Paper Session: 3 IEEE VR 2019
OS AKA

Effects of Tracking Area Shape and Size on Artificial Potential Field Redirected Walking

Justin Messinger, Eric Hodgson, and Eric R. Bachmann
Miami University
Conference Paper

Problem & Motivation

How do we allow users to navigate virtual worlds that are larger than the available tracking space?

Problem & Motivation

Redirected walking

- Manipulate the virtual world to avoid obstacles in the tracking area
- Steer to Center (STC)
 requires a large space to
 work effectively.

Source: Bruder, G., Lubas, P. and Steinicke, F., 2015.

Related Multi-user Results

Azmandian, Grechkin, Rosenberg 2017

(b) Sharing Strategy with Common Center

(c) Sharing Strategy with Offset Center

Artificial Potential Field (APF-RDW)

Originally presented in (Bachmann 2019)

Modifications to APF-RDW

Goal: Allow APF to function effectively in irregular concave spaces.

APF - Proximity Scaling

Method

Simulations were based on 288 paths collected during four previous live user experiments

Room Sizes Tested

1. Square Rooms of size (in meters) 10x10, 15x15, 20x20, 25x25, 30x30, 40x40, 50x50

Room Shapes Tested

2. Four different shaped rooms: Rectangle (2:1 ratio), Trapezoid, Cross, and L-Shape

Conditions Tested

Four different conditions tested:

- 1. Control (no redirection)
- 2. Steer to Center
- 3. Artificial Potential Field without Scaling (APF-U)
- 4. Artificial Potential Field with Scaling (APF-SC)

APF-R (APF Resetting) used with all methods

Results: Max Users Supported in Square Rooms at < 1 reset / min

Multi-User Distance Between Resets and Steering Rates

Performance with Different Room Shapes

Position (m)

30

Position (m)

Performance with Different Room Shapes

Conclusion

- APF outperforms STC in the number of users that it can support
- APF outperforms STC in handling irregular concave rooms
- APF-SC displays clear advantages over APF-U while having a relatively small effect on the average steering rates.

Questions?

Appendix

Single User Steering Rates

Related Multi-user Results

Holms 2012

Modified force function

$$\mathbf{w}_i = \begin{cases} CL_i \frac{\mathbf{d}_i}{\|\mathbf{d}_i\|} \frac{1}{\|\mathbf{d}_i\|^{\lambda}}, & \text{if } \mathbf{n} \cdot \frac{\mathbf{d}_i}{\|\mathbf{d}_i\|} > 0. \\ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, & \text{Otherwise.} \end{cases}$$

C is a scaling factor λ is the wall fall-off factor L_i is the length of wall i

Modified force function

$$\mathbf{u}_j = \kappa \frac{\mathbf{d}_i}{\|\mathbf{d}_i\|} \frac{1}{\|\mathbf{d}_i\|^{\gamma}}$$

Table 1: Constant Parameter Values

Constant	Value	Constant	Value
C	0.00897	L_i	1 m
λ	2.656	γ	3.091
r	7.5 m	M	$15^{\circ}/sec$.

γ controls falloff of the force with distance

$$\kappa = \operatorname{clamp}\left(\frac{\cos\theta_1 + \cos\theta_2}{2}, 0, 1\right)$$

Primary Metrics for Comparison

- Average number of resets per minute
- Average distance between resets
- Average steering rate

Support for multiple users required average number of resets to be less than one per minute.

Contributions

- Modifications to a Redirected walking algorithm (APF-RDW) that enables it to support two design criteria:
 - Scalable for multiple users
 - Ability to support irregular concave tracking areas
- New method for scaling steering rates based on the proximity of obstacles

Related Research Results

Holms 2012: First study of multiuser redirected walking

Azmandian, Grechkin, Rosenberg 2017: Relative velocity heuristic

Azmandian et al 2015: Studied the performance of RDW algorithms in 3 different ratio rectangles

Method (old)

Conditions tested for each method:

- 1. Square Rooms of size (in meters) 10x10, 15x15, 20x20, 25x25, 30x30, 40x40, 50x50
 - Single user: 288 four minute user trials
 - Multi-user: 500 four minute user trials (until 1 reset per minute was reached).
- 1. Four different shaped rooms: Rectangle (2:1 ratio), Trapezoid, Cross, and L-Shape
 - Single user: 288 four minute user trials
 - All rooms scaled to 1000 square meters of tracking space

Method (old)

Navigational data for the simulations came from 288 logged paths from four previous user experiments.

Four different methods tested:

- 1. Control (no redirection)
- Steer to Center
- 3. Artificial Potential Field (APF)
- Artificial Potential Field with Scaling (APF-SC)

Conditions tested for each method:

- 1. Square Rooms of size (in meters) 10x10, 15x15, 20x20, 25x25, 30x30, 40x40, 50x50 with increasing numbers of users until 1 reset per minute was reached.
- Four different shaped rooms for single user: Rectangle (2:1 ratio), Trapezoid, Cross, and L-Shape

Fig. 9. Left panel – screen capture of the VE used in the live user experiment. Participants gathered posts for points. Right panel – an immersed user wears the HIVE's backpack rendering

