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ABSTRACT

Immersive Virtual Environment systems that utilize Head Mounted
Displays and a large tracking area have the advantage of being able
to use natural walking as a locomotion interface. In such systems,
difficulties arise when the virtual world is larger than the tracking
area and users approach area boundaries. Redirected walking (RDW)
is a technique that distorts the correspondence between physical
and virtual world motion to steer users away from boundaries and
obstacles, including other co-immersed users. Recently, a RDW
algorithm was proposed based on the use of artificial potential fields
(APF), in which walls and obstacles repel the user. APF-RDW
effectively supports multiple simultaneous users and, unlike other
RDW algorithms, can easily account for tracking area dimensions
and room shape when generating steering instructions. This work
investigates the performance of a refined APF-RDW algorithm in
different sized tracking areas and in irregularly shaped rooms, as
compared to a Steer-to-Center (STC) algorithm and an un-steered
control condition. Data was generated in simulation using logged
paths of prior live users, and is presented for both single-user and
multi-user scenarios. Results show the ability of APF-RDW to steer
effectively in irregular concave shaped tracking areas such as L-
shaped rooms or crosses, along with scalable multi-user support, and
better performance than STC algorithms in almost all conditions.

Index Terms: Redirected walking, virtual environments, naviga-
tion, simulation

1 INTRODUCTION

With the introduction of large area position tracking systems and
head-mounted displays (HMDs), navigation through immersive vir-
tual environments (VEs) can be achieved through natural walking.
This locomotion interface allows for users to experience appropriate
proprioceptive, inertial, and somatosensory cues while navigating
through virtual worlds. This rich spatial-sensory feedback can result
in a greater sense of immersion for the user compared to other loco-
motion techniques such as walking in place or flying [31]. Natural
walking also has advantages over other techniques in allowing for
more effective completion of navigational search tasks [24], and in
achieving a lower self reported rate of simulator sickness [8].

The main obstacle to utilizing natural walking as a locomotion
interface arises in large-scale VEs, where the VE may be larger than
the available physical tracking space. Redirected walking (RDW)
addresses this issue by taking advantage of the user’s inability to
detect subtle manipulations of the correspondence between the vir-
tual world in which they are performing a task and the physical
world that they are walking in. For instance, small rotations may
be injected or movement may be stretched or compressed so that
the user is subtly guided towards the center of the tracking area or

*e-mail: messinjf@miamioh.edu
†e-mail: Eric.Hodgson@miamioh.edu
‡e-mail: Eric.Bachmann@miamioh.edu

away from tracking area boundaries. Ideally, these manipulations
are below known perceptual limits [27], [28], as otherwise the users
may perceive the (potentially distracting) redirection. Limiting the
redirection results in a minimum walking radius on to which users
can be steered in the physical world. This radius determines how
much physical space is required to support RDW without excessive
interruptions and breaks in presence when a user approaches the
boundaries of the physical area. These unsafe situations that can
result in a physical collision are typically handled using resetting
techniques. Resetting reorients the user away from a boundary or
obstacle so that safe navigation can continue [20], [33]. It is de-
sirable to minimize resets, since any task the user is attempting to
complete is interrupted during the process, which may result in a
reduced sense of presence and a loss of immersion.

As tracking technology and HMDs become more affordable, it
will likely be desirable to use other locations such as large rooms,
fields or parking areas as tracking spaces. These types of environ-
ments may be irregularly shaped, and may contain both static and
dynamic obstacles; all of which need to be taken into account in order
to avoid collisions and minimize resets. Most generalized redirected
walking algorithms do not make use of the tracking area architecture
when making decisions on where to redirect the user. Tracking areas
without obvious centers may be problematic for techniques such as
Steer-to-Center (STC) or Steer-to-Orbit (STO) [22]. This especially
includes tracking areas with concave shapes. In addition, RDW
typically requires a large tracking area to function effectively [1],
so it would be desirable to support multiple simultaneous users to
make the best possible use of the available space.

Artificial Potential Field Redirected Walking (APF-RDW) and
Resetting (APF-RDW) was introduced in [3]. APF-RDW is a gen-
eralized redirected walking algorithm that is designed to handle
multiple users and make use of the tracking area shape in generating
steering instructions. APF-RDW is based on the use of an artificial
potential field consisting of forces associated with boundaries and
obstacles (such as other users) that effectively “push” the user away.
Live user and simulation studies presented in [3], demonstrate that
APF-RDW can outperform STC in a 25m x 44m rectangular tracking
area in single user applications and significantly reduce the number
of required resets when compared to control (no redirection) for
multiple users.

This work presents a revised version of the APF-RDW algorithm
that was first presented in [3], and serves as a follow-up study. The
revision simplifies individual force vector calculations and enables
the algorithm to function effectively in irregular shaped tracking
areas. The experimental results include a systematic evaluation of
the performance of APF-RDW with respect to tracking area size
and shape and number of users, which is compared against STC and
no steering control conditions. This systematic evaluation would
not have been feasible to perform in a live user study. Instead,
simulations were performed utilizing data logs from four previous
live user studies [3], [11], [12], [13]. The data presented support
conclusions related to expectations of how many users can occupy a
tracking area simultaneously while a reasonable user experience is
still supported. Specific contributions include:

• Presentation of refined version of a generalized APF-RDW
algorithm that enables it to support multiple users in irregular
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concave tracking areas.

• Experimental examination of scaling steering rates based on
the proximity of obstacles that indicates the technique increases
RDW performance without significantly increasing steering
rates.

• Experimental examination of the impact of tracking area size
that indicate performance gains for APF-RDW relative to con-
trol and STC in a wide selection of tracking area sizes.

• Experimental results indicating that APF-RDW can support
significantly larger numbers of users than control and STC in
multi-user applications.

• Experimental results indicating that APF-RDW can function
effectively in irregular concave tracking areas.

The remainder of this document is organized as follows: Section
two presents background on redirection techniques in redirected
walking, detection thresholds for the manipulation of gains, multi-
user redirected walking research, and previous investigations into
room shape. Section three describes in detail a refined APF-RDW
algorithm and the changes made to better support different shaped
tracking areas. Section four provides a description of the experi-
ments used to evaluate the APF-RDW algorithm. This is followed
by a presentation of the experimental results and a discussion that
includes guidelines that the data supports.

2 BACKGROUND

Suma et al 2012 gave a taxonomy of different redirection techniques
used in the literature [29]. Techniques in the taxonomy are organized
based on their perceptibly to the user, whether changes are applied
discretely or continuously, and whether they manipulate position or
orientation. For instance, approaches that utilize overlapping rooms
[30] or modify virtual architecture [32] take advantage of subtle
discrete reorientation. Since overt techniques can contribute to more
breaks in presence than subtle techniques [29], subtle redirection
techniques are typically preferred. However, occasionally subtle
techniques are not sufficient to keep users within the boundaries
of the tracking space, at which point an overt technique may be
necessary. Examples of overt techniques include methods that re-
position users through the use of portals [7], [26], and procedures
that reorients users through resets [3], [20], [33].

The first instance of redirected walking was introduced as a subtle
continuous reorientation technique, whereas subjects were steered
away from the boundaries of the tracking area to complete a task in
a VE that was twice as large [23]. This work was expanded upon in
a seminal work, where Razzaque proposed three steering strategies:
steer the user to the center of the tracking area (STC), steer the
user in an orbit around the tracking area center (STO), and steer the
user to multiple targets in the tracking area (Steer-to-Alternating
Targets) [22]. Other redirection methods may use information about
the VE to predict possible paths and avoid potential collisions [9],
[34]. These methods have achieved some success in reducing the
frequency that resets need to be performed, with regards to the mean
amount of redirection applied [11].

In order for users to not notice the injected rotation, they must
be convinced that their motion is the result of themselves moving
(self-motion), rather than the result of objects around them mov-
ing (external motion) [22]. The goal for redirected walking is to
manipulate visual and audio cues subtlety enough that they remain
consistent with the user’s vestibular and proprioceptive cues, and
appear below perceptible thresholds. Steinicke et al identified sep-
arate redirection thresholds for translating, rotating, and curvature
gains [27], [28]. These thresholds have also been measured in sev-
eral other studies [5], [10], [16], [25], with curvature threshold in
particular ranging from 6.4m to 22m. These disparities may be a
result of numerous factors, including walking speed [21], optical

flow [6], and even estimation methodology [10]. Higher rates of
redirection can impose cognitive demands on the user [5], which
could justify using lower redirection rates depending on the task.

Overall, these human threshold studies suggest that considerable
space is needed to utilize RDW effectively. Because of the size
needed, there has been recent interest in extending RDW techniques
to support multiple users. The first study of multi-user redirected
walking was conducted by Holm et al. [15]. This study used a
technique called Steer-to-Offset Centers, which gives each user a dif-
ferent redirection target that is offset from the center of the tracking
area. This method was paired with a technique to predict potential
collisions between users, and steer users away if a collision is im-
minent. In this study, tracking area boundaries were not considered
when steering users away from potential collisions and the approach
was found to be intractable with more than two users. In [2], Azman-
dian et al. expanded on Holm’s work and added two modifications
to overcome previous limitations: a more tractable relative veloc-
ity heuristic, and the ability to resolve situations where both users
are required to stop through the use of resets. To our knowledge,
only one study on redirected walking has investigated the effects of
tracking area size and shape [1]. Through simulations, it was found
that 6m x 6m is the minimum area in which redirection techniques
are effective. The study also determined that STC and STO perform
best in square tracking areas as opposed to elongated rectangles. All
shape testing in the simulation experiments was performed using
standardized 400 sq meter rectangular tracking areas having one
of three different aspect ratios (1.0, 1.5 or 2.0). Both [1] and [2]
utilized a computer simulated model of a walking user and computer
generated virtual paths. Neither study took into account tracking
equipment noise, user walking patterns, and gazing behaviors that
can introduce differences between the simulations and live user
studies.

3 REFINED ARTIFICIAL POTENTIAL FIELD REDIRECTED
WALKING

APF-RDW is designed to be adaptive to the shape of the tracking
area and to effectively support multiple users. In APF-RDW, each
obstacle or boundary exerts a repulsive force on the user. These
forces are summed to determine a safe direction in which the user
is steered. Hoffbauer first documented AFP-RDW and resetting
(AFP-R) algorithms in a MS thesis [14]. The algorithms are also
described in [3] along with additional experimental results. Like
the APF-RDW algorithm described in [3], the algorithm that is the
subject of this work uses an artificial potential field of forces with
magnitudes that are inversely proportional to the distance of the
user from the obstacle. The rotation calculation used to steer users
in a safe direction is represented by the sum of the force vectors.
However, the AFP-RDW algorithm has been refined since the origi-
nal work was completed. The changes relate to how the individual
force vectors are calculated and applied. They have resulted in
simplified calculations and have made the algorithm capable of deal-
ing effectively with irregularly shaped concave tracking areas. The
most significant difference is the sub-division of large obstacles into
numerous small obstacles that are each handled separately. In the
following sub sections, the revisions to APF-RDW are described in
detail.

The resetting algorithm used in this study, Artificial Potential
Field Resetting (APF-R), is unchanged from the that presented in [3]
and for purposes of brevity is not described. The resetting algorithm
utilizes the direction of the total force vector at the start of the reset
as the desired final orientation after the reset is completed. During a
reset, the user is turned in the direction of the largest angle between
the starting orientation and the total force vector, and the virtual
rotation gain is adjusted so that the user completes a turn of 360◦ in
the virtual world. For complete details consult [3].

73



3.1 Total Force Vector
The total force vector, t, is the sum of individual repulsive force
vectors associated with fixed obstacles and tracking area boundaries,
wi and other users within the tracking area, u j. It is calculated as

t =
n

∑
i=0

wi +
m−1

∑
j=0

u j (1)

where n is the number obstacle segments and m is the number of
users in the tracking area. While individual force vectors are cal-
culated differently depending on whether they are associated with
fixed obstacles or another user, in both cases the magnitude of the
force is inversely proportional to the vector difference, di, between
the the position of the user, p, and the center of an obstacle segment
or the position of another user, ci.

di = p− ci (2)

Thus, the length of the vector sum, t, will increase as the user
approaches obstacles and decrease as they move away from obstacles
into a relatively open area.

3.2 Fixed Obstacles Repulsive Force Vectors
In this work, fixed obstacles such as walls that define tracking area
boundaries are sub-divided into smaller obstacle segments as shown
in Figure 1. For each obstacle segment, a perpendicular unit length
vector, n, indicates the side of the segment that faces into the tracking
area. The individual force vector associated with each obstacle
segment is given by

wi =


CLi

di
‖di‖

1
‖di‖λ

, if n · di
‖di‖ > 0.[

0
0

]
, Otherwise.

(3)

where the constant C is a tunable scaling factor for adjusting the
relative strength of obstacle and other user repulsive forces, Li is the
length of obstacle segment i, and λ is the obstacle fall-off factor.

The inclusion of the segment length, Li in equation (3) remedies
a limitation of the previous APF-RDW algorithm where all walls
exert the same force, regardless of the length of the wall. In that
implementation, if one wall is segmented into three separate walls
due to a small step-out, then those three walls would exert three times
as much force as an unsegmented wall of the same length. Instead,
in this implementation, all walls are divided into short segments.
The fall-off exponent λ in equation (3) enables tuning to control
how fast the force of walls falls off with distance. In the equation
the second case will be satisfied in concave tracking areas when an
obstacle segment is facing away from the user. This criteria ensures
that such segments are not included in the force calculation.

3.3 Other User Repulsive Force Vectors
Similar to [3], individual repulsive force vectors are calculated for
each of the other users in the tracking area. The calculation takes
into account the distance between the users as well as the relative
movement directions of the users. Unlike equation (3), all users
are assumed to be the same size and thus a segment length in not
included. The revised user force equation is

u j = κ
di

‖di‖
1
‖di‖γ

(4)

where γ is a tuning factor that allows the falloff rate of the force
with distance to be adjusted in a manner similar to λ in equation
(3). κ scales the force and is based on the average cosines of the

Figure 1: Force (black) and normal (green) vectors for obstacle seg-
ments for a user position (red dot).

Figure 2: Relative heading angles, θ1 and θ2 (green arcs), for two
users (blue and red dots). User movement directions are represented
by black arrows. Reproduced from [3]

angle between each user’s movements and the line segment between
players in same way as described in [3] and is given by

κ = clamp(
cosθ1 + cosθ2

2
,0,1) (5)

The angles used in the calculation are depicted in Figure 2.

3.4 Proximity-Based Steering Rate Scaling
APF-RDW is capable of taking into account the geometry of the
tracking area as well as the positions of other users. Increases in
the length of t indicate that obstacles or other users are in close
proximity. Additionally, the algorithm can easily track the distance
to the nearest obstacle. The walking threshold steering rate is based
on the linear velocity of the user, v, and the radius of the arc onto
which the user is being guided, r, is given by

h = 360× v
2∗π ∗ r

(6)

In [3], this steering rate is scaled based on the ratio of the current
length of the total force vector and the observed average length of
the total force vector. In this work the steering rates are linearly
increased when it is determined that the nearest obstacle cannot
be avoided using the arc based steering rate. When steering rate
scaling is enabled, the distance to the nearest obstacle is continuously
monitored. If the distance to to the nearest obstacle, m, is closer
than the radius of the walking arc, r, then h is increased through
linear interpolation up to a max value, M. The applied steering rate
becomes

appliedSteeringRate = (1− t)(h)+ t(M) (7)

where the parameter, t, used in the linear interpolation is

t = 1− m
r

(8)
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Table 1: Constant Parameter Values

Constant Value Constant Value
C 0.00897 Li 1 m
λ 2.656 γ 3.091
r 7.5 m M 15◦/sec.

The application of equation (7) may increase RDW rotation rates
above imperceptible levels. While this can be seen as undesirable,
possible noticeability of the increased rates must be weighted against
the even more obtrusive break in presence that occurs when a reset
must be performed to avoid a collision.

3.5 Parameters used in this Study
Numerous constants appear in equations (3), (4), (6), (7), and (8).
The values of the constants used in this study are presented in the
table 1. The values associated with imperceptibility were drawn
from previous work by other researchers in this area [27], [28]. The
values of constants that are specific to the APF-RDW algorithm
were determined by conducting 100 simulation multi-user trials
using random values. The set of random values that resulted in the
best performance in terms or number of resets and distance between
resets are those that appear in the table. Optimization of these values
is a topic of future work.

4 SIMULATION EXPERIMENTS

4.1 Source Paths for Simulations
A total of 288 logged paths were taken from four previous user exper-
iments [3], [11], [12], [13] which served as navigational data for the
simulations. All previous experiments used a backpack rendering
system, (Alienware Aurora M9700 [11], [13]; Dell M4500 [12];
Alienware 13 R3 [3]), an aluminum pack frame, and an HMD (Nvis
SX60 [11], [13]; NVIS SX111 [12]; Oculus Rift CV1 [3]). Head
position was tracked using the Worldviz PPT for all experiments.
Head orientation was measured via an InterSense InertiaCube 2+
in [11], [12], [13], and via the Oculus Rift CV1 in [3]. These logs
recorded the paths of live users performing a variety of search tasks
in both open VEs (i.e., a forest) and constrained VEs (e.g., a grocery
store with fixed aisles). In all cases, the user’s virtual position and
virtual orientation were recorded at an rate of 60 Hz (with some
slower sampling depending on the specific experiment, momentary
rendering demands, and the equipment used). These virtual paths
represent each user’s desired movement through the VE, and include
a variety of individual differences in walking speed, decisiveness,
stopping and starting, and spontaneous changes in direction. In
each case, different types of redirection can be applied to derive
the corresponding physical paths needed to travel this virtual path.
To construct the physical paths, each simulated user was given a
physical starting position, and their subsequent linear and angular
velocity was used to calculate the type and amount of redirection
that could be applied during each update. For example, a user who
is standing still and looking around would have low linear veloc-
ity but high angular velocity, and could be redirected with rotation
gains during that period. The direction and magnitude of redirec-
tion was determined by the algorithm being simulated. The need
for boundary resets was determined by the parameters of the room
being simulated, as described below.

4.2 General Simulation Methods
Four different RDW algorithms were considered: Steer-to-Center
(STC), Artificial Potential Field without Scaling (APF-U), Artificial
Potential Field with Scaling (APF-SC), and no steering (Control).
The difference between APF-U and APF-SC is that the latter takes
into account ones proximity to walls and other users, and scales
the current rate of redirection up to the maximum imperceptible

levels as users draw nearer to an obstacle. It should be noted that
APF-SC is the canonical version of APF-RDW, as its entire purpose
is for walls and obstacles to repel the user, thus allowing it to take
advantage of odd shapes and sizes. The un-scaled version, APF-U,
is an intentionally simplified version of APF that was included for
the sake of comparison to STC, and does not include the proximity-
based scaling described in Section 3.4. Specifically, APF-U and
STC both use the base steering rate h in Equation (6). In the case of
a square or round room, the APF steering vector should always point
to the center of the tracking space in a square or round room with a
single user, making it functionally identical to STC. Thus, these two
algorithms should perform indistinguishably under these conditions,
but differ with multiple users or oddly-shaped rooms. The full
implementation of APF (APF-SC), on the other hand, should show
an advantage over STC in all conditions, as it inherently accounts
for room shape, additional users, and obstacle proximity.

In the experiments below, two sets of physical rooms were sim-
ulated. In the first, shape was held constant and the room size
was varied to test RDW algorithm performance in spaces of either
10x10m, 15x15m, 20x20m, 25x25m, 30x30m, 40x40m, or 50x50m.
While it is possible to implement specially crafted RDW in smaller
spaces commonly seen with consumer VR systems [18], general-
ized RDW is typically not recommended due to the high number
of boundary resets. 10x10m VR laboratories are similarly under-
sized, but are relatively common in the research space and were
thus chosen as the low end of the spectrum. In each of these square
rooms, the four RDW algorithms were tested in both single user
and multi-user scenarios. Single users were always started in the
center of the tracking space facing North. For each tracking area
and RDW algorithm, simulated redirection of all 288 logged users
was performed.

The live user data underlying these simulations were collected
in a space that is 45m across in its longest dimension, and is one
of the largest facilities of its kind, making 50m a reasonable upper
limit. Excessive tracking jitter in the recorded path could cause the
simulated user to leave the tracking area causing APF algorithms to
push users even further out of the tracking space as the walls repel
them. In such cases, the trial was omitted. Despite the excessive
jitter present in some of the logged data, the studies that had subjects
complete simulator sickness questionnaire (SSQ) suggest that simu-
lator sickness was generally not a factor. For the studies that did not
use a SSQ, rates of reported simulator sickness were comparable to
other redirected walking studies, except for [12] which reported a
31.9% incidence rate of simulator sickness. In this particular study,
it was concluded that this abnormally high simulator sickness rate
was due to the high global visual flow and reported feelings of claus-
trophobia due to closeness of objects in the virtual environment
(aisles in a grocery store), which are known to contribute to sickness
in users [17], [19].

For multiple users, users were staggered diagonally (NW - SE)
3m apart, and all facing North. The first user started in the center and
additional users were added to available starting positions nearest
the center. This arrangement placed an upper limit on the number
of users that could be started in a given room (e.g., 3 users in a
10x10m room, 5 users in a 15x15m room, etc.), which in turn served
as an upper limit on the simulated multi-user scenarios, but this
upper limit was not always reached. Users were added until each
user averaged more than 1 reset per minute. If this threshold was
reached for a single user, then no multi-user trials would be run.
The threshold of 1 reset / min is arbitrary, but was chosen to be a
reasonable upper threshold for interrupting users. For each room
size, algorithm, and number of users, recorded paths were selected
randomly to create 500 unique redirected path combinations. If any
trial failed due to the tracking jitter issue noted above, the trial was
replaced with a new random assortment of users.

The second set of rooms simulated held size constant but varied
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the room shape. Four rooms were constructed to be 1000m2. Shapes
included a 2:1 rectangle, a trapezoid, a cross, or an L-shape. In
these odd-shaped rooms, only single-user scenarios were simulated.
For the 2:1 rectangle and cross, the center was used as the target
for STC. However, since the centers for the L-shape and trapezoid
were more disputable, we choose the center target to be a point that
maximized the distance from the closest wall. For each room shape
and algorithm, all 288 logged paths were redirected. Paths that failed
due to tracking jitter were removed.

In all simulated conditions, a boundary reset was triggered if a
user traveled within 1m of a wall or 2m of another user. During
resets, travel updates from the log files were paused and users were
rotated at a constant 15◦/s until completion of the reset. Any resets
that had originally occurred during the live study, causing the user
to stop, turn, and restart their travel, were removed from the log files
prior to the simulation to create an uninterrupted virtual path. Under
all conditions, simulated resets were performed using the APF-R
resetting algorithm described in [3].

4.3 Hypotheses and Measures

For each simulated trial, data was logged with the number of wall
resets per user, the total distance traveled (in meters), and the average
rate of redirection (◦/s). For multi-user trials, the number of user
resets and total resets was also recorded. Distance travelled was
divided by the total number of resets to derive a metric of the average
amount of distance users could travel between resets with each
method.

The following trends were expected:

• All conditions: The un-steered Control condition will provide
a worst-case baseline of how often un-corrected users collide
with walls or each other.

• Varied Room Sizes - Single User: APF-U and STC should
perform equivalently. APF-SC should generate fewer resets
and longer distances traveled by reacting to nearby walls and
temporarily increasing steering rates.

• Varied Room Sizes - Multi User: Here, APF-U should begin
to outperform STC, since it accounts for other users and STC
does not. APF-SC should provide the fewest resets and longest
distances travelled.

• Varied Room Shape - Single User: STC should perform nearly
as well as APF-SC and APF-U in open spaces like the rectangle
or trapezoid, but will struggle in concave spaces like the cross
or L-shape. APF-SC should perform well across all room
shapes. APF-U should permit users to make more use of the
available space than STC, but may be less effective than APF-
SC in tighter portions of the rooms.

5 RESULTS

Results are presented below for ANOVAs to determine the interplay
between room size (or shape), steering algorithm, and the number of
concurrent users when applicable. Group distributions and residual
plots were visually inspected for anomalies to ensure that the as-
sumptions of an ANOVA test were met. Due to the high number of
samples in the simulations (e.g., 7301 simulated users in the single-
user analyses), any numeric differences tended to attain statistical
significance at the p<.0001 level or greater. For this reason, the
discussion below focuses largely on descriptive statistics, graphical
presentation, and effect sizes to tease out practical significance of
any differences between conditions in addition to the statistical sig-
nificance. Effect sizes are listed in η2

p . As a general rule of thumb,
η2

p = .01 is considered a small effect, .09 is considered a medium
effect, and .14 is considered a large effect.

Figure 3: Number of wall resets per min (during a 4 min walking task)
for simulated users who are redirected by each algorithm in square
rooms of different sizes.

Figure 4: Mean rate of redirection for each RDW algorithm for single
users in square rooms of different sizes.

5.1 Varied Room Sizes - Single Users

Figure 3 shows the mean number of wall resets experienced by
single users for each algorithm and room size. The control condition,
which utilized resets at tracking boundaries but did not attempt to
steer the user in between, provides a good baseline of the number of
resets that could be expected if users’ navigation is left uncorrected.
All three steering algorithms improve on this baseline by redirecting
users. As predicted, APF-U and STC perform nearly identically,
as each pushes or pulls the user towards the center of the tracking
space with equal strength. APF-SC shows a distinct advantage with
smaller rooms, reducing the number of resets by an extra 0.35 resets
per min in 10m - 25m spaces on average. This represents an extra 11
- 23% reduction in expected resets relative to the control condition,
which is enough to be practically significant. Given enough space,
however, all three steering algorithms converged and were equally
effective. There was little difference in a 40m square, in which
STC and APF-U reduced the number of resets by an average of
86.1% relative to the control condition and APF-SC reduced resets
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by 92.3%, an inconsequential difference of 0.06 resets per min. By
50m, the difference was negligible with reductions of 94.5% and
96.9%, respectively.

A 4 (RDW algorithm) X 7 (room size) ANOVA was conducted to
gauge the performance of the different algorithms in square rooms
of various size in terms of wall resets, steering rate, and distance
traveled between resets. For wall resets, there was a strong main
effect of RDW algorithm (F(3, 7273) = 1138.58, η2

p = .32, p<.0001),
as described above. Planned contrasts confirmed that there was no
measurable difference between APF-U and STC (p=.813). There
was also a large main effect of room size (F(6, 7273) = 3809.75, η2

p
= .76, p<.0001), with fewer resets in larger spaces for all algorithms,
as one might expect. Finally, there was a weak algorithm x room
size interaction (F(18, 7273) = 16.70, η2

p = .04, p<.0001), driven
by slightly different trends in each algorithm (e.g., a more linear de-
crease in the control condition compared to tapering and converging
trends in the others).

Steering rates are illustrated in Figure 4. The Control condition
was excluded from this ANOVA, since its steering rate was fixed
to be zero and could not vary during navigation. In the other three
conditions, there was a large main effect of algorithm (F(2, 5622)
= 733.61, η2

p = .21, p<.0001), reflecting a generally higher rate
for APF-SC than APF-U and STC. Planned contrasts indicated that
the latter two did not differ (p=.803). There was also a weak effect
of room size (F(6, 5622) = 101.79, η2

p = .04, p<.0001), as rates
changed slightly across different room sizes. More interestingly,
the rates changed in different directions with different algorithms,
yielding a significant interaction between algorithm and room size
(F(12, 5622) = 198.55, η2

p = .14, p<.0001). For APF-U and STC,
which were nearly identical, the rates held fairly steady, but tended
to be slightly lower in smaller spaces. This is likely due to the higher
number of resets experienced in smaller spaces, as simulated users
spent an increased amount of time facing the center after a reset
- a period in which steering is reduced as no course correction is
needed. APF-SC, on the other hand, experienced higher levels of
steering in smaller spaces. Because it is designed to increase steering
strength based on object proximity, these higher rates are naturally
encountered more often with smaller spaces and decrease as more
area is available.

Results for the average distance traveled between resets mirrored
those of the number of resets. Users were generally able to travel
further in larger rooms regardless of algorithm, yielding a large main
effect of room size (F(6, 7273) = 1235.70, η2

p = .51, p<.0001).
Because APF-SC was more successful at reducing resets, users
traveled further than their counterparts in APF-U or STC, yielding
a large main effect of algorithm (F(3, 7273) = 563.46, η2

p = .19,
p<.0001). An algorithm x room size interaction was also observed,
as the differences between algorithms decreased in larger room sizes
(F(18, 7273) = 72.87, η2

p = .15, p<.0001).

5.2 Varied Room Sizes - Multiple Users

When evaluating the algorithms with multiple users, one point of
emphasis was to determine how many users could be supported by
each algorithm in a given space. As described in the methods section
above, the simulation in each room was re-run with additional users
until the total number of resets (wall resets + user resets) exceeded an
average of 1 reset per min per user. These results are shown in Figure
5. For small rooms, up to 15x15m, even single users experienced
more than 1 reset per minute with every RDW algorithm. APF-SC
was the lone exception in a 20m square space. In larger rooms, the
two APF algorithms strongly differentiate themselves from STC and
the control condition. In a 50x50m room, both were able to redirect
as many users as would fit in the available starting positions (i.e., 16
users). APF-SC generated an average of 0.66 resets per min per user
under these conditions, while APF-U generated 0.90 resets per min.
By contrast, STC and control were unable to support more than 4

Figure 5: Maximum number of users that could be redirected in a
given space without exceeding one reset per minute (including both
wall resets and user resets). The empty bars show the total number
of potential starting spaces for users to occupy.

users in a 50m space.
Reset data was analyzed in a 4 (algorithm) x 7 (room size) x 16

(number of users) ANOVA with the number of users as a random
factor. There was a predictably large main effect of room size (F(6,
21.47) = 779.59, η2

p = .995, p<.0001) and number of users (F(15,
23.03) = 13.89, η2

p = .90, p<.0001). That is, total resets increase
when the room size is reduced (extra wall resets) or when there
were more users to bump into (extra user resets). There was also
a large main effect of algorithm, with a clear rank ordering of the
algorithms (F(3, 39.75) = 955.08, η2

p = .99, p<.0001). APF-SC
performed best, then APF-U, then STC, and finally Control. All
two-way and three-way interactions were also significant (p<.0001),
with the exception of the algorithm x number of user interaction
(p=.163). This was driven by the relatively larger increase in resets
for STC and Control as room size and numbers of users increased.

The same analysis was conducted with average steering rates,
excluding the zero-rate Control condition. There was a large main
effect of algorithm (F(2, 22.86) = 252.36, η2

p = .96, p<.0001), as
well as room size (F(6, 41.3) = 111.74, η2

p = .94, p<.0001). Notably,
there was no significant main effect of the number of users (F(15,
18.22) = 0.81, p=.653). However, there was a significant interaction
between algorithm and the number of users (F(20, 22.33) = 9.96, η2

p
= .90, p<.0001), as well as between algorithm and room size (F(12,
41.84) = 105.27, η2

p = .97, p<.0001). These effects both appear to
be driven by a small increase in APF-SC steering rates for more
users, with increased numbers of users being more likely in larger
rooms. No other interactions were significant. Although the effect
of increased rates is statistically strong, it is important to keep in
mind that these effects are quite small in a practical sense, around
1◦/sec, and still below noticeable thresholds.

The average distance that users could travel between resets is
shown in Figure 6 for the three largest rooms, along with the as-
sociated steering rates. Data for smaller rooms is not illustrated
since these generally did not support more than one user. Distance
traveled per reset showed a strong main effect of algorithm (F(3,
30.15) = 47.81, η2

p = .83, p<.0001), with APF-SC affording users
the most travel, followed by APF-U, STC, and then Control. There
was also an expected main effect of room size (F(6, 17.42) = 292.25,
η2

p = .99, p<.0001), with longer distances traveled in larger rooms.
Similarly, there was a predictable main effect of the number of
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Figure 6: Mean distance traveled between resets with each algorithm
for different numbers of users and different room sizes. Note that the
rate of redirection is relatively constant as more users are added, and
that STC quickly struggles with additional users.

users (F(15, 16.6) = 33.83, η2
p = .97, p<.0001), with less distance

traveled per reset as the space became more crowded. There was
a significant room size x algorithm interaction as the algorithms
became more differentiated in larger rooms (F(18, 26.47) = 8.45,

Figure 7: Average number of resets per minute of single users for
each algorithm and room shape. APF-SC is designed to account
for different wall positions and adapts to each shape, while STC
performance suffers in concave spaces.

Figure 8: Sample plots for each room shape, illustrating a single
path being redirected with either STC (orange) or APF (blue). APF
attempts to use any available space, regardless of shape, while STC
attempts to fit a series of circular paths into the central region of all
rooms.

η2
p = .85, p<.0001). There was also an algorithm x number of users

interaction (F(25, 24.8) = 2.60, η2
p = .72, p<.02) and a very weak

three-way interaction between the factors (F(25, 50284) = 16.94, η2
p

= .01, p<.0001). In practical terms, the amount of travel generally
increased in larger rooms, but decreased as more users were added.
Both APF algorithms mitigated this decrease well, but Control and
STC users were unable to take advantage of the extra space when
too many users were present.

5.3 Odd-Shaped Rooms
The purpose of this simulation was to illustrate the ability of APF
redirection to adapt to different room shapes and use any available
space to steer the user. To this end, single users were simulated in
four different rooms of identical surface area: a rectangle, trapezoid,
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cross, and L-shape. These are shown in Figure 8, with sample paths
of an identical simulated user redirected with either APF-SC or STC.
The figure omits APF-U and control condition paths for clarity, but
these were also simulated and included in the analyses below. As
hypothesized, two trends were clearly visible. First, STC attempts to
create circular arcs in the central region of each room regardless of
its shape, which works well in open spaces but leads to many resets
in concave rooms. Second, APF-SC guided users more broadly
throughout the different spaces and was able to avoid corners in
concave tracking areas.

The average number of wall resets for each algorithm and room
shape is shown in Figure 7. A 4 (algorithm) x 4 (room shape)
ANOVA indicated a large main effect of algorithm (F(3, 4320) =
1016.89, η2

p = .41, p<.0001), as well as a medium main effect of
room shape (F(3, 4320) = 147.66, η2

p = .09, p<.0001). Planned con-
trasts supported the hypothesis that there was a difference between
the concave spaces (cross, L-shape) and the open rooms (trapezoid,
rectangle; p<.001), and that wall resets did not differ between the
two open rooms (p=.653). A weak algorithm x room shape interac-
tion was also observed (F(9, 4320) = 2.66, η2

p = .01, p<.01) due to
the relatively worse ability of STC and APF-U to adapt to concave
tracking areas.

For average steering rates, the zero-rate control condition was
again excluded from the ANOVA. There was a main effect of al-
gorithm (F(2, 3259) = 362.62, η2

p = .18, p<.0001), with APF-SC
showing modestly higher steering rates, followed by APF-U and
STC. There was also a main effect of room shape (F(3, 3259) =
47.57, η2

p = .02, p<.0001) and an interaction between algorithm and
room shape F(6, 3259) = 31.19, η2

p = .02, p<.0001), as the different
room shapes exerted different pressure on APF steering.

For the distance traveled between resets, there was a large main
effect of algorithm (F(3, 4320) = 762.49, η2

p = .35, p<.0001) and
room shape (F(3, 4320) = 113.43, η2

p = .07, p<.0001). There was
also a small but significant interaction (F(9, 4320) = 14.04, η2

p = .03,
p<.0001). Given that all of the rooms were of the same area, these
results closely mirrored the number of resets. Users who experienced
fewer resets were interrupted less and able to travel farther distances,
giving an advantage to simulated users with APF-SC.

6 CONCLUSION

In general, the data conformed to expected trends and supported
the hypotheses listed above. The simplified version of Artificial
Potential Field (APF-U), in which proximity-based scaling was
removed to make it more comparable to Steer-to-Center (STC),
performed nearly identically to STC in square rooms of all sizes.
These two algorithms also differed in the areas that were expected;
despite having the same rate of redirection, APF-U showed increased
performance when multiple users were present and in non-traditional
tracking spaces such as L-shaped rooms. The full implementation of
APF that included temporary, proximity-based scaling of the steering
rates to prevent impending collisions (APF-SC) outperformed the
other algorithms in all cases as expected. These simulation results
mirror data collected in the original live-user implementation of
APF-RDW, in which it markedly outperformed STC for single users,
even with comparable steering rates [3].

As noted in the earlier description of the algorithms, the use
of rate scaling may be more appropriate for some use cases than
others. It was designed to prevent interruptions, but risks becoming
perceptible to the user at least temporarily. The experiments above
help quantify the trade-off. In medium-to-large spaces and in odd-
shaped tracking areas, APF-SC displayed clear advantages over
APF-U while having a relatively small effect on the average steering
rates. Users would occasionally be exposed to higher steering rates,
but with high utility in those cases. In small rooms - particularly the
10x10m space - scaling led to consistently higher steering rates as

users were always in close proximity to a wall. It is left to individual
developers as to whether scaling makes sense for their application
and how much scaling to implement.

When considering the results of the multi-user simulation, the
relatively poor performance of the control condition and STC war-
rant more discussion. One might expect these approaches to support
more than a few users in a very large space for no other reason than
because the users are dispersed enough to not collide by chance.
This is true for the control condition, where users can spread out
and are limited mainly by how quickly they reach a wall. With
STC, however, the algorithm is self-limiting and constrained almost
entirely by an increase in user resets. Because STC is pulling all
users towards the center of the space, it makes collisions more likely
as users are pulled towards each other. With increasing numbers
of users, the center of the tracking area becomes increasingly con-
gested. This can be solved by giving each user a distinct “center” to
be pulled towards, but these offset “centers” must be increasingly
dispersed and thus nearer the walls as more users are added. This is
counterproductive to the goal of maximizing the available space for
each user. Another solution, proposed by [4], is to predict where a
pair of users is heading and when a collision might be imminent, and
then to adjust each user’s steering instructions temporarily based on
the angle of impact. As Holm noted, however, this solution does not
scale to more than two users and is computationally complex. It is
difficult to accurately predict paths and collisions for spontaneous
human navigators, and any diversion to prevent a collision (e.g.,
send each user rightward for X sec) may cause a secondary collision
with a wall or a third user who was previously predicted to pass
by without incident, as discussed by [2]. Thus, each adjustment
and its cascading effects must be modeled against all other users,
with a moderate degree of uncertainty as to whether each user’s
current behavior will continue unchanged. APF alleviates all of
this complexity and uncertainty by continually accounting for each
user’s current position and deriving the safest direction of travel
for each user. Walls and other users naturally repel a given person
into open space and automatically adjust to changing conditions.
Again, the simulated results here conform to observations in the
live user study [3], in which APF-RDW was able to redirect several
simultaneously immersed users with a high degree of success, and
without notably increasing steering rates while un-steered Control
users were limited in how far they could walk before frequently
reaching the walls.

The current implementation of APF-SC does have some limita-
tions and could be improved. As described above, position jitter in
real-world tracking systems, which is more common in wide-area
tracking, can cause a user to appear outside of the tracking space
temporarily. This is a current failure case for the algorithm, as it
erroneously attempts to push the user further beyond the wall. More
sophisticated APF algorithms could also be envisioned that included
force vectors or negative force vectors (i.e., an attraction force) to
convey information about what areas of the VE are navigable or
where the user is attempting to travel.

In sum, these simulations mirror and extend the trends seen with
live users under similar conditions, allowing a broader range of
conditions to have been tested. These simulations illustrate the
ability of APF-RDW to adapt to a wide variety of steering conditions
that could not be tested in the physical laboratory, ranging from
small rooms to large open spaces, and to tracking areas with concave
corners or odd shapes, and to a large number of concurrent users. All
of this can be done with low computational complexity, as additional
users or wall segments each add a new force vector to be summed
and repel the user towards open space. It thus provides a widely
generalizable solution for redirected walking. While this technique
may not be applicable to single-user consumer VR setups, it may
prove effective in large research settings, multi-user VR arcades,
outdoor position tracking areas based on GPS, or VR eSports arenas.
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