
DOI: 10.1111/cgf.15281 COMPUTER GRAPHICS forum
Volume 0 (2025), number 0, e15281

Single-Shot Example Terrain Sketching by Graph Neural Networks

Y. Liu and B. Benes

Purdue University, West Lafayette, USA
{liu3154, bbenes}@purdue.edu

Abstract
Terrain generation is a challenging problem. Procedural modelling methods lack control, while machine learning methods often
need large training datasets and struggle to preserve the topology information. We propose a method that generates a new
terrain from a single image for training and a simple user sketch. Our single-shot method preserves the sketch topology while
generating diversified results. Our method is based on a graph neural network (GNN) and builds a detailed relation among the
sketch-extracted features, that is, ridges and valleys and their neighbouring area. By disentangling the influence from different
sketches, our model generates visually realistic terrains following the user sketch while preserving the features from the real
terrains. Experiments are conducted to show both qualitative and quantitative comparisons. The structural similarity index
measure of our generated and real terrains is around 0.8 on average.

Keywords: geometric modellings, modelling, natural phenomena

CCS Concepts: • Computing methodologies → Shape modelling; Machine learning algorithms

1. Introduction

Despite several decades of research, digital terrain authoring is still
an open problem. Procedural methods provide a wide variety of ter-
rains, but they are difficult to control and lack perceptually plausible
features. Manual modelling is slow and tedious but provides rea-
sonable control over the final shape. One interesting area includes
example-based methods [GDG*17, ZSTR07], which take real ter-
rains and reuse them in new settings.

Thanks to the proliferation of remote-sensing sensors, the vast ac-
cessibility of digital elevation models (DEMs) gave rise to example-
based algorithms and data-driven methods that can learn from the
data and generate plausible digital terrain similar to the training data.
Recently, Argudo et al. [AGP*19, AAC*17] proposed statistical
learning methods to learn and generate the new terrain. Still, the sta-
tistical learningmethods have worse expression power than the deep
learning-based methods. Deep learning-based works like [RKČ*22,
ZLB*19, GPM*22, GDG*17] applied conditional GAN [HAYC20]
as a data-driven generative model, and Hu et al. [HHM*23] applied
the diffusion model for terrain generation. These methods are based
on convolutional neural networks, which do not capture the topol-
ogy information of a terrain. The key ingredient of these methods is
the user input, and they show that their model can generate new ter-
rain based on user-designed sketches. The sketches usually have a

different distribution than the DEM contours in the real-world train-
ing dataset. Still, the training and testing data should come from the
same distribution to capture the terrain’s structural properties. Also,
previousworks require large training data, which is not always avail-
able and does not allow a simple style definition. However, human
observers can quickly tell the difference given one image from dif-
ferent areas, for example, the Alps, Grand Canyon, andMoon. Some
works [ZLB*19, RKČ*22] provide ‘style’ transfer for terrain, but a
rigorous definition of terrain style is unclear, and they use terrain
data from similar places to train the model. However, these areas
often include many different geological features.

We propose a sketch-based single-shot learning model based on
graph neural networks (GNNs). Our model exploits the observation
that the terrains resulting from the user sketch should follow the fea-
ture distribution of the example terrain input. Given a single DEM
of terrain, we extract its ridges and valleys as the features, which
we call a DEM contour. The assumption is that a contour will sig-
nificantly affect its neighbour area and vice versa [KDRB21]. We
define two processes that affect the contour neighbourhood: gather
and the opposite process, scatter. The gather relates the terrain fea-
tures to the contour, and the scatter distributes them. First, we take
the input example terrain and extract its features. The training phase
learns to reconstruct the terrain from its features by repeatedly per-
forming the scatter and gather processes. A single shot is enough

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

1 of 17

https://orcid.org/0000-0002-1539-7050
https://orcid.org/0000-0002-5293-2112
http://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.15281&domain=pdf&date_stamp=2025-01-25

2 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Figure 1: The user selects a single image used as the main style of the output and provides an input sketch that defines the features in the
generated terrain. Our method generates a new terrain that follows the input style and generates the input features. The three styles used in
this image are the Alps (top), Grand Canyon (middle) and Moon surface (bottom).

for our model because it captures detailed topological and geomet-
rical information about the features and their neighbouring area. Our
model takes a user sketch during inference and generates the terrain
with the target style.

An example in Figure 1 shows our approach. Three neural mod-
els were trained on the Alps, Grand Canyon, and the Moon DEMs.
A user-defined sketch was used to generate new terrain models cap-
turing the features. The model’s training takes around 3 h, and the
inference time is around 300 s for a DEM of a resolution 512× 512.
We claim the following contributions:

1. An end-to-end neural network-based model for single-shot ter-
rain generation capable of learning from one single terrain DEM
and generating similar terrains according to both user-defined
sketches and contours from the real-world scenario.

2. The novel deep neural model simultaneously learns the topology
and geometry information and is designed to ensure rotational
invariance.

3. The neural network model disentangle the ridges from valleys,
which is applicable to unseen cases or cases from other distri-
butions.

2. Related Work

Terrain modelling (see the review [GGP*19]) has been an active
area in Computer Graphics since its inception. Early works mod-
elled terrains as fractals [FFC98, Man83], but it was quickly no-
ticed that the scaling self-similarity does not fully capture geomor-
phological processes in Nature. Follow-up works then modelled
various aspects of erosion using thermal shocks and simple fluid
transport simulated as diffusion processes [MKM89, BF02, BF01].
Later approaches focused more on water simulation using either
the Eulerian [BTHB06, WCMT07, CMF98] or Lagrangian solution
of the Navier–Stokes equations [ASA07, KBKŠ09], and some ap-

proaches even consider wind simulation [KHM*20]. Other methods
considered simultaneous glacial erosion and mountain ridge forma-
tion [CJP*23, AGP*20], inverse erosion [YCC*24], and how fauna
and flora affect terrains in the log term [ENCC*21].

Control: Simulations and procedural models are challenging
to control. Several approaches attempted to address the control-
lability of terrain models undergoing erosion processes by navi-
gating the fluid simulation [SBBK08], by providing user control
over the erosion parameters [JFBB10], or by manipulating con-
tinents at large scales [CBC*16]. Recent methods often abstract
physics out entirely [GGG*13] or combine it with intuitive means
to modify terrains, such as brushes [CCB*18, EVC*15], diffu-
sion [LGP*23], gradient domain [GPM*22], snow [CEG*18] or
style transfer [PPB*23, RKČ*22]. Real terrain patches have been
used to generate new terrains from sketches [ZSTR07]. This method
does not capture large-scale features and requires fine-tuning the
patch connections. Our work focused on disentangling the contours
to ensure a clean output without undesired contours.

Terrain Generation using Machine Learning: Close to our
approach is the conditional GANs [HAYC20] for the terrain gener-
ation by Guérin et al. [GDG*17], where the user draws a 2D sketch
and the system generates a DEM. The style is encoded through an
embedding [ZLB*19], and a new style can be generated according
to the interpolation of existing embeddings. The model is adver-
sarially trained and conditioned on the corresponding embedding,
indicating that it only needs one model, and the authors provided
different synthesizers for easy terrain authoring. The problem with
this method is the need for a large training dataset for a single style.
Our algorithm uses a single terrain to generate similar models.
Rajasekaran et al. [RKČ*22] focused primarily on the assessment
of the generated terrain and realism terrain, but they also used
Cycle-GAN [ZPIE17] to map the data from two domains. More
recent work [GPM*22] considers the gradient instead of elevation
in the terrain generation. The benefit of the gradient is that it can

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 3 of 17

Figure 2: Overview: The single input DEM ‘style’ is used to extract its ridges and valleys, which we call a DEM contour. They are organized
into a DEM contour graph, and a GNN model is trained. Meanwhile, a SinGAN is trained on high-frequency features of the input respectively.
The user draws a sketch, its parts are matched to the DEM style contour, and the trained GNN generates new terrain with high-frequency
details added by a SinGAN. The result is a DEM following the user sketch resembling the input. The user sketch is directly input by the users,
shown in the first ‘Sketch’ block in the second row. The DEM Contour Parts Extraction block and User Sketch Parts Extraction block are the
same algorithm with different inputs.

be seamlessly blended into the original terrain without breaking the
formalism. The recent approach of [HHM*23] claims the previous
works based on GAN have a tradeoff between flexible user control
and maintaining generative diversity for realistic terrain. They
applied diffusion models and proposed a multilevel denoising
synthesizer to generate structural and fine-tuned information.
Meanwhile, another diffusion-based work [LGP*23] aims to han-
dle more classes of terrain. The framework can automatically clean
the datasets and provide several real-time authoring techniques.

However, the common problem of these methods is the need for a
large amount of data. Meanwhile, there is no detail control. For ex-
ample, if the author only wants one exact ridge, the previous model
can not guarantee this. The same sketch in different positions may
generate different results. Moreover, the ‘style’ of the terrain is in-
trinsically determined by the choice of the training dataset. Our ap-
proach uses a single image, which defines the style.

Deep Learning techniques have shown great success in genera-
tive domains, and our work relates directly to two main groups of
algorithms: GANs and GNNs. GANs [GPAM*20] utilize an adver-
sarial training strategy to generate realistic images, and conditional
GANs [HAYC20] generate images based on some conditions. How-
ever, they need large amounts of data for training. The work pro-
posed in [RSDM19] learns from a single image, but the pipeline is
based on CNN, and it is hard to explicitly capture the topology in-
formation. Note that [HHM*23] implicitly preserves the topology
by adding the sketch constraint, which needs data while the topol-
ogy is still not guaranteed. This becomes more severe in the terrain
generation. GNN-based algorithms handle the topology informa-
tion in the data, and the convolution is generalized to the graph do-
main [KW17]. However, these methods can only model the pairwise
relations [XHLJ19]. An intuitive way to generalize the graph con-
cept to the terrain is to consider each pixel a node. Then, modelling
higher-order relationships is necessary. A hypergraph [LM17] is an
important concept for 3D point clouds [ZLZ*18], network analy-
sis [LM18], and other domains. It generalizes the pairwise relation,
that is, edge, in the original graph setting to the high order rela-
tion, that is, hyperedge, which contains multiple nodes. Learnable-

based hypergraph modules are also proposed [FYZ*18, CPPM22,
WYL*22]. The equivariant property [WYL*22] is shown to be an
important aspect. Since our model focused on detailed topology
and geometry, we need a model that can capture the high-order
relationship among different nodes. The previous high-order mod-
els [FYZ*18, CPPM22, WYL*22] focused on the node information
only, ignoring the edge information. Our model adds edge informa-
tion to the training process so that the field can be explored thor-
oughly. Then we apply a SinGAN [RSDM19] and add a different
loss designed explicitly for terrain to add local features.

3. Overview

Our method consists of three main steps: sketch extraction, training,
and inference (see Figure 2).

Sketch extraction: We have a DEM contour and a sketch, which
are the same data structure under different scenarios. The DEM con-
tour is extracted from the real DEM for training and the other is
input by the user during output generation. Sketch is a list of 1D
sketch parts that capture terrain valleys and ridges organized into a
sketch graph.

Each sketch is divided into small geometric parts 5–10 pixels
long, storing its elevation and shape. Later, we match the sketch
parts of the input to the user sketches. The length is a compro-
mise between the expressivity and the function. Although longer
sketch parts contain more information, it is hard to find a similar
long sketch in the original DEM during sketch part matching, which
makes the generation unrealistic.

Then, we build the sketch graph assuming the sketches affect their
neighbourhood and vice versa. We use the scatter and gather pro-
cesses to capture the detailed relation by learning a GNN model.
This sketch region construction step then builds a graph, capturing
the geometric information about the sketches and the remaining ter-
rain parts. We can handle the rotation and transition in the CNN-
based models without any further design modules.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

4 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Figure 3: Strahler ordering.

Training: The input is a single DEM defining the overall style
of the output. The sketch extraction step captures the main features,
but the GNN does not learn small features. We use a CNN-based
network SinGAN [RSDM19] to restore the high-level features.
SinGAN conducts inpainting, editing, harmonization and super-
resolution using the image input. Training SinGAN [RSDM19]
takes one single DEM as input and learns how to generate new im-
ages.

The inference step uses the user sketch graph containing ridges
and valleys. We take each sketch part from the user sketch and find
the most similar (shape and elevation) part in the DEM contour.
We align the sketch parts from the user input with the DEM. The
same sketch region construction and GNN model are applied to get
a coarse-generated DEM. The SinGAN then automatically refines
the details.

4. Training

Data: A digital elevation model (DEM) is a discrete grid where each
point represents the height. The DEM can be of arbitrary size, but
the GPU memory dictates their processing size. Unless explicitly
mentioned, we used DEMs of size 128 × 128. Section 7.5 shows
how to generate much higher-resolution results.

4.1. Contour and contour parts extraction

The critical element to user control is the definition of fea-
tures that are important for user sketches. Similar to the previous
work [GDG*17], our contours encode ridges and valleys. Ourmodel
adopts the eight-direction (D8) flow model [JD88] to get the ridges
and valleys contours. The D8 flow algorithm defines the water flow
of a pixel by choosing the direction with the largest gradient. Each
pixel has a unit of water, which is transferred to the lower neigh-
bours according to the gradient. The output of the D8 flow algorithm
is noisy due to the randomness in the input terrain, which leads to
a noisy contour map. We reduce the noise by four post-processing
steps: (1) close operation, (2) finding Strahler stream order [Hor45],
(3) skeletonization and (4) filtering.

The close operation: The greediness in the D8 algorithm indi-
cates that some parts of the ridges may be disconnected, resulting in
intermittent contours. We apply the close operation to connect the
contours with several missing pixels.

The Strahler stream ordering (Figure 3) was designed to deter-
mine the stream order, that is, to distinguish between the main-

stream and channels. The ordering provides the stream hierarchy,
and we use it to find the order of the contours as it distinguishes
between the essential contour parts and tributaries for ridges and
valleys.

The skeletonization operation ensures the contour is always a one-
pixel wide line while preserving the connectivity and topology of
the contours.

The filtering is the next step, which deals with noise. Small devi-
ations will generate short random contours, for example, tiny holes
on the Moon or the plains beside the Grand Canyon. Our model fil-
ters out contours shorter than 10 pixels or contours with an average
gradient of each pixel within the lowest 1%.We also split long edges
into smaller parts to ease the training.

Contour Part Extraction divides the input contour/sketch into
smaller contour parts that are then used to match the DEM and
the user sketch. The extraction splits the long contours into small
contour segments: (1) we start from an endpoint, perform the depth
first search (DFS), and store the result in a list. (2) Start from the
beginning of the list, we randomly choose 5–10 continuous ele-
ments. There are two situations. First, the elements are adjacent in
the original DEM; second, the elements are not adjacent in the orig-
inal DEM. For the first situation, we consider it as a contour part.
For user input, it is a sketch part. Then, we remove the elements
from the list. For the second situation, we find the elements that are
not adjacent to the original DEM and split the long sequence into
two short sequences. Short sequences (< 5 pixels) are ignored. The
other sequence is considered as a contour part. Then, we remove the
detected contour parts from the graph and repeat the process until
no elements are left.

4.2. Contour region construction

One important assumption is that the contours strongly influence
the regions around them. The pixels on the contour correlate with
those around that contour, and we model this connection using a
bipartite graph (Figure 4). The left-hand side shows the nodes cor-
responding to the pixels. On the right-hand side, the nodes indi-
cate the contour region. For the user input sketch, it is the sketch
region.

To construct the graph, we connect pixels to regions. The edges
are composed of two parts: fixed and randomly chosen edges. The
fixed edges start from all pixels connecting to the k nearest regions.
The randomly chosen edges are randomly sampled from arbitrary
pixel-to-region pairs. In our experiments, we set k = 10, andwe ran-
domly choose 10,000 edges for each epoch. Ideally, all the pixels in
the region should be aligned to that sketch. However, this would be
time-consuming to calculate and train. Instead, we align each pixel
to the ten nearest sketches, randomly sample some other sketches,
and construct the sketch region.

4.3. The GNN model

Themodelling step aims to model a whole area based on the contour
(sketch). We assume one contour will only affect the region near
it. We first gather the information in that region, then scatter it to

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 5 of 17

Figure 4: The sketch region construction creates a bipartite graph.
The left figure shows an original sketch being divided into small
sketches. The grey circles indicate all pixels in the region besides
the ones on the sketch. The blue circles indicate the pixels on the
sketches. The orange circles are the region. f (t)p , E

(t)
r indicates the

embedding of the pixels and regions, where t indicates the iterations.
The symbol erp indicates the relation between a pixel and a region.

the entire region and update the individual pixels. Let us denote the
region affected by a contour s as rs.

E (t)
r = E (t−1)

r + Gathrp
({
Enc1

(
f (t)p , erp

) |∀p, p ∈ r
}
,E (t−1)

r

)
,

f (t)p = Gathrr
({
Enc2

(
E (t)
r , erp

) |∀r, p ∈ r
}
, f (t−1)

p

)
, (1)

where t is the iteration index, t = 1, 2, . . . ,T . f (t)p , E (t)
r represents

the pixel and region information for the t−th iteration, Gathrp and
Gathrr are the functions to gather the information.We applied graph
attention model [VCC*18] for Gathrp and Gathrr. Both should be
set permutation invariant; thus, we chose the graph attention model.
Here, we have Gathrr because one pixel may be affected by differ-
ent small contours, and Enc1 and Enc2 are two-layer MLPs with a
hidden embedding dimension 32 to encode the information stored
in pixels and regions. erp stores the information for the pixel p cor-
responding to the region r, which is the key part of our model. We
discuss how we select and design the erp in Section A.4.

Our model performs multiple iterations because (1) they con-
struct a deep neural network, which can increase the representation
power; (2) multiple iterations construct the correlation among dif-
ferent contours. Equation (1) shows that the information from dif-
ferent contours is gathered from the same region. Then, the region
will scatter the gathered information back to the contours again. This
promises that the closer sketches, that is, contours that share more
regions, will have a stronger information exchange since they share
more pixels.

4.4. SinGAN

SinGAN [RSDM19] overcomes the GAN’s huge data requirement,
enabling it to train and generate samples from a single image. The
newly generated images are visually similar to the original image
because SinGAN includes a patch similarity discriminatorD, focus-
ing on the details (high-level features). However, it is an uncondi-

Figure 5: A user-defined sketch (left) is automatically enhanced
with high-frequency information (right).

tional generative model, indicating that it cannot directly be applied
to our contour-based task. Thus, by combining our GNNmodel and
SinGAN, we exploit the advantage of the two algorithms and gen-
erate realistic terrain containing high-level and low-level features.
We adopt SinGAN in two ways. First, the SinGAN takes the three
RGB channels, while DEM only has one. Second, since the gradient
is necessary for the terrain, a loss function lgradient is added to Sin-
GAN in the reconstruction loss part (see Section 6.1). The detailed
steps are as follows: after the GNN step, each pixel will have an
initial height. We resize the initial height into a 2D array (images)
and then feed this image directly to the modified SinGAN. SinGAN
is not a conditional generation method. By applying SinGAN, the
model will never learn how to map contours to the height map and
generation from contours.

5. Inference

5.1. User input sketch

Ourmodel enables both user-defined sketches and sketches based on
features extracted from DEMs using the method described in Sec-
tion 4.1. The user draws ridges and valleys with selected heights.
The height starts from a user-defined value and its height either grad-
ually decreases or increases. After that, the pixels with height are
then normalized, and our model generates visually similar terrain
based on the sketches.

5.2. Random sketches

One essential assumption in machine learning is that testing data
should come from the same distribution as the training data. How-
ever, user-defined sketches do not necessarily follow the same dis-
tribution. Usually, the user sketches are several simple curves, while
the training sketches are dense, as seen in Figure 5 left for user input
and Figure 6 second line for DEM contours. Inspired by the idea of
the dividing tree generation algorithm from [AGP*19], we enhance
the user sketch with small random sketches.

The random sketch (see Figure 5) generation process includes the
following steps. We randomly sample n nodes and assign them a
value sampled from [0.5, 1] as the height. We then find the Min-
imum Spanning Tree (MST) [Gab77] among these n nodes. The
MST is considered the potential ridge. We then triangulate the n

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

6 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Figure 6: The 3D rendered samples of the real-world DEMs (top).
Their automatically extracted features (the second line) are used
as a sketch to ‘reconstruct’ them (the third line). We exchange the
sketches and show the ‘reconstruction’ (bottom). The Moon style is
applied to the Alps sketches, the Alps style to the Grand Canyon
sketches and the Grand Canyon style to the Moon sketches. The last
row is the result generated using the same sketch but with different
styles. This shows that the output is controlled not only by the sketch
but also by the input image.

nodes with the Voronoi Diagram and randomly assign a value sam-
pled from [0, 0.5] as the height of each node. We then find another
MST, this time in the vertices of the Voronoi Diagram [AK00], and
consider it the potential valley. We then select edges in potential
ridges that do not cross the user-defined ridges. Similarly, we select
the edges in potential valleys with no cross with the user sketch and
the chosen ridges as the valleys. We then connect the ridges and val-
leys and use linear interpolation to find the height among the edges,
similar to [KMN88] (see Figure 5).

5.3. Sketch part alignment

The user sketch is divided into sketch parts using the same algorithm
for contour part extraction for DEMs (Section 4.1). We have a spe-
cific embedding for each contour part in the training phase but no
embedding for the inference phase. Thus, we need to assign an em-
bedding to each sketch part. The sketch part alignment uses shape
and height information. Overall, we want to find the contour part
most similar to the ones in the user input. To compute the shape (in-
cluding the rotation), we first calculate the gradient of the position
(x, y). Then, we rotate it so that the main direction is the same. Then,
we apply the longest common substring (LCS) algorithm [Gus97]
to choose the top 10 candidates. Finally, we check the height infor-

mation (mean and variance) to select the final round of candidates
and randomly choose one.

The overall algorithm is as follows. Each sketch part is a set
of consecutive points [Pix,P

i
y,P

i
z]. Our algorithm first rotates the

sketches and contours to align them in the main direction (see de-
tails in Algorithm A1). The rotation angle can only be kπ/4, where
k ∈ N. After rotation, the vectors that start from the first point and
end at the last point should have an angle ≤ π/4.

We then choose the contours with a similar shape projected to
2D, thus only considering the Pix and Piy coordinates using the
LCS algorithm (see details in Algorithm A2). We then align the
Piz coordinates by filtering the contours with large height differ-
ences on the common substrings. In particular, we calculate the
LCS of two normalized point lists. Assume the original curve is
{(P1x ,P1y), (P2x ,P2y), (P3x ,P3y), . . . , (Pnx ,Pny)}. The normalization is

{ (
P2x − P1x ,P

2
y − P1y

)
∥∥P2x − P1x ,P

2
y − P1y

∥∥
2

, . . . ,

(
Pnx − Pn−1

x ,Pny − Pn−1
y

)
∥∥(
Pnx − Pn−1

x ,Pny − Pn−1
y

)∥∥
2

}
.

Since all the contours are connected, the normalization should
contain eight elements only {(cos(kπ/4), sin(kπ/4))}, where k =
0, 1, . . . , 7 defines the Euclidian distance between two elements u
and v.

We then find the sketch with the smallest height difference on the
longest common substring detected in the previous part.

5.4. Generation

After we have the user-designed sketches and corresponding in-
dices, we apply the contour (sketch) region construction process
used in the training part (Section 4.2) to construct the graph. Then,
our GNNmodel and SinGAN are applied to generate the final result.

Although our model chooses the most similar contour index,
they are not the same, and the generated DEM can be discon-
tinuous due to the sampling issue and lack of data. Inspired by
DeepSDF [PFS*19], we address this by a fine-tuning step before
the generation, ensuring that (1) the contours are similar to the user-
designed ones and (2) the generated DEM is smooth. We freeze all
the parameters in the model except the embedding of contours in-
dex Emd(·). Then, our model updates the embedding of the contour
index to minimize the lgt + lsmooth. Here, lgt only calculates the pix-
els on the sketches, and lsmooth calculates the general smoothness in
the generated terrain. Finally, SinGAN is applied to provide high-
frequency features.

6. Implementation

We implemented our system in Python with Pytorch 1.11 and
PyG 2.1.0 for the training.We used anNvidia V100GPUwith 16GB
memory and ran it on a cluster with an AMD EPYC 7543 32-core
CPU. The GNN training on 128 × 128 image as input takes about
3.5 min for 1000 epochs and the learning rate is 0.0001. We trained
over 60,000 epochs to ensure our model could fit the given DEM.
The SinGAN was run with the same settings as [RSDM19], and it
takes around 30 min to train one image. The inference process takes

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 7 of 17

around 20 s to generate one 128 × 128 image. The UI is written in
Python Tkinter. We used Blender on a laptop with an i9-13900HX
CPU, 16GB memory, and a GeForce RTX 4060 GPU with 8GB of
memory to render the final images. The training is not memoriz-
ing the image, but it disentangles them, which is a harder task that
takes longer. Secondly, we apply GNN to provide a more flexible
representation of our model. GNN takes much more computation
resources as a tradeoff and is slower than CNN.

Our implementation cannot generate terrains of size 512× 512
or larger due to the limitation of the GPU memory size. To gener-
ate large terrains, we split large terrains into 128 × 128 patches and
generate. We combine the results by interpolating the edges. For ex-
ample, to generate a 512× 512 image, we first split the sketch into
16 images and generate 16 128× 128 images. This takes around
5 min, with every patch needing around 20 s. The bottleneck of the
inference is the time to load the model and data for each image.
Please note there are additional technical details about the imple-
mentation in the Appendix.

6.1. Loss functions

Our model is end-to-end aiming to solve the following function

min
Emd, Enc, MLP

ltotal, (2)

where ltotal is a single six-component loss function:

ltotal = lgt + lssim + lgradient + lsketch + lsmooth + l f urther (3)

We applied different weights for different losses, but the results re-
mained similar, although they have different scales. This is because
lgt , lgradient and l f urther, controlling the exact values of each pixel, are
all very small. Meanwhile, lsmooth and lsketch aim at the disentangle-
ment between ridges and valleys.

The first component of the loss function aims to make the model
fit the terrain given the DEM information:

lgt =
∑
p

‖ỹp − yp‖2. (4)

The second term in reconstruction tasks is SSIM [WBSS04]
loss lssim. Here, we also applied the SSIM loss to our training
pipeline to ensure the reconstructed terrain was structurally simi-
lar to the original one. Since the gradient is also important in the
terrain generation, we also apply the third gradient loss

lgradient =
∑
∀p

∑
p′∈N (p)

(‖ỹp − ỹp′ ‖2 − ‖yp − yp′ ‖2
)2

.

Ridges are convex, while valleys are concave, but there is no guar-
antee that a neural network will naturally learn this, especially when
it has limited data. Therefore, we propose a heuristic loss function
lsketch as follows: give an arbitrary point, we first project to its neigh-
bouring contours. We need the height of that point to be larger than
the projections to the nearby valleys and smaller than the projec-
tions to the nearby ridges. Since the comparison is not differen-
tiable, we apply theGumbel-Softmax Trick to have a surrogate func-
tion [JGP17]. A cross-entropy loss CSE is applied after sampling

from the larger height using the Gumbel-Softmax. Here we denote
the as Ip, Ip = [1, 0] if p is ridges; Ip = [0, 1] if p is valley.

lsketch =
∑
p

CSE(Gumbel-Softmax(ỹp, ỹprojrp), Ip) (5)

The fifth component of the loss function is similar to lsketch. In-
stead of maintaining the convex or concave property, this loss fo-
cuses on the smoothing. Our model will sample pixels p′ and p′′,
whereD(p′, p′′) < 5 andminimize the following objective function,
where D(·) indicates the Hamming distance:

lsmooth =
∑
p′,p′′

|ỹp′ − ỹp′′ |.

The last component of the loss function ensures that further dis-
tances lead to a smaller affection. We sample the pixels p′ with long
distances to a contour. The loss function is to minimize:

l f urther =
∥∥∥∥∥
∥∥∥ỹp′ −MLP3

(
f (0)
p‘

)∥∥∥ − 1

10 × distrp′
2

∥∥∥∥∥
2

Note that when calculating the lsketch, lsmooth and l f urther, we need to
calculate it separately for ridges and valleys. However, heuristically,
we found that our model still performs well when we apply these
loss functions directly to the final layer f Tp .

7. Results

To show that ourmodel can learn a single image and generate similar
terrain, we show how the preprocessing part finds the sketches, the
model’s expressive power, generalizability and additional examples.

7.1. Datasets

We experimented with seven different datasets: the Alps, the Grand
Canyon, the Amazon River, the Sahara, the Danakil Depression,
the Himalayas, and the lunar surface (see the first row in Figure 6
and Figure A1). The Alps are geologically fresh areas with large
valleys and ridges. The Grand Canyon is widely eroded, with deep
valleys and flat areas. The Amazon River area contains river chan-
nels but is relatively flat. The Danakil Depression is elongated in
shape, flat in the plain, and uneven in the remaining area. The Sa-
hara is smooth and has landforms eroded by wind. The Himalayas
are geologically fresh and look similar to the Alps, with smooth and
large ridges and valleys. The lunar surface is monotonous, with local
peaks and dips.

The six Earth datasets come from the Geospatial-Intelligence
Agency (NGA). The maps were provided by the Shuttle Radar To-
pography Mission (SRTM) [FRC*07], which scanned the areas in
February 2000. The original data with one arc-second resolution
(around 30 metres per pixel) have been edited by the NGA to fill
small voids and remove spikes and wells. Larger voids were filled
using interpolation algorithms.

TheMoonDEMcomes from theUnited States Geological Survey
(USGS). The Lunar Orbiter Laser Altimeter (LOLA) [YNGS*08]

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

8 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

provides a precise global lunar geodetic grid. The resolution is 10
metres per pixel.

The DEMs provide only the terrain height. We textured and ren-
dered the DEMs to convey the visual feel and look of the corre-
sponding areas. While some figures in this paper are textured, we
also show some as a bare elevation with diffuse lighting.

7.2. Sketches in patches 128 × 128

Extracted Features and ‘Reconstruction’: The second line of
Figure 6 shows the ridges (yellow lines) and valleys (blue lines) ex-
traction for several terrains. Using the extracted edges, we can use
our algorithm to ‘reconstruct’ the input terrain as shown on the third
line of Figure 6. The similarity between the input and the generated
terrain is captured by the similarity loss lssim fromEquation (3). Note
that the value of lssim → 0 indicates dissimilar data, and lssim → 1
shows high similarity. The lssim for the Alps, Grand Canyon and
Moon are 0.97, 0.97 and 0.99 respectively.We did not expect a pixel-
exact copy of the input. Our approach generates slightly smoother
terrains because the sketches do not consider all features, for exam-
ple, the small craters on the Moon. Also, the SinGAN injects noise
into the generation process.

We exchanged the sketches for each terrain and generated the cor-
responding terrain at the bottom of Figure 6. We apply the Moon
style to the Alps sketches, the Alps style to the Grand Canyon
sketches, and the Grand Canyon style to the Moon sketches. The
results show that our model captures the main features and trans-
fers them to the new terrain while maintaining the same trend in the
original terrain.

The User Sketches are shown in the first three lines in Figure 7
to demonstrate our model’s diversity and fidelity.

An important property of the generation model is its diversity
which comes from four parts: (1) Sketch Region Construction in
Section 4.2, (2) Random Sketches in Section 5.2, (3) Sketch Align-
ment in Section 5.3 and (4) Perturbation on erp and Emb(Idxsketch)
in Section A.4. Our images show that all these different parts
can contribute to our image diversities while following our user-
defined sketches.

We also show generated Moon-style terrain based on the real-
world sketches on the bottom line of Figure 7. Most of the gener-
ated terrains follow the general trend of the ground truth. However,
one main problem is the smoothness. Since our model is at a low
resolution, the SinGAN for enhancing high-level features may add
toomany sharp features. Also, some depressions are not captured by
our model. This is mainly due to sketch extraction. Since we only
capture valleys and ridges, no specific depressions are captured, but
they may be added by drawing an ‘x’.

Fieldity: Figure 8 shows how similar terrain our model
can generate given some real-world sketches. We apply the
SSIM [WBSS04] to calculate the similarity. Although other meth-
ods, such as [RKČ*22], define how well a terrain is generated, these
are metrics designed for the generation without ground truth. Be-
cause we do have ground truth, the SSIM provides sufficient re-
sults. We follow the same experiment setting: pick one represen-

Figure 7: Different generated terrain. The first column is the train-
ing input, including (from top to bottom), that is, the Amazon River,
Danakil Depression, Alps, and the Moon. For the Amazon River and
Danakil Depression, we use the sketch directly, without any ampli-
fication. The outer part is a circle ridge while the inside is a ‘a’
valley. The diversity comes from the Sketch Region Construction
and Sketch Alignment. We have a letter ‘P’indicating Valley for the
Alps, and our model automatically enhanced the sketch with addi-
tional features. The diversity comes from the Random Sketches and
Perturbation on erp and Emb(Idxsketch). We follow the sketches from
real-world scenarios for the lunar surface. All images have the same
128 × 128 resolutions. The first three rows’user sketches are shown
in the bottom left corner of the first column. The last row does not
share the same sketch since they are from different patches.

Figure 8: SSIM loss of real-world terrain. SSIM is a common met-
ric for image restoration. SSIM ranges from −1 (anticorrelated) to
1 (perfectly similar), and 0 indicates no similarity. GC stands for
the Grand Canyon, while AR stands for the Amazon River.

tative 128 × 128 image as input and generalize to the remaining
area. We skipped the Danakil Depression since most of the area is
blurred and contains little information. Our model performs best on
the Moon and Himalayas since the sketches are self-similar. The
variance of the Grand Canyon is large because some patches do not
share the same pattern, containing very few shallow valleys. The
Alps performs the worst among all these datasets but still has an av-
erage SSIM of 0.75. One major problem is that the target terrain is
only distributed on a corner or half of the image in many patches.
The heavily unevenly distributed sketches will negatively affect
the generation since we have no information for the blank area.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 9 of 17

Figure 9: PSNR loss of real-world terrain. PSNR is a metric for im-
age reconstruction. The unit of PSNR value is dB. The larger value
indicates a more accurate reconstruction. GC indicates the Grand
Canyon, and AR stands for the Amazon River.

Figure 10: Comparison of our model and [GDG*17].

Meanwhile, the missing ridge and valley sketches in the sketch
extraction process also make it difficult to reconstruct the terrain
fully. We also report our PSNR value for our real sketch reconstruc-
tion task in Figure 9. PSNR is a commonly used measurement of
the reconstruction quality of models based on sketches. The higher
value indicates a better reconstruction quality. In our experiments,
the Moon has a lower average reconstruction quality, probably be-
cause the Moon has denser ridges and valleys, and cutting it into
patches hinders the full representation of theMoon’s reconstruction.
The real sketches indicate that our model can regenerate realistic
terrain.

Because most of the previous work is based on the [GDG*17],
we compare our method in Figure 10. The figure has a ridge sketch
with the λ shape and a circle valley sketch outside. We reproduce
the result of [GDG*17] by following the personal website and ap-
plying the pre-trained model to the Pix2pix [IZZE17] model in
Figure 10. The generation of [GDG*17] does not satisfy our user-
defined sketch and contains too many redundant sketches. This is
likely because a predefined elevation map is needed for better gen-
eration. More discussion is in the next experiment.

Figure 11: Detailed analysis of why [GDG*17] fails.

Figure 12: Comparison of ControlNet [ZRA23] finetuned by USA
dataset. (a) and (b) are the training DEM and the corresponding
training input sketches. (c) and (d) are the results using the same
input sketch from Figure 11.

We continue the following experiment in Figure 11 to compare
with [GDG*17]. Note that two λs are different. The left is similar
to the original paper [GDG*17] where all sketches are ridges. How-
ever, our experiment has a valley around it. The result shows that
when we have all sketches as ridges (the same as in the original pa-
per), we get a reasonable output DEM. However, the model fails to
generate a plausible result when we put ridge and valley sketches
together in a less common way (the valleys are independent and
have no interaction with the ridge). This shows that the CNN-based
method does not disentangle different features and does not gener-
alize to out-of-distribution situations.

7.3. Comparison with ControlNet

Recently, diffusion-based models have shown outstanding perfor-
mance in image generation tasks. We compare our method with the
diffusion-based model ControlNet [ZRA23]. We finetuned the Con-
trolNet model based on the 7000 DEMs sampled from the United
States and applied the sketch parts extraction algorithm Section 4.1
to extract the DEM contours. The input of the ControlNet model is
the DEM contours of ridges and valleys, and a prompt, ‘Given the
ridges and valleys, please create the Digital Elevation Model’. The
output initially consists of RGB images, but we transfer them into
grayscale images. We use a V100 to finetune the ControlNet based
on the backbone of Stable Diffusion 2.1 [RBL*22], which takes 5
days for 500 epochs. Then, the same λ shape with ridges and valleys
is fed into the model. The result is shown in Figure 12. Similar to
the work [GDG*17], the method suffers from the need for a large
amount of training data, slow training speed, and still cannot disen-
tangle the ridges from the valleys and generate a bad result when the
conditional input is clearly out of distribution. Our proposed models

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

10 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Table 1: PSNR values (dB) baselines for a real-world scenario (higher value is better).

Dataset Alps Grand Canyon Amazon River Sahara Himalayas

Stable diffusion 8.33± 0.88 8.33± 1.48 8.48± 0.84 7.69± 1.72 7.92± 1.02
Ours 18.12± 2.78 15.81± 4.99 17.82± 2.58 14.02± 4.47 20.38± 2.42

are more efficient (4 h compared to 5 days) and have better gener-
alizability. For inferencing, ControlNet takes around 20 s for each
patch, which is similar to our model.

We also conducted experiments to show some quantitive re-
sults comparing our model to the Diffusion-based models with re-
sults shown in Table 1 (around 10 dB for PSNR [HZ10] on aver-
age). The baseline is a ControlNet [ZRA23] using Stable Diffusion
2.1 [RBL*22] finetuned by 7000 terrains sampled from the Uited
States. We get the DEM from Commission for Environmental Co-
operation (CEC). Note that ControlNet takes much more data than
our model (7000:1) and also significantly more time for training (1
week vs. 4 h) on the same hardware. The evaluation metric is PSNR,
which is a common metric for image reconstruction tasks. We did
not use the FID [HRU*17] score because the amount of testing sets
is limited. The FID requires thousands of images due to their un-
derlying assumption that features follow a multivariate Gaussian
distribution. Since our task focused on single-shot terrain sketch-
ing, our testing sets are the neighbours (around 49) of the training
image.

7.4. Deep neural model

Generalizability: For machine learning models, generating from
user-defined simple sketches suffers from a significant technical
challenge: the input sketches differ notably from those in training.
Unlike the densely detailed sketches typically found in training data,
these user-generated sketches are sparse, featuring smoother height
representations due to the constraints of the user interface design.
Furthermore, the user sketches deviate from natural terrain patterns.
All these factors can hinder machine learning-based terrain gener-
ation models from producing realistic terrains. Even though pre-
vious machine learning-based models yield visually appealing re-
sults, they lack explanation. Meanwhile, the traditional models do
not have the same problem. They ensure the generated output shares
the same distribution by leveraging physically informed differen-
tial equations.

Our model borrows the idea from the traditional method and en-
deavours to simulate the traditional terrain diffusion model using
neural networks. The key idea is to disentangle the ridges and val-
leys so that the authors can arbitrarily combine them. We conducted
two experiments, t-SNE and partial sketches, to show that our model
can disentangle the sketches. We only show the result for Grand
Canyon data due to the limited space, but others work similarly.

t-SNE [vdMH08] visualization in Figure 13 shows that the
sketches embedding after our GNN model, that is, E (t)

r , are clearly
separated into two groups. Few sketches are hard to disentangle,
which is reasonable since the terrain is noisy.

Figure 13: t-SNE of Sketches Embedding trained on the Grand
Canyon.

Partial Sketches: In the second experiment, we gradually added
more detailed sketches to the terrain. This experiment shows how
our model disentangles different sketches and then merges them.
Our Grand Canyon data shows one dominant valley across the en-
tire terrain. Besides, it is also affected by the nearby ridges and val-
leys. The first image in Figure 14 only has the main valley sketch.
More and more details are added to the terrain when more sketches
are added in the following images. This experiment also indicates
when our Sketch Alignment (Section 5.3) process does not work
as expected, we can manually change it to some specific alignment
when we want the terrain to have the exact same features as shown
in the style terrain.

Topology: As we claimed in the previous part, our model can pre-
serve the low-level topology information (rotation invariant) since
we only consider the relative position between a sketch and its cor-
responding neighbours. Therefore, when we rotate our sketch for
different angles and transit it to different positions, the result in
Figure 15 remains very similar. This also proves that our model is
robust. When we rotate the sketches, they will be affected by little
tweaks due to the 2D image rotation algorithms.

7.5. High resolution

All previous examples were shown on patches of 128× 128. Here,
we show how we can generate terrains with larger resolutions, for
example, 1024 × 1024. Our model can be applied to different res-
olutions. We generate all patches separately and then merge them
while blurring the boundary. The merging algorithm is simple: first,
the DEM is scaled by a ground truth factor since it is normalized to
[0,1] scale for training stability. Then, the linear interpolation for the
four rows/columns is applied for each of the two adjacent batches.
We show three datasets, that is, Alps, Moon, and Himalayas, in

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.example.comhttp://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/
https://www.example.comhttp://www.cec.org/north-american-environmental-atlas/land-cover-30m-2020/

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 11 of 17

Figure 14: The result of specific sketches. The blue lines on the top-left corner indicate the sketches we applied to reproduce the terrain. From
(a) to (e) are the results for valley sketches only, (f) shows the results for both ridges and valleys and (g) is the ground truth. For (a) to (f), we
only apply the sketches lie in the left part (30 ≤ x ≤ 50).

Figure 15: The results for different rotation angles and positions.
The top is the rendered effect of the Sahara Desert. The bottom is the
rendered effect of the Grand Canyon. Note that there will be slight
differences in the edge of the image. Our resolution is limited, and
the edge will affect the final result.

Figure 16: The high-resolution results for different styles.

Figure 16. Some results have a checkerboard effect. Theoretically,
our work should not have a checkerboard effect, at least for the GNN
part. Since the GNN directly models the relationship of each pixel,
the model itself is not limited by the resolution. There are two rea-
sons for that. (1) The GPUmemory size limits the resolution. Larger
resolution indicates more pixels and complex relationships, making
the GNN too large for a 24 GB GPU and time-consuming. (2) We
apply a SinGAN for better details, making it hard to generalize di-
rectly to a large-resolution image.

We also conduct experiments for different resolutions on the
Grand Canyon dataset to show how our model will learn under dif-
ferent resolutions. The result is shown in Figure 17. The lower reso-

Figure 17: The results for the Grand Canyon under different scales.
The above is the ground truth for our model to learn. The under
DEMs are our generation results. All DEMs are 128 × 128 pixels.
However, each pixel is 60m, 120m and 240m in three columns re-
spectively.

lution does not include enough details, leading to a smoother result
than the DEMs in the 60m resolution DEM, which provides a more
noisy detailed output.

7.6. Ablation study

Our paper proposed two critical components: Sketch Part Extraction
(Section 4.1) and Random Sketches (Section 5.2). We conducted
ablation studies on these two modules.

During the training, our model would suffer from reconstruct-
ing the DEM if the sketch part consists of too many nodes (more
than 20). A larger sketch part will aggregate more information about
neighbouring pixels. The pixel information is then smoothed, and
the generated result loses details. Even larger sketch parts, for exam-
ple, the entire sketch as a sketch part will cause our model to recon-
struct the DEMwithout any details. Figure 18 shows the result when
the sketch part consists of 5− 10 and 15− 20 pixels for the Sahara
Desert and the Amazon River. Examples with 5 − 10 pixels include
more details while increasing the size to 15 − 20 loses information.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

12 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Figure 18: The ablation study results in each sketch part’s number
of pixels.

Figure 19: The SSIM value after we have the number of pixels of
each sketch part around 15 − 20. The average results are lower than
the previous 5 − 10 SSIM value, indicating less similarity.

Thus, we choose the 5− 10 pixels in our setting. This finding also
applies to real-world sketch scenarios since in Figure 19, the aver-
age SSIM value is lower than in Figure 8. This phenomenon should
be alleviated by increasing the representation power of our model.
However, we cannot conduct the experiments due to the limitation
of GPU memory size.

To prove our Random Sketches component is useful, we show
the generated DEM without sketches in Figure 20 first column.
Considering that the Moon is composed of craters, the generated
smooth terrain does not capture the craters’ features. To this end,
we apply the random sketches component in the second and third
columns of Figure 20. Apparently, if there are too many randomly
generated sketches, the generated terrain will suffer from the noise,
which leads to a more plausible terrain. A suitable amount of ran-
dom sketches makes the terrain more realistic. Meanwhile, the ran-
domness of sketches ensures diversity.

8. Conclusions and Future Work

Terrain generation using deep learning has been more and more pre-
vailing. In this work, we proposed a new model that merits the ben-

Figure 20: The results of the ablation study of the random sketches.
The first column is the result of the Moon with a ‘λ’ sketch only.
The second and third columns are the results with different random
sketch numbers.

efits of deep learning’s expression power while maintaining the loss
of topology information. Meanwhile, due to the disentanglement
of different features, our model has a better generalization power
and can be applied to arbitrary user sketches. Last but not least,
our model only needs a single terrain image for the training process
and can give a more subtle definition of what style is. Despite these
advantages, our model is memory-consuming because all the edge
information is stored in the GPU during training. This limits our
model from generating larger resolution terrain. More sketch types
can be added too, for example, holes on the Moon, rivers, and cliffs.
More detailed sketch information will create a more detailed image.
Our model can also be generalized to the 3D version for materials
or meshes in the future.

Limitations and Future Work: One limitation of our approach is
that we only use ridges and valleys. Different features could be used
to describe the terrain in a more detailed way, similar to [GDG*17].
Another limitation is the long training time. It takes 4 h to train,
mainly because the feature graph is dense. We could decrease the
size of the graph by splitting the long sketch into fewer sketches
while increasing the neural network size to ensure the representa-
tion power. Alternatively, we could use a smaller model, but the
precision of the proposed algorithm would suffer. Methods using
model quantization and simplification could also be used. More-
over, new generations of GPUs will likely reduce the processing
time.

Acknowledgements

The authors have nothing to report.

References

[AAC*17] ArgudoO., Andujar C., Chica A., Guérin E., Digne
J., Peytavie A., Galin E.: Coherent multi-layer landscape syn-
thesis. The Visual Computer 33, 6 (2017), 1005–1015.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 13 of 17

[AGP*19] Argudo O., Galin E., Peytavie A., Paris A., Gain J.,
Guérin E.: Orometry-based terrain analysis and synthesis. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–12.

[AGP*20] Argudo O., Galin E., Peytavie A., Paris A., Guérin
E.: Simulation, modeling and authoring of glaciers. ACM Trans-
actions on Graphics (TOG) 39, 6 (2020), 1–14.

[AK00] Aurenhammer F., Klein R.: Voronoi diagrams. Hand-
book of Computational Geometry 5, 10 (2000), 201–290.

[ASA07] Anh N. H., Sourin A., Aswani P.: Physically based
hydraulic erosion simulation on graphics processingunit. In
GRAPHITE ’07: Proceedings of the 5th International Confer-
ence on Computer Graphics and Interactive Techniques in Aus-
tralia and Southeast Asia (New York, NY, USA, 2007), ACM,
pp. 257–264. http://doi.acm.org/10.1145/1321261.1321308.

[BF01] Benes B., Forsbach R.: Layered data representation for
visual simulation of terrain erosion. In SCCG ’01: Proceedings of
the 17th Spring Conference on Computer Graphics (USA, 2001),
vol. 25(4), IEEE Computer Society, pp. 80–86.

[BF02] Benes B., Forsbach R.: Visual simulation of hydraulic
erosion. Journal of WSCG 10, 1 (2002), 79–86.

[BTHB06] Benes B., Těšínský V., Hornyš J., Bhatia S. K.:
Hydraulic erosion. Computer Animation and Virtual Worlds
17, 2 (2006), 99–108. https://onlinelibrary.wiley.com/doi/abs/10.
1002/cav.77.

[CBC*16] Cordonnier G., Braun J., Cani M.-P., Benes B.,
Galin E., Peytavie A., Guérin E.: Large scale terrain gener-
ation from tectonic uplift and fluvial erosion. ACM Transactions
on Graphics 35, 2 165–175. https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.12820.

[CCB*18] Cordonnier G., Cani M.-P., Benes B., Braun J.,
Galin E.: Sculpting mountains: Interactive terrain modeling
based on subsurface geology. IEEE Transactions on Visualiza-
tion and Computer Graphics 24, 5 (May 2018), 1756–1769.
https://doi.org/10.1109/TVCG.2017.2689022.

[CEG*18] Cordonnier G., Ecormier P., Galin E., Gain J.,
Benes B., Cani M.-P.: Interactive generation of time-evolving,
snow-covered landscapes with avalanches. Computer Graphics
Forum 37, 2 (2018), 497–509. https://doi.org/10.1111/cgf.13379.

[CJP*23] Cordonnier G., Jouvet G., Peytavie A., Braun J.,
Cani M.-P., Benes B., Galin E., Guérin E., Gain J.: Forming
terrains by glacial erosion. ACM Transaction on Graphics 42, 4
(July 2023), 1–14. https://doi.org/10.1145/3592422.

[CMF98] Chiba N., Muraoka K., Fujita K.: An erosion model
based on velocity fields for the visual simulation of mountain
scenery. The Journal of Visualization and Computer Animation
9 (1998), 185–194.

[CPPM22] Chien E., Pan C., Peng J., Milenkovic O.: You are
allset: A multiset function framework for hypergraph neural net-

works. In International Conference on Learning Representations
(2022). https://openreview.net/forum?id=hpBTIv2uy_E.

[ENCC*21] Ecormier-Nocca P., Cordonnier G., Carrez P.,
Moigne A.-m., Memari P., Benes B., Cani M.-P.: Authoring
consistent landscapes with flora and fauna. ACM Transactions on
Graphics 40, 4 (2021), 1–13. https://doi.org/10.1145/3450626.
3459952.

[EVC*15] Emilien A., Vimont U., Cani M.-P., Poulin P., Benes
B.: Worldbrush: Interactive example-based synthesis of proce-
dural virtual worlds. ACM Transactions on Graphics 34, 4 (July
2015), 1–11. https://doi.org/10.1145/2766975.

[FFC98] Fournier A., Fussell D., Carpenter L.: Computer
rendering of stochastic models. ACM Transactions on Graph-
ics 17, 4 (1998), 189–202. https://doi.acm.org/10.1145/280811.
280993.

[FRC*07] Farr T. G., Rosen P. A., Caro E., Crippen R., Duren
R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth
L., Seal D., Shaffer S., Shimada J., Umland J., Werner M.,
Oskin M., Burbank D., Alsdorf D.: The shuttle radar topog-
raphy mission. Reviews of Geophysics 45 (May 2007), 1–33.
https://doi.org/10.1029/2005RG000183.

[FYZ*18] Feng Y., You H., Zhang Z., Ji R., Gao Y.: Hypergraph
neural networks. AAAI 2019, (2018).

[Gab77] Gabow H. N.: Two algorithms for generating weighted
spanning trees in order. SIAM Journal on Computing 6, 1 (1977),
139–150.

[GDG*17] Guérin É., Digne J., Galin E., Peytavie A., Wolf
C., Benes B., Martinez B.: Interactive example-based terrain
authoringwith conditional generative adversarial networks.ACM
Transactions on Graphics (TOG) 36, 6 (2017), 1–13.

[GGG*13] Génevaux J.-D., Galin E., Guérin E., Peytavie A.,
Benes B.: Terrain generation using procedural models based on
hydrology. ACM Transactions on Graphics 32, 4 (July 2013), 1–
13. https://doi.org/10.1145/2461912.2461996.

[GGP*19] Galin E., Guérin E., Peytavie A., Cordonnier G.,
Cani M.-P., Benes B., Gain J.: A review of digital terrain mod-
eling. Computer Graphics Forum 38, 2 (2019), 553–577. https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13657.

[GPAM*20] Goodfellow I., Pouget-Abadie J., Mirza M., Xu
B., Warde-Farley D., Ozair S., Courville A., Bengio Y.:
Generative adversarial networks. Communications of the ACM
63, 11 (2020), 139–144.

[GPM*22] Guérin E., Peytavie A., Masnou S., Digne J.,
Sauvage B., Gain J., Galin E.: Gradient terrain authoring.
Computer Graphics Forum 41, (2022), 85–95.

[Gus97] Gusfield D.: Algorithms on stings, trees, and sequences:
Computer science and computational biology. ACM Sigact News
28, 4 (1997), 41–60.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://doi.acm.org/10.1145/1321261.1321308
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.77
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.77
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12820
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12820
https://doi.org/10.1109/TVCG.2017.2689022
https://doi.org/10.1111/cgf.13379
https://doi.org/10.1145/3592422
https://openreview.net/forum?id=hpBTIv2uy_E
https://doi.org/10.1145/3450626.3459952
https://doi.org/10.1145/3450626.3459952
https://doi.org/10.1145/2766975
https://doi.acm.org/10.1145/280811.280993
https://doi.acm.org/10.1145/280811.280993
https://doi.org/10.1029/2005RG000183
https://doi.org/10.1145/2461912.2461996
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13657
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13657

14 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

[HAYC20] Huang Z., Arian A., Yuan Y., Chiu Y.-C.: Us-
ing conditional generative adversarial nets and heat maps with
simulation-accelerated training to predict the spatiotemporal im-
pacts of highway incidents. Transportation Research Record
2674, 8 (2020), 836–849.

[HCX*22] He K., Chen X., Xie S., Li Y., Dollár P., Girshick
R.: Masked autoencoders are scalable vision learners. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (NewOrleans, LA, 2022), IEEE, pp. 16000–
16009.

[HHM*23] Hu Z., Hu K., Mo C., Pan L., Wang Z.: Terrain diffu-
sion network: Climatic-aware terrain generation with geological
sketch guidance. arXiv preprint arXiv:2308.16725 (2023).

[Hor45] HortonR. E.: Erosional development of streams and their
drainage basins: Hydrophysical approach to quantitative mor-
phology. Geological Society of America Bulletin 56, 3 (1945),
275–370.

[HRU*17] Heusel M., Ramsauer H., Unterthiner T., Nessler
B., Hochreiter S.: GANs trained by a two time-scale up-
date rule converge to a local nash equilibrium. Advances
in Neural Information Processing Systems 30, (2017), 6629–
6640.

[HZ10] Horé A., Ziou D.: Image quality metrics: PSNR vs. SSIM.
In 2010 20th International Conference on Pattern Recognition
(Istanbul, Turkey, 2010), IEEE, pp. 2366–2369. https://doi.org/
10.1109/ICPR.2010.579.

[IZZE17] Isola P., Zhu J.-Y., Zhou T., Efros A. A.: Image-
to-image translation with conditional adversarial networks. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (Honolulu, HI: 2017), IEEE, pp. 1125–
1134.

[JD88] Jenson S. K., Domingue J. O.: Extracting topographic
structure from digital elevation data for geographic informa-
tion system analysis. Photogrammetric Engineering and Remote
Sensing 54, 11 (1988), 1593–1600.

[JFBB10] Jones M. D., Farley M., Butler J., Beardall M.:
Directable weathering of concave rock using curvature estima-
tion. IEEE Transactions on Visualization and Computer Graph-
ics 16, 1 (January 2010), 81–94. https://doi.org/10.1109/TVCG.
2009.39.

[JGP17] Jang E., Gu S., Poole B.: Categorical reparameterization
with Gumbel-Softmax. In International Conference on Learning
Representations (Toulon, France, 2017), OpenReview.net.

[KBKŠ09] Krištof P., Benes B., Křivánek J., Šťava O.: Hy-
draulic erosion using smoothed particle hydrodynamics. Com-
puter Graphics Forum (Proceedings of Eurographics 2009)
28, 2 (March 2009), 469–478. http://www2.tech.purdue.edu/cgt/
Facstaff/bbenes/private/papers/EG09SPH.zip.

[KDRB21] Kim H., Dischler J.-M., Rushmeier H., Benes B.:
Edge-based procedural textures. The Visual Computer 37, 9

(2021), 2289–2302. https://doi.org/10.1007/s00371-021-02212-
4.

[KHM*20] Krs V., Haedrich T., Michels D. L., Deussen O.,
Pirk S., Benes B.: Wind Erosion: Shape modifications by in-
teractive particle-based erosion and deposition. In Eurograph-
ics/ ACM SIGGRAPH Symposium on Computer Animation —
Posters (2020), Michels D. L., (Ed.), The Eurographics Associa-
tion. https://doi.org/10.2312/sca.20201216.

[KMN88] Kelley A. D., Malin M. C., Nielson G. M.: Ter-
rain simulation using a model of stream erosion. ACM Transac-
tions on Graphics (1988), 263–268. http://doi.acm.org/10.1145/
54852.378519.

[KW17] Kipf T. N., Welling M.: Semi-supervised classification
with graph convolutional networks. In The International Con-
ference on Learning Representations (ICLR) (Toulon, France,
2017), OpenReview.net.

[LGP*23] Lochner J., Gain J., Perche S., Peytavie A., Galin
E., Guérin E.: Interactive authoring of terrain using diffusion
models. Computer Graphics Forum 42, 7 (2023), e14941.

[LM17] Li P., Milenkovic O.: Inhomogeneous hypergraph clus-
tering with applications. Advances in Neural Information Pro-
cessing Systems 30 (2017), 1237–1246.

[LM18] Li P., Milenkovic O.: Submodular hypergraphs: p-
Laplacians, Cheeger inequalities and spectral clustering. In Inter-
national Conference on Machine Learning (Stockholm, Sweden,
2018), PMLR, pp. 3014–3023.

[Man83] Mandelbrot B. B.: The Fractal Geometry of Nature.
W.H. Freeman and Company, San Francisco, 1983.

[MKM89] Musgrave F. K., Kolb C. E., Mace R. S.: The synthesis
and rendering of eroded fractal terrains. In SIGGRAPH ’89: Pro-
ceedings of the 16th Annual Conference on Computer Graphics
and Interactive Techniques (New York, NY, USA, 1989), ACM
Press, pp. 41–50. https://doi.acm.org/10.1145/74333.74337.

[PFS*19] Park J. J., Florence P., Straub J., Newcombe R.,
Lovegrove S.: Deepsdf: Learning continuous signed distance
functions for shape representation. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (Long Beach,
CA, June 2019), IEEE.

[PPB*23] Perche S., Peytavie A., Benes B., Galin E., Guérin
E.: Authoring terrains with spatialised style. Computer Graph-
ics Forum 42, 7 (October 2023), e14936. https://doi.org/10.1111/
cgf.14936.

[RBL*22] Rombach R., Blattmann A., Lorenz D., Esser P.,
Ommer B.: High-resolution image synthesis with latent diffusion
models. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR) (NewOrleans, LA,
June 2022), IEEE, pp. 10684–10695.

[RKČ*22] Rajasekaran S. D., Kang H., Čadík M., Galin E.,
Guérin E., PeytavieA., Slavík P., Benes B.: PTRM: Perceived

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1109/TVCG.2009.39
https://doi.org/10.1109/TVCG.2009.39
http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/EG09SPH.zip
http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/EG09SPH.zip
https://doi.org/10.1007/s00371-021-02212-4
https://doi.org/10.1007/s00371-021-02212-4
https://doi.org/10.2312/sca.20201216
http://doi.acm.org/10.1145/54852.378519
http://doi.acm.org/10.1145/54852.378519
https://doi.acm.org/10.1145/74333.74337
https://doi.org/10.1111/cgf.14936
https://doi.org/10.1111/cgf.14936

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 15 of 17

terrain realism metric. ACM Transactions on Applied Perception
19, 2 (July 2022), 1–22. https://doi.org/10.1145/3514244.

[RSDM19] Rott Shaham T., Dekel T., Michaeli T.: Singan:
Learning a generative model from a single natural image. In
Computer Vision (ICCV), IEEE International Conference on
(2019), IEEE, 4510–4519.

[SBBK08] Stava O., Benes B., Brisbin M., Krivanek J.:
Interactive terrain modeling using hydraulic erosion. Euro-
graphics/Siggraph Symposium on Computer Animations SCA
27, (2008), 201–210. http://www2.tech.purdue.edu/cgt/Facstaff/
bbenes/private/papers/Stava08SCA.zip, https://doi.org/10.2312/
SCA/SCA08/201-210.

[VCC*18] Veličković P., Cucurull G., Casanova A., Romero
A., Lio P., Bengio Y.: Graph attention networks. In International
Conference on Learning Representations (2018).

[vdMH08] van der Maaten L., Hinton G.: Visualizing data us-
ing t-SNE. Journal of Machine Learning Research 9, 86 (2008),
2579–2605. http://jmlr.org/papers/v9/vandermaaten08a.html.

[WBSS04] Wang Z., Bovik A., SheikhH., Simoncelli E.: Image
quality assessment: from error visibility to structural similarity.
IEEE Transactions on Image Processing 13, 4 (2004), 600–612.

[WCMT07] Wojtan C., Carlson M., Mucha P. J., Turk G.:
Animating corrosion and erosion. In Proceedings of the Euro-
graphics Workshop on Natural Phenomena, NPH 2007, (Prague,
Czech Republic, 2007), Eurographics Association, pp. 15–22.
https://doi.org/10.2312/NPH/NPH07/015-022.

[WYL*22] Wang P., Yang S., Liu Y., Wang Z., Li P.: Equiv-
ariant hypergraph diffusion neural operators. arXiv preprint
arXiv:2207.06680 (2022).

[XHLJ19] Xu K., Hu W., Leskovec J., Jegelka S.: How power-
ful are graph neural networks? In The International Conference
on Learning Representations (ICLR) (New Orleans, LA, USA,
2019), OpenReview.net.

[YCC*24] Yang Z., Cordonnier G., Cani M.-P., Perrenoud C.,
Benes B.: Unerosion: Simulating terrain evolution back in time.
Computer Graphics Forum 43, (2024), 1–15. https://doi.org/10.
1111/cgf.15182.

[YNGS*08] Yu A., Novo-Gradac A., Shaw G., Unger G.,
Ramas-Izquierdo L., Lukemire A.: The lunar orbiter laser al-
timeter (LOLA) laser transmitter [6871-109]. In Proceedings-
SPIE the International Society for Optical Engineering (2008),
vol. 6871, International Society for Optical Engineering; 1999,
p. 6871.

[ZLB*19] Zhao Y., Liu H., Borovikov I., Beirami A., Sanjabi
M., Zaman K.: Multi-theme generative adversarial terrain am-
plification. ACM Transactions on Graphics (TOG) 38, 6 (2019),
1–14.

[ZLZ*18] Zhang Z., Lin H., Zhao X., Ji R., Gao Y.: Inductive
multi-hypergraph learning and its application on view-based 3D

object classification. IEEE Transactions on Image Processing 27,
12 (2018), 5957–5968.

[ZPIE17] Zhu J.-Y., Park T., Isola P., Efros A. A.: Unpaired
image-to-image translation using cycle-consistent adversarial
networks. In Proceedings of the IEEE international conference
on computer vision (Venice, Italy, 2017), IEEE, pp. 2223–2232.

[ZRA23] Zhang L., Rao A., Agrawala M.: Adding conditional
control to text-to-image diffusion models. In IEEE International
Conference on Computer Vision (ICCV) (Vancouver, Canada,
2023), IEEE.

[ZSTR07] Zhou H., Sun J., Turk G., Rehg J. M.: Terrain synthe-
sis from digital elevation models. IEEE transactions on visual-
ization and computer graphics 13, 4 (2007), 834–848.

Appendix A

A.1. Additional results

We show additional terrain in Figure A1.

A.2. Large sketches and regions

We preprocess the region of the sketch due to the limitations of the
GPUmemory. The preprocessing focuses on constructing the region
r with corresponding pixels p. The region is affected by a sketch
(Section 3). However, the terrain is too informative to make the en-
tire sketch into one embedding.

We split the long sketch into small sketches. Note that this op-
eration will not affect the topology information since Equation (1)
injects partial sketch information into nearby pixels and then up-
dates the nearby sketches. The original sketches are still connected.
Inspired by the MAE [HCX*22], 5% small sketches will be masked
in each iteration. This can help the model fully explore the data and

Figure A1: The ground truth of the Amazon River, the Sahara, the
Danakil Depression, the Himalayas.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1145/3514244
http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/Stava08SCA.zip
http://www2.tech.purdue.edu/cgt/Facstaff/bbenes/private/papers/Stava08SCA.zip
https://doi.org/10.2312/SCA/SCA08/201-210
https://doi.org/10.2312/SCA/SCA08/201-210
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.2312/NPH/NPH07/015-022
https://doi.org/10.1111/cgf.15182
https://doi.org/10.1111/cgf.15182

16 of 17 Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks

Algorithm A1. Rotation and Normalization.

Input : A n × 2 array P : {(Pi
x, Pi

y)}, i = 1, . . . , n,
A m × 2 array Q : {(Qj

x, Qj
y)}, j = 1, . . . , m.

Output: Normalized P′,
Rotated normalized Q′

1 // Define the new direction

2 if P0
z > Pn

z then
3 Reverse (P)
4 end if
5 if Q0

z > Qn
z then

6 Reverse (Q)
7 end if
8 v1 = 〈

Pn
x − P1

x , Pn
y − Pq

y

〉

9 v2 = 〈
Qn

x − Q1
x, Qn

y − Qq
y

〉

10 θ = Calculate_Angle_from_v1_to_v2(v1, v2)
11 θ ′ = Round(θ/ π

8) × π

8
12 // Normalization

13 P′[0 : n − 1, :] = P[1 : n, :] − P[0 : n − 1, :]
14 P′

sum[:] = √
P′[:, 0]2 + P′[:, 1]2

15 P′ = P′/P′
sum // Element-wise divide

16 Q′[0 : m − 1, :] = Q[1 : m, :] − Q[0 : m − 1, :]

17 Q′
sum[:] =

√
Q′[:, 0]2 + Q′[:, 1]2

18 Q′ = Q′/Q′
sum // Element-wise divide

19 // Rotate the normalized Q′

20 Q′ = Rotate_Angle(Q′, −θ ′)return P′, Q′

Algorithm A2. Sketch Alignment.

Input : A n × 3 array P : {(Pi
x, Pi

y, Pi
z)}, i = 1, . . . , n,

k m × 3 arrays Qk : {(Qj
x, Qj

y, Qj
z)}, j = 1, . . . , m.

Output: Index i of the aligned sketch.
1 // Initialization

2 L[1..k] ← 0
3 for i ← 1 to k do
4 // Rotate and Normalize two vectors

5 P′, Q′
i = Rotation_and_Normalization(P, Qi)

6 // return the index of longest common

substring

7 IP′
i
, IQ′

i
= Longest_Common_Substring(P′, Q′

i)

8 L[i] = length(IP′)
9 end for

10 Choose the top 10 largest values in L.
11 Compute height differences on the LCS IP′

i
and IQ′

i

12 Randomly choose one sketch from the top 5 smallest height
differences.

13 return Sketch index i with the smallest height difference

the correlation among sketches while avoiding the over-fitting prob-
lem.

A.3. Initialization of f (t)p and E (t)
r

Pixels are assigned to some initial values depending on whether they
consist of a sketch in Equation (A1). A nonlinear multiple layer per-
ceptron (MLP) MLP0 is applied to increase the dimension for the

Table B1: The numerical result of the training process.

Terrain Alps Grand Canyon Moon

lgt (×10−4) 7.50 8.38 5.88
lgradient (×10−4) 1.70 2.25 1.53
lsketch(×1) 0.37 0.08 0.26
lsmooth(×1) 0.01 0.05 0.05
l f urther (×10−4) 0.37 2.45 8.88
lssim 0.97 0.97 0.99

Note: The first column is our loss functions, and the next three columns show
the number of steps when we stopped training for different terrains.

later process, and E (t)
r is randomly sampled from normal distribu-

tion N (0, 1):

f 0p =

⎧⎪⎨
⎪⎩
MLP0(1) p ∈ ridge

MLP0(−1) p ∈ valley

MLP0(0) others

. (A1)

A.4. Design of erp

Edge information erp depicts the relation between a pixel p and a
region r. A representative yet generalizable feature is essential. We
propose the below items for the erp:

• The relative position: the index projrp of projection p on sketch e
and the distance from p to the projection distrp.

• Sketch indicators Isketch, a 2D vector: the first dimension indicates
whether the pixel is on the ridge; the second indicates the valley.

• embedding Emb(·) of sketches index Idxsketch. Each sketch has a
unique embedding for a specific local feature.

• Gaussian noise n, where n ∼ N (0, 1) for randomness.

A.5. Choice of Enc1, Enc2, Gathrp and Gathrr

For Enc1 and Enc2, we simply apply an MLP. However, to have a
better representation power, the summation of f (t)p and E (t)

r is ap-
plied. This is because it enables the set function to be both permu-
tation invariant and equivariant [WYL*22]:

Enc1(f
t
p, e

r
p) = MLP1

⎛
⎝ f tp, e

r
p,

∑
∀p,p∈r

f (t)p

⎞
⎠

Enc2(E
(t)
r , erp) = MLP2

⎛
⎝E (t)

r , erp,
∑
∀r,p∈r

E (t)
r

⎞
⎠.

The implementation is adopted from [WYL*22]. However, in our
work, since all information erp is stored on edge, we concatenate the
erp to the node information f tp and E

(t)
r .

For Gathrp and Gathrr, we choose the graph attention
model [VCC*18]. Again, we inject erp to each node to incorporate
edge information.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

Y. Liu and B. Benes / Single-Shot Example Terrain Sketching by Graph Neural Networks 17 of 17

Appendix B: More Experiments

Expressive Power is the ability to overfit the model. We show
the training loss for three different terrains. The lgt and other losses
are shown in Table B1.

Table B1 shows that all the datasets have a similar performance
of lgt and lgradient around 7.25 × 10−4 and 1.83× 10−4, indicates that

our model can reconstruct all these terrains while keeping the high-
frequency features. The lsketch and lsmooth values are small, ensuring
that each sketch is smooth and follows the common knowledge of
the shape of the ridge and valley. The l f urther is around 3.90 × 10−4.
This forces the influence of a sketch to decrease to zero when the
distance is far enough. The lssim around 0.98 shows they are al-
most identical.

© 2025 The Author(s). Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd.

 14678659, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/cgf.15281 by B

edrich B
enes , W

iley O
nline L

ibrary on [10/02/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

	Single-Shot Example Terrain Sketching by Graph Neural Networks
	1. Introduction
	2. Related Work
	3. Overview
	4. Training
	4.1. Contour and contour parts extraction
	4.2. Contour region construction
	4.3. The GNN model
	4.4. SinGAN

	5. Inference
	5.1. User input sketch
	5.2. Random sketches
	5.3. Sketch part alignment
	5.4. Generation

	6. Implementation
	6.1. Loss functions

	7. Results
	7.1. Datasets
	7.2. Sketches in patches
	7.3. Comparison with ControlNet
	7.4. Deep neural model
	7.5. High resolution
	7.6. Ablation study

	8. Conclusions and Future Work
	Acknowledgements
	References
	Appendix A
	A.1 Additional results
	A.2 Large sketches and regions
	A.3 Initialization of and
	A.4 Design of
	A.5 Choice of , , and

	Appendix B: More Experiments

