Assignment 1—Hello 2D World & Arbitrary Rotations

Due: Tuesday September 8 at noon

- 1. Implement a 3-D vector class that stores 3 floats and has the following functionality:
 - a. Constructor from 3 floats
 - b. Read/write access through square brackets operator "[]" (operator)
 - c. Addition of two vectors (operator)
 - d. Subtraction of two vectors (operator)
 - e. Dot product (operator)
 - f. Cross product (operator)
 - g. Multiplication by scalar (operator)
 - h. Division by scalar (operator)
 - i. Normalization
 - j. Length computation
 - k. Rotation of "this" point about arbitrary axis
 - I. Rotation of "this" vector about arbitrary direction
 - m. Output to ostream, input from istream (operator)
- Implement a 3x3 matrix class that stores 3 3-D vectors as rows and has the following functionality:
 - a. Constructor from 3 3-D vectors
 - b. Read/write access to rows through square brackets operator "[]" (operator)
 - c. Function to get column
 - d. Function to set column
 - e. Multiplication with 3-D vector (operator)
 - f. Multiplication with another matrix (operator)
 - g. Inversion
 - h. Transposition
 - i. Function to set matrix as rotation about principal axis by theta degrees
 - j. Output to ostream, input from istream
- 3. Implement a frame buffer class that stores unsigned int pixels and the resolution of the frame buffer and that has the following functionality:
 - a. Constructor from input resolution
 - b. Set all pixels to given color
 - c. Set one pixel to given color
 - d. Drawing of axis aligned rectangle
 - e. Drawing of 2D triangle
 - f. Drawing of circle
 - g. Load / save from tiff file

- 4. Demonstrate your code.
 - a. Choose a point and an arbitrary axis and rotate the point full circle by 1 degree increments (i.e. 360 steps). Show the point with coordinates (x, y, z) in the framebuffer at location (u, v), where u = x, and v = y. Draw the point as a circle with a radius of 5 pixels. Choose the point and the axis such that the point stays on screen at all times, and such that the trajectory of the point is an ellipse (and not a segment or a circle).
 - b. Render a 12s 30Hz 720p video sequence illustrating your rotating point. The video will have one frame for each position, i.e. 12x30=360 frames in total. The video file should be in a popular format. Use the video making software of your choice.
- 5. Turn in via blackboard one zip archive that contains
 - a. Source code
 - b. Executable
 - c. Video file

© Popescu 2020, popescu@purdue.edu