

View morphing

Motivation – rendering from images

[Seitz96]

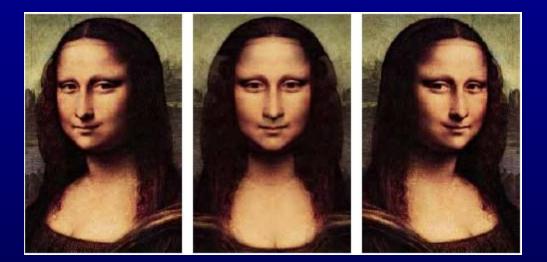
• Given

- left image
- right image
- Create intermediate images
 - simulates camera movement

Previous work

- Panoramas ([Chen95], etc)
 user can look in any direction at few given locations
- Image-morphing ([Wolberg90], [Beier92], etc)
 - linearly interpolated intermediate positions of features
 - input: two images and correspondences
 - output: metamorphosis of one image into other as sequence of intermediate images

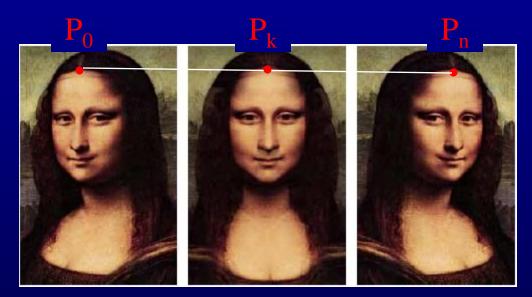
Previous work limitations


- Panoramas ([Chen95], etc.)
 no camera translations allowed
- Image morphing ([Wolberg90], [Beier92], etc.)
 - not shape-preserving
 - image morphing is also a morph of the object
 - to simulate rendering with morphing, the object should be rigid when camera moves

Overview

- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

Overview


- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

Correspondences
 Linear interpolation

$$\overset{\bullet}{P}_{k} = (1 - \frac{k}{n}) \overset{\bullet}{P}_{0} + \frac{k}{n} \overset{\bullet}{P}_{n}$$

frame 0


frame k

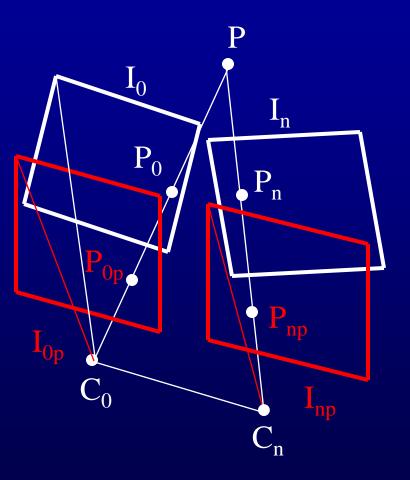
frame n

- Image morphing
 - not shape preserving

Early IBR research

Soft watch at moment of first explosion – Salvador Dali 1954

Overview

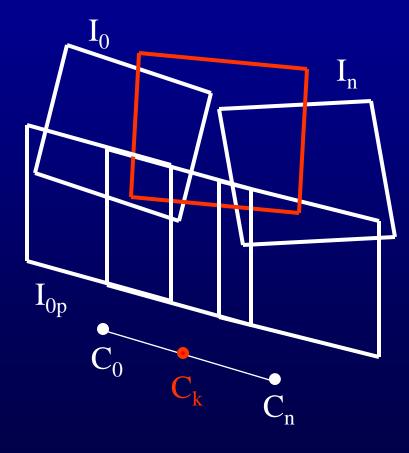

- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

Overview

- Introduction
- Image morphing
- View morphing
 - image pre-warping
 - image morphing
 - image post-warping

View morphing

- Shape preserving morph
- Three step algorithm
 - 1. Prewarp first and last images to parallel views
 - 2. Image morph between prewarped images
 - 3. Postwarp to interpolated view

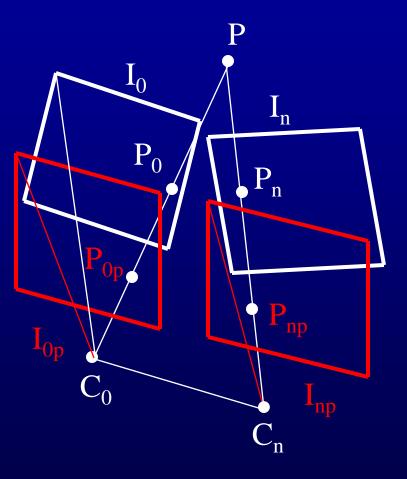

- Parallel views
 - same image plane
 - image plane parallel to segment connecting the two centers of projection
- Prewarp
 - compute parallel views I_{0p} , I_{np}
 - rotate I_0 and I_n to parallel views
 - prewarp corrs. $(P_0, P_n) \rightarrow (P_{op}, P_{np})$

Step 2: morph parallel images

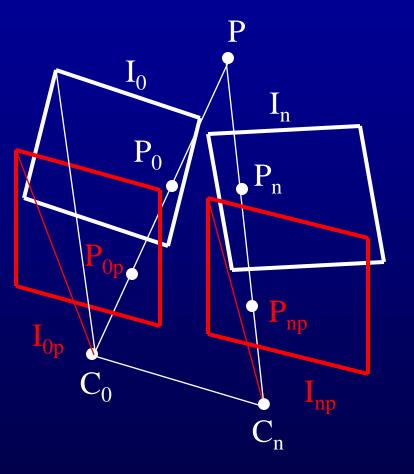
- Shape preserving
- Use prewarped correspondences
- Interpolate C_k from $C_0 C_n$

Step 3: Postwarping

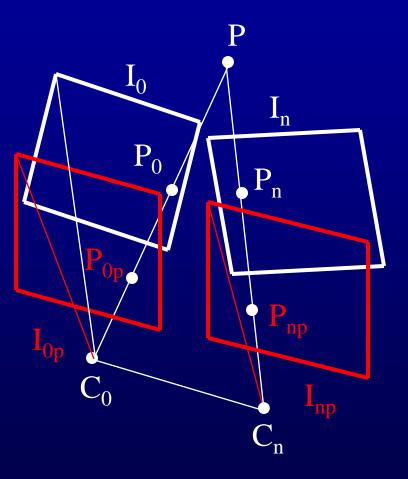
- Postwarp morphed image
 - create intermediate view
 - C_k is known
 - interpolate view direction and tilt
 - rotate morphed image to intermediate view



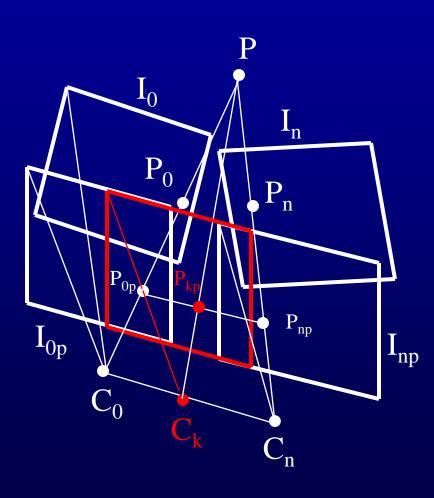
View morphing


- View morphing
 - shape preserving

Overview

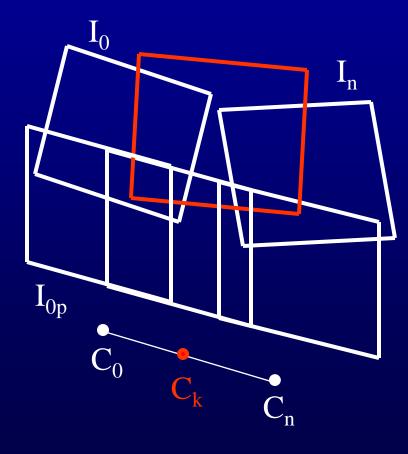

- Introduction
- Image morphing
- View morphing, more details
 - image pre-warping
 - image morphing
 - image post-warping

- Parallel views
 - use C_0C_n for x (a_p vector)
 - use $(a_0 \ge b_0) \ge (a_n \ge b_n)$ as $y(-b_p)$
 - pick a_p and b_p to resemble $a_0 b_0$ as much as possible
 - use same pixel size
 - use wider field of view



- prewarping using texture mapping
 - create polygon for image plane
 - consider it texture mapped with the image itself
 - render the "scene" from prewarped view
 - if you go this path you will have to implement clipping with the COP plane
 - you have texture mapping already
- alternative: prewarping using reprojection of rays
 - look up all the rays of the prewarped view in the original view

- prewarping correspondences
 - for all pairs of correspondence $P_0 P_n$
 - project P_0 on I_{0p} , computing P_{0p}
 - project P_n on I_{np} , computing P_{np}
 - prewarped correspondence is $P_{op} P_{np}$


Step 2: morph parallel images

• Image morphing

- use prewarped correspondences to compute a correspondence for all pixels in I_{0p}
- linearly interpolate I_{0p} to intermediate positions
- useful observation
 - corresponding pixels are on same line in prewarped views
- preventing holes
 - use larger footprint (ex 2x2)
 - or linearly interpolate between consecutive samples
 - or postprocess morphed image looking for background pixels and replacing them with neighboring values
- visibility artifacts
 - collision of samples
 - zbuffer on disparity
 - holes
 - morph I_{np} to I_{kp}
 - use additional views

Step 3: Postwarping

- create intermediate view
 - C_k is known
 - current view direction is a linear interpolation of the start and end view directions
 - current up vector is a linear interpolation of the start and end up vectors
- rotate morphed image to intermediate view
 - same as prewarping