vol. 17. Wiley Online Library, 63–74.

RITSCHEL, T., ENGELHARDT, T., GROSCH, T., SEIDEL, H.-P., KAUTZ,
J., AND DACHSBACHER, C. 2009. Micro-rendering for scalable, parallel
final gathering. ACM Transactions on Graphics (TOG) 28, 5, 132.

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND MÜELLER, S. 2007. Inter-
active illumination with coherent shadow maps. In Proceedings of the
18th Eurographics conference on Rendering Techniques. Eurographics
Association, 61–72.

RITSCHEL, T., GROSCH, T., KAUTZ, J., AND SEIDEL, H.-P. 2008a. In-
teractive global illumination based on coherent surface shadow maps. In
Proceedings of Graphics Interface 2008. Canadian Information Process-
ing Society, 185–192.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008b. Imperfect shadow maps for effi-
cient computation of indirect illumination. ACM Transactions on Graph-
ics (TOG) 27, 5, 129.

WALTER, B., FERNANDEZ, S., ARBREE, A., BALA, K., DONIKIAN, M.,
AND GREENBERG, D. P. 2005. Lightcuts: A scalable approach to illu-
mination. Acm Transactions on Graphics 24, 3, pgs. 1098–1107.

WALTER, B., KHUNGURN, P., AND BALA, K. 2012. Bidirectional light-
cuts. ACM Transactions on Graphics (TOG) 31, 4, 59.

WANG, R., HUO, Y., YUAN, Y., ZHOU, K., HUA, W., AND BAO, H.
2013. Gpu-based out-of-core many-lights rendering. ACM Transactions
on Graphics (TOG) 32, 6, 210.

WU, Y.-T. AND CHUANG, Y.-Y. 2013. Visibilitycluster: Average direc-
tional visibility for many-light rendering. Visualization and Computer
Graphics, IEEE Transactions on 19, 9, 1566–1578.

ACM Transactions on Graphics, Vol. 28, No. 4, Article 106, Publication date: August 2016.

Page 9 of 9 Transactions on Graphics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

