

Motivation

Problem definition

- for each pixel in an image, determine the corresponding 3D ray: find the camera model
- Applications
 - projective texture mapping
 - image stitching
 - depth from stereo
 - depth from structured light
 - color / depth registration
 - building ray databases
 - many more, whenever one needs to relate an image to
 - another image or to the 3D scene that was captured

Planar pinhole camera model

- Ideal model
 - no distortions
 - infinitely small aperture ("everything is in focus")
- Pixel ray correspondence given by

 $ray(u,v) = (C + \overline{c} + u\overline{a} + v\overline{b})$

Distortions are not negligible

Camera parameters

- Intrinsic parameters
 - define the internal structure of the camera and are invariant to the location and orientation of the camera
- Extrinsic parameters
 - define the location and orientation of the camera

Camera parameters

• Intrinsics

- Focal length: 2x1 vector (to allow for pixels with different width / height) $f_p f_2$
- Principal point: 2x1 vector (pixel coordinates of projection of COP onto image plane) u₀, v₀
- Skew coefficient: scalar (angle between the x and y pixel axes) α
- Distortion: 5x1 vector (radial and tangential distortion coefficients) k_{1, 2, 3, 4, 5}
- Extrinsics
 - three rotation angles and three translation scalars

Calibration

• Estimate camera parameters using a list of known scene (3D) – image correspondences

 $\begin{array}{l}(x_0,\,y_0,\,z_0,\,u_0,\,v_0)\\(x_1,\,y_1,\,z_1,\,u_1,\,v_1)\end{array}$

 $(\mathbf{x}_{n}, \mathbf{y}_{n}, \mathbf{z}_{n}, \mathbf{u}_{n}, \mathbf{v}_{n})$

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameter
 - error analysis
 - calibration with known intrinsics
- · Approximate calibration of intrinsics

Scene – image correspondences

- Design scene with fiducials that
 - are easily detectable
 - are covering uniformly the fov of camera
 - have known geometry
- Typical calibration target is a bw checkerboard

Take pictures of grid

10

11

Corner extraction: finding grid

Corner extraction: finding grid

Corner extraction: estimate distortion for more accurate prediction

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysi
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Calibration

- Search for camera parameters that best fit the correspondences given
- Over-constrained system, one wants to minimize the error

Calibration	
<pre>spect ratio optimized (est_aspect_ratio = 1) → both components of fc are estimated (DEFAULT). Principal point optimized (enter-optim-1) ((BFAULT). To reject principal point, set center_optim-0 Secun et optimized (est_alpha=0 - (OFFAULT) Distortion and failly estimated (defined by the variable est_dist): Sixth order distortion on testimated (est_dist(S)=0 - (DEFAULT).</pre>	
Nain saliharitan optimizition procedure - Number of inages: 25 Gradient descent iterations: 123Adome Schulture of meanstraintiesdome Calibration results after ontimization (with unsertainties):	
Facil Length: fr = [67.79999 657.7467] [0.25662 0.20017] Principal point: cc = [32.78922 224.7752] = [0.5504 0.55540] Stev: alpa = [0.0000] [0.0000] - angle of pixel axes = 90.0000 ± 0.0000 degrees Distrition: kc = (-0.2530 0.15080.0007 0.00007 0.0000] = [0.0022 0.0000 ± 0.0001 Pixel error: = (-0.1510 (.1552)]	0.00012 0.00000]
Note: The numerical errors are approximately three times the standard deviations (for reference).	
	25

Reprojection of corners

<section-header><section-header>

Extrinsic parameters found – world centered view

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

\odot

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Error analysis

• Error

- difference between corner location projected using calibrated camera parameters and actual corner location
- Acceptable errors
 - depends on application
 - "less than one pixel"

31

Error examples

Inspecting individual error points

Undistorting images: distorted

Undistorting images: undistorted

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameter
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Overview

- Introduction
- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

41

Pose estimation

- Determine position and orientation of known camera
- Use scene image correspondences and intrinsic parameters
- Useful in many applications
 - projective texture mapping
 - image stitching
 - lightfield construction
 - video compositing, etc.

Overview

- Camera calibration
 - establishing 3D 2D correspondences
 - extracting camera parameters
 - error analysis
 - calibration with known intrinsics
- Approximate calibration of intrinsics

Overview

- Camera calibration
 - establishing 3D 2D correspondences
- · Approximate calibration of intrinsics

46

Approximate calibration of intrinsics

- Print out black and white grid As large as possible, at least 40 cm x 40 cm OK to use several letter-sized pages; measure the global consistency of the grid

- Aim camera perpendicularly to the grid Entire field of view covered by grid Frame margins as parallel as possible to the grid lines
- Measure distance from grid to camera f_{em} in cm In image, measure width w_{em} and height h_{em} of patch of grid in cm (using known size of checkers) Approximate intrinsics
- suppositing the initial matrix h = 0. Set pixel width to 1; set pixel height to $(h_{cm}/h) / (w_{cm}/w)$, where w and h are the image dimensions in pixels Assume square pixels, and that the COP projects in the center of the image $= a=(1, 0, 0), b=(0, -pix_{b}, 0), c=(-w/2, -h/2*pix_{b}, -f_{cm}/(w_{cm}/w)), C=(0, 0, 0)$
- 0