Assignment 1—Hello 2D World \& Arbitrary Rotations

Due: Sunday September 9 at noon

1. Implement a 3-D vector class that stores 3 floats and has the following functionality:
a. Constructor from 3 floats
b. Read/write access through square brackets operator "[]"
c. Addition of two vectors
d. Subtraction of two vectors
e. Dot product
f. Cross product
g. Multiplication by scalar
h. Division by scalar
i. Normalization
j. Length computation
k. Rotation of "this" point about arbitrary axis
I. Rotation of "this" vector about arbitrary direction
m . Output to ostream, input from istream
2. Implement a 3×3 matrix class that stores $33-D$ vectors as rows and has the following functionality:
a. Constructor from 33-D vectors
b. Read/write access to rows through square brackets operator "[]"
c. Function to get column
d. Function to set column
e. Multiplication with 3-D vector
f. Multiplication with another matrix
g. Inversion
h. Transposition
i. Function to set matrix as rotation about principal axis by theta degrees
j. Output to ostream, input from istream
3. Implement a frame buffer class that stores unsigned int pixels and the resolution of the frame buffer and that has the following functionality:
a. Constructor from input resolution
b. Set all pixels to given color
c. Set one pixel to given color
d. Drawing of axis aligned rectangle
e. Drawing of 2D triangle
f. Drawing of circle
g. Load / save from tiff file
4. Demonstrate your code.
a. Choose a point and an arbitrary axis and rotate the point full circle by 1 degree increments (i.e. 360 steps). Show the point with coordinates (x, y, z) in the framebuffer at location (u, v), where $u=x$, and $v=y$. Draw the point as a circle with a radius of 5 pixels. Choose the point and the axis such that the point stays on screen at all times, and such that the trajectory of the point is an ellipse (and not a segment or a circle).
b. Render a 12 s 30 Hz 720 p video sequence illustrating your rotating point. The video will have one frame for each position, i.e. 12×30=360 frames in total. The video file should be in a popular format. Use the video making software of your choice.
5. Turn in via blackboard one zip archive that contains
a. Source code
b. Executable
c. Video file

Popescu 2018, popescu@purdue.edu

