Lab 1.2 Unity basics

(Note: you don’t have to submit anything for this lab, but | highly recommend you to try the
Todos to get familiar with Unity basics)

Last time we downloaded and set up Unity. You should be able to create new projects in the
future for the coming projects or the final project. In this lab, we will work on some Unity basics.

Here are the things covered:
e Unity panels
e GameObject and Scripts (C#)
e Engine basics (lights, camera, rigidbody, etc.)

Unity Panels

1. Hierarchy: This panel manages all the components in the scene, such as the camera,
light, and objects. It's very flexible to add new objects to the hierarchy. You can either
create them directly or drag them from the folders.

2. Scene: You can visualize the objects here, including their position, orientation, scale,
etc. You can use your mouse to zoom in/out, rotate the view, or drag objects around.

3. Game: This panel is for visualizing the scene at runtime. You will be able to see the
objects from the chosen camera. The default one is the main camera, but you can
choose from different cameras if you have several.

https://docs.unity3d.com/Manual/UsingTheEditor.html

Play/Pause/Step: This is not a panel, but it will allow you to run your game and debug
your code. Every time you press the start button, Unity will start a new game. You don’t
need to worry much about how Unity does it (really nice, isn't it).

Inspector: This panel is used for changing the parameters of the GameObjects. One
advantage of Unity (and other game engines) is that you can change parameters without
making any changes to the code. You can also change these parameters temporarily at
runtime (by clicking the play button). The changes made at runtime won'’t be applied
after you stop playing.

Project: You can manage the source files (scripts, downloaded assets, Prefabs, etc.).
Anything you imported (such as the Oculus integration package we will use later) will be
found here.

Console: This panel displays messages at runtime. It shows the execution information,
such as building success or error. You can also print messages through the built-in
Debug.Log function.

GameObject (Scripting API: GameObject)

File Edit

1.

GameObject is the “Base class for all entities in Unity Scenes.” Everything in the
Hierarchy panel is a GameObject. You can read the manual above and see its properties
and functions. Understanding GameObject is very important for manipulating the objects
in the scene at runtime.

2. Todo: Create a cube by right-clicking in the Hierarchy panel and choosing “3D Object ->

Cube”. Then change its position to (0, 0, 0). You would view it through the main camera
in the Game panel if you didn’t move the main camera. You can also play with other
properties such as its render or material.

Assets GameObject elp

eeeeee

3. To manipulate any GameObject at runtime, you must attach scripts to it. You can attach

several scripts to a single GameObject, but be careful since it may become too
complicated to debug.

https://docs.unity3d.com/ScriptReference/GameObject.html

4. Todo: First, create a folder called “Scripts” in Assets in the Project panel (of course, you
can create a folder anywhere with any name you like). Then in the folder, create a new
C# script by right click and choosing to Create -> C# script. After creating the script, drag
and attach the script to the cube. | will provide you with some sample code, and feel free
to add your code.

0 File Edit View Git Project Debug Test Analyze Tools Extensions Window Help Search (Cul+Q) P Solutiont & = X
(<4 B-a@p|9-C - > Attach.. v | 57 |[B ;i fE == | A - &

Bl ab12cs & x - o
ERl = viscellancous Files -| %2 1ab12 - | @astartg |+
30 1 -lusing System.Collections; a
g'_ 2 using System.Collections.Generic;
° 3 using UnityEngine;

4

5 -lpublic class labl_2 : MonoBehaviour

6 { i |

7 public float rotateSpeed; // Make it public so that this can be changed during running time

8

9 // start is called before the first frame update

10 = void Start()

1 il

12 GetComponent<MeshRenderer>().material.color = Color.red;

13 rotateSpeed = 10;

14 // Getcomponent function get the component of an object.

15 // Important: scripts attached to an object can also be touched by this function

16 }

17

18 // Update is called once per frame

19 = void Update()

20

21 transform.Rotate(new Vector3(0.01f, ©.01f, 8.01f) * rotateSpeed, Space.World);

22 // rotate function

23 }

24 }

25

133% v @ Noissues found R4 Ln: 11 Ch:6 SPC__ CRLF

[J Ready a

This is Visual Studio 2019, and the current default version should be 2022, which doesn’t make
a difference.

Light and camera

Light: Unity supports many basic light types, such as spot and directional. For the projects in
this course, you don’t need to worry about the light. However, you can do some fancy things by
changing the light settings or adding more light sources.

Camera: Unity provides two camera models, perspective (pinhole) and orthographic. The
perspective model works similar to our own eyes, with depth information. The orthographic
model works like a 2D scene. These two kinds of camera models are enough for all the projects
in this course.

Rigidbody (Todo (optional): Unity3D Physics - Rigidbodies, Colliders, Triggers)

Unity has a robust physics system, and rigidbody is the basic component. A rigidbody can be
attached to objects and “insert” them into the physics system. To attach a rigidbody, you can
click the “Add Component” button in the Inspector panel and search for rigidbody.

To detect collisions between objects, you need to attach colliders (you can have more than one
collider) to them. Usually, you attach basic colliders, such as box colliders or sphere colliders, to
avoid massive calculations. However, you can also have a mesh collider to make the collision
more accurate. If you want to download assets from the asset store for your projects (even free
ones), you can find some assets with mesh colliders.

https://www.youtube.com/watch?v=dLYTwDQmjdo

Here are some basic functions of detecting collision:
OnCollisionEnter(Scripting API: Collider.OnCollisionEnter(Collision)) and OnTriggerEnter(Unity -
Scripting API: Collider.OnTriggerEnter(Collider))

Collision is quite complicated, and the best way to learn about it is to practice it. The video
attached is helpful. It gives you a clear explanation of collisions and triggers and contains some
practice. If you want some specific colliding effect, please post on Piazza or contact TA for
solutions.

Prefabs (Prefabs)

Unity allows you to store a GameObject you have set up and use it in the same or other scenes.
Then, you can simply drag the object to any folder you want and create a prefab. Unlike copying
and pasting, you can use the same object with the same configurations, even in other projects.

https://docs.unity3d.com/ScriptReference/Collider.OnCollisionEnter.html
https://docs.unity3d.com/ScriptReference/Collider.OnTriggerEnter.html
https://docs.unity3d.com/ScriptReference/Collider.OnTriggerEnter.html
https://docs.unity3d.com/Manual/Prefabs.html

