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Abstract
This paper introduces a novel deep neural model for segmenting and tracking the

number of leaves in sorghum plants in phenotyping facilities. Our algorithm inputs

a sequence of images of a sorghum plant and outputs the segmented images and the

number of leaves. The key novelty of our approach is in training the deep neural

model. Manual annotations are tedious, and we have developed a procedural three-

dimensional (3D) sorghum model that provides detailed geometry and texture to

generate photorealistic 3D models. The overall shape of the sorghum leaf geome-

try is determined by its skeleton, and it is detailed by a procedural model that varies

its curvature, width, length, and overall shape. The color is determined by using a

Monte Carlo path tracer. We mimic the illumination of the phenotyping facility and

use reflectance and transmittance on sorghum surfaces to determine the color of the

leaves. The 3D procedural model allows us to generate photorealistic and segmented

images that we use to train a deep neural model. Our segmentation provides a mean

intersection over union score of 0.51, resulting in leaf counting accuracy within the

90% confidence interval for the human counts.

Abbreviations: 2D, two dimensional; 3D, three dimensional; AI, artificial
intelligence; RGB, red green blue; BRDF, bi-directional reflectance
distribution function; BTDF, bi-directional transmittance distribution
function; CPU, central processing unit; DL, deep learning; GPU, graphics
processing unit; IoU, intersection over union; RMSE, root mean squared
error; SAM, Segment Anything Model; SOTA, state-of-the-art.
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1 INTRODUCTION

Understanding the physiological and genetic basis of both
how plants grow and develop and how they adapt to envi-
ronmental stresses and perturbations across time has driven
the development of highly automated plant phenotyping facil-
ities around the globe (Chen et al., 2014; Fahlgren et al.,
2015; Ge et al., 2016; Yang et al., 2014; Zhang et al.,
2017). These fully or semi-automated facilities host dozens to
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thousands of plants in controlled environments and incorpo-
rate the capability to image these plants on regular intervals,
often from multiple angles and multiple imaging modalities.
The inclusion of high-resolution red green blue (RGB) (visi-
ble light) cameras is nearly universal. Still, different facilities
may incorporate thermal infrared, chlorophyll fluorescence,
hyperspectral reflectance cameras, and other data collection
instruments such as gravimetric measurement of water use or
depth information from the time of flight cameras (Li et al.,
2021). A single medium-scale automated plant phenotyping
facility can generate multiple terabytes of image data each
week for processing, including multiple photos taken from
different perspectives of each of hundreds of plants.

The ideal output of the visual data processing would be
a timestamped, highly detailed three-dimensional (3D) plant
geometry with color information available for each point on
the 3D plant geometry’s surface. Such data would allow auto-
matic measurements of plant surface area, volume, branching
angles, length of leaves, etc. The temporal data would allow
for capturing the plant’s growth and allow tests of the correla-
tion of different plant phenotypes with different experimental
treatments. Despite the tremendous progress in the field of
full 3D reconstruction in phenotyping facilities (McCormick
et al., 2016; Thapa et al., 2018; Wu et al., 2022), 3D mod-
els reconstructed from small numbers of images per plant
are often not detailed enough to be used for deep learning
(DL) models. Higher accuracy has been achieved but requires
capturing 80–160 images per plant from different viewing
angles (Li et al., 2022). From the viewpoint of signal theory,
plant two-dimensional (2D) RGB images, the most common
output of phenotyping facilities, are considered noisy signals
with high variability. Various state-of-the-art algorithms can
reconstruct certain parts (usually low-frequency data), such
as the stem of broad leaves. However, such reconstruction
often works only from particular views. This is because the
plant leaves are often very thin, which makes them diffi-
cult to capture in side views. While the lighting conditions
are controlled, the plant’s complex geometry causes complex
shading that adds to the uncertainty during the reconstruction,
especially for color calibration.

While completely reconstructing a 3D model of a plant
is complex and data intensive, recent algorithms in artifi-
cial intelligence (AI) and specifically in deep learning (DL)
allowed for answering targeted and well-articulated ques-
tions, such as the branching angles of sorghum (Tross et al.,
2021), leaf count (Gaillard et al., 2023; Giuffrida et al.,
2018; Miao et al., 2021; Ubbens et al., 2020), detection
and quantification of panicles (Ghosal et al., 2019; Lin &
Guo, 2020), stomata classification and quantification (Zhang
et al., 2021), genotypic prediction based on phenotype (Zhang
et al., 2022), quantification of plant disease (Johnson et al.,
2021; Nagasubramanian et al., 2019; Stewart et al., 2019),
biomass distribution (Gage et al., 2019), identifying grape

Core Ideas
∙ An automatic method to determine the number of

leaves of sorghum for phenotyping facilities.
∙ An automatic method to segment leaves of

sorghum for phenotyping facilities.
∙ Procedural model to generate three-dimensional

sorghum geometry and appearance to bridge the
sim-to-real gap in deep learning.

varieties (Pereira et al., 2019), estimating flowering time in
wheat (Wang et al., 2019), quantifying wheat spikes and esti-
mating rice density for yield estimation (Hasan et al., 2018;
Liu et al., 2020), identifying root and shoot features (Pound
et al., 2017), identifying and quantifying plant stress (Ghosal
et al., 2018; Singh et al., 2018), quantifying seeds in soybean
pods (Uzal et al., 2018), and plant growth modeling (Shi-
bata et al., 2020). These approaches are promising because
they answer specific research questions and do not require the
entire plant 3D reconstruction.

Leaf count is a crucial component of many agronomic
traits, making it a valuable indicator for various character-
istics. It serves as a dependable proxy for different traits,
facilitating early selection in plant breeding programs. For
instance, studies have demonstrated that variations in tem-
perature influence leaf growth rates, leaf numbers, and net
photosynthetic rates in different races of maize, underscor-
ing the importance of leaf count as a criterion for resistance
against temperature stress and overall plant health (Duncan
& Hesketh, 1968). Moreover, leaf number is correlated with
flowering time, as distinct varieties of the same species tend to
produce varying numbers of leaves before entering the repro-
ductive stage. This indicates that leaf count has a substantial
genetic relationship with flowering time in maize (Miao et al.,
2021). Notably, genes regulating leaf number and flowering
time have been found to be in pleiotropy, further supporting
the interconnectedness of these traits. Leaf number also plays
a pivotal role in the selection process for biomass yield in
various plants (Ciancolini et al., 2013; Plénet et al., 2000).
Additionally, it is widely used to determine the growth stages
of various plants such as sorghum (Ottman et al., 2001; Boyes
et al., 2001), and many others. Leaf count has previously
been estimated at a given point in time from 2D images for
maize (Miao et al., 2021) and rosette-shaped plants (Giuf-
frida et al., 2018; Miao et al., 2021) using methods such as
direct regression over the input image or explicitly identifying
and counting features such as leaf tips. These existing meth-
ods for estimating the leaf count from 2D images—even when
using trained human annotators—tend to undercount the total
leaves present. This is partly because no single viewing angle
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will have unobscured views of all extant leaves. In addition,
the change in position, size, and color of individual leaves
throughout development, combined with the senescence of
leaves later in development, makes tracking the identity of
leaves across multiple time points challenging and creates a
systematic bias toward underestimating the total leaf number
and leaf appearance rate.

Complete 3D plant reconstruction is not the goal addressed
by this paper. Still, it focuses on a particular problem of
employing multiple time point data from high-throughput
phenotyping to segment and quantify the number of leaves
(leaf number) of individual plants over time. Both total
leaf count and leaf emergence rates are critical variables
within crop growth models used to estimate how crops will
perform in different growing environments or to respond
to different management decisions by a farmer (Hammer
et al., 2010; Jiang et al., 2019). Leaf number and leaf emer-
gence rate can differ between different varieties of the same
plant species (Allen et al., 1973; Kim et al., 2017) and
between genetically identical plants grown in varying envi-
ronments (Brooking et al., 1995; Tollenaar & Hunter, 1983).
Genotype-specific crop growth models incorporating differ-
ences in phenological parameters such as leaf number and
leaf emergence rate can provide significant improvements in
predictive accuracy over generic models that employ average
values for a whole crop species (Kumar et al., 2009; Technow
et al., 2015).

The constraining factor in adopting more accurate plant
models is the cost and difficulty of obtaining accurate,
genotype-specific measurements for large numbers of plants
in multiple environments. Manual leaf number and emergence
rate data collection is time intensive and error prone. Indi-
vidual leaves are initially very small and may be obscured by
other recently emerged leaves. Over time, leaves grow in size
and alter their angle, position, and coloration as they mature.
Later in development, early emerging leaves may senesce and
die. As a result, measurements at multiple points throughout
development and accurate tracking of leaf identity from one-
time point to the next allow us to accurately determine the
total number of leaves produced by a given plant throughout
its life cycle.

Our approach’s key contribution is generating novel syn-
thetic data to train a panoptic segmentation network and
to segment and count the number of leaves in images of
real plants. Manually counting and segmenting leaves is
tedious work, and our approach improves upon three critical
drawbacks of traditional 2D image-based counting.

The first improvement is that our method uses segmentation
to implicitly count entire leaves, as opposed to the state-of-
the-art (Miao et al., 2021) that focuses on only identifying leaf
tips. This approach significantly reduces the probability that
the leaf is missed in the input image, consequently increasing
the precision.

The second improvement our method offers over the limita-
tions of previous methods is that our method implicitly learns
to count leaves with complex occlusions because the synthetic
training data correctly models plant geometry with a range
of modeled occlusive conditions. Our method improves upon
the tendency of previous automated methods to undercount
the leaf number, which we believe to be due to our method
segmenting entire leaves even when they become occluded
further down the leaf in the image space. Confirming the rela-
tionship to occlusion is not the purpose of this work and is a
topic for future work.

Lastly, our method does not require manual segmenta-
tion as it relies purely on synthetically generated datasets
for training and synthetically segmented real data pairs in
the fine-tuning step. This allows for the generation of large
datasets of training data, and we provide one for future
experiments (Li, 2022).

2 MATERIALS AND METHODS

2.1 Overview

An overview of this process is shown in Figure 1. Our work’s
first key innovation is how the training data was generated. We
use a computer graphics-based synthetic algorithm to bridge
the sim-to-real gap in deep learning (Zhao et al., 2020) by pro-
viding highly detailed 3D geometric models of sorghum with
spectral reflectance on the surface. Our method also models
the phenotyping facility, its camera, and its illumination set-
tings. We combine the plant and the 3D scene by rendering
the images with an algorithm that considers light interaction
with the leaves on a photonic level. This results in an arbitrary
number of realistic images paired with their corresponding
segmented masks using solid colors for the leaves. Each plant
is displayed from multiple views, thus simulating the imag-
ing from various angles. The procedural model allows us to
generate the tens of thousands of image pairs needed to train
the deep neural model. We use the state-of-the-art DL-based
image segmentation algorithm Axial-Deeplab (Wang et al.,
2020) implemented in the Deeplab2 library (Weber et al.,
2021).

Images of real plants and corresponding temporal data from
the University of Nebraska–Lincoln Greenhouse Innovation
Center phenotyping facility are used in the inference step.
Each plant has been imaged from multiple angles, including
the top view, and has also been imaged over time. We indepen-
dently run these real images through the trained deep neural
model to obtain segmentation masks. Then, they have their
leaves counted using a data processing step that estimates the
total leaf count at each measurement and uses temporal coher-
ence to establish the new leaf emergence. The output of our
algorithm is the number of leaves per plant image.
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F I G U R E 1 Method overview. The procedural model (a) generates three-dimensional synthetic sorghum models that are rendered to provide
pairs of images: a photorealistic (left) and its segmented counterpart (right). Tens of thousands of pairs of images are used to train the deep neural
model (b). The trained model segments real sorghum images from time sequences, providing the segmented images and the leaf number per plant,
per day, and per view (c). The data is processed by providing the number of leaves over time (d).

2.2 Procedural sorghum model

One of the main contributions of this work is providing a flexi-
ble computer-generated synthetic 3D sorghum model that can
generate an arbitrary number of 3D plant geometries with
labeled parts. Computer graphics has focused on 3D plant
modeling for over forty years (see, e.g., Prusinkiewicz & Lin-
denmayer, 1990, or a review by Pirk et al., 2016). These
approaches mainly focus on providing a detailed appearance
that includes plant geometry and surface properties (Bara-
noski & Rokne, 1997, 2001). This work builds on the related
work by providing an algorithmic model that is easy to con-
trol and provides 3D shapes at varying stages of development.
We provide both shape and surface properties (texture) for the
procedurally generated sorghum. To calibrate the 3D model,
we used 3D partial reconstruction of plants into voxels (Gail-
lard et al., 2020b) and 3D skeletons (Gaillard et al., 2020a) that
use multiple views of sorghum from the phenotyping facility
to reconstruct the 3D model. The 3D data from real plants
guides the procedural model.

2.2.1 Leaf model

The procedural model generates the entire plant as a set of
concentric leaves. The 3D synthetic sorghum leaf model and
its parts are shown in Figure 2a. The leaf skeleton is the key
procedural driver, defining the overall leaf appearance. The
skeleton is modeled as a cubic spline curve and partitioned
into a sheath and blade for each leaf. The sheath is sampled
concurrently for all leaves to join them smoothly. Each sub-
part of the skeleton is further uniformly subdivided into the
desired level of detail. To reveal the general shape of the leaf,
we need a minimum of 16 segments. A leaf is modeled as a
half-opened generalized cylinder that closes in the proximity
of the branching point. It starts as a circle at the sheath, and the

circle breaks into an open curve at the auricle and then grad-
ually expands to a curved line to form the blade of the leaf.
At the end of each leaf, the defining sweeping curve degener-
ates into a single point, forming the tip of the leaf. We used
at least 128 segments per leaf to ensure a smooth surface for
photorealistic rendering. Each part of the model is fully con-
trolled by procedural parameters, allowing for generating leaf
variations (see Figure 2b,c). The default values of the most
important parameters (leaf width, waviness, and length) are
based on measured data with mean and variance from Gail-
lard et al. (2020a, 2020b), and the rest of the parameters are
set manually by experts to make leaves visually similar to real
leaves. The possible imprecision of the generated leaves does
not affect the training because we generate tens of thousands
of leaves statistically similar to the real-world measured data.

2.2.2 Plant model

The leaves are concentrically arranged to make the whole
plant, like the example in Figure 3. To arrange each leaf, we
first generate the 3D skeleton of the entire plant, branching
with the variance and waviness observed from the mea-
sured data. The plant skeleton has common parts (stem) and
branching points corresponding to the auricle. The spacing
and the branching angles are obtained from measured data
from Gaillard et al. (2020a, 2020b). Our model then gener-
ates individual leaves around the skeleton. The plant’s root
includes all leaves wrapping around the skeleton, and each
leaf further sweeps the skeleton until the branching point.

2.2.3 Leaf surface rendering

Generating a representative leaf color and texture in the
final image is one of the most critical parts needed for
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F I G U R E 2 The three-dimensional (3D) sorghum procedural leaf model and some of its main control parameters (a). Variation of 3D leaves
generated by the model by altering the parameters (b,c). With a fixed skeleton, we can alter the width, the waviness, and the curling angle along each
leaf (b). With a fixed leaf shape, we can alter the branching angle, the bending amount, the overall width, and the length of the leaf (c).

F I G U R E 3 Detailed views of a procedurally generated
three-dimensional sorghum plant model from the bottom (a) detail of
the stem (b), and a plant with its leaves and the skeleton (c).

correctly leaping over the sim-to-real gap in deep learn-
ing (Zhao et al., 2020) training model generation. The leaf
color results from a complex interaction of the leaf light
reflectance and transmittance properties. They are described
in terms of the bi-directional transmittance distribution func-
tion (BTDF) and bi-directional reflectance distribution func-
tion (BRDF). These functions take the direction under which a
photon of a particular wavelength reaches the surface as input
and output the probability of the same photon leaving the sur-

face in another direction. We use the procedural reflectance
and transmittance model from Baranoski and Rokne (1997).

Another critical portion of correctly calculating the final
leaf color is mimicking the light conditions of the phenotyping
facility. We created a 3D model of the facility with pre-
set lights with approximately uniform spectral characteristics
and illumination.

A final rendering pass determines the final color of the
leaf in our model. We use our in-house developed bi-
directional path tracer that simulates the light interaction on
the photonic level. An example in Figure 4 shows a side-
by-side comparison of our synthetic rendered model and the
real images.

2.2.4 Reference sorghum sampling

One advantage of using our procedural model for generating
synthetic data is the expressiveness and ability to generate
geometry for a wide range of phenotypes. Images were gener-
ated using several different ranges for the input parameters
to represent different sorghum genotypes and to capture a
range of characteristics during training. The input parame-
ters included the stem height for the entire plant and per-leaf
height, length, and angle. Branching angles were measured
from the midrib underneath the auricle. If the leaf midrib is
underneath the auricle, the branching angle was found using
the top of the leaf as a reference. Leaf height was measured
from the highest point on the dewlap of the leaf. Stem height
was measured from the rooting zone to the leaf height of the
youngest unfurled leaf.
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F I G U R E 4 A side-by-side comparison of rendered
three-dimensional sorghum procedural plant (b,d) and real models from
the phenotyping facility (a,c). Note that we do not attempt to
reconstruct the plants. We generate their geometry.

The values for each leaf are sampled from a distribution
of values generated from manual measurements of the fol-
lowing genotypes: As4601 Pawaga-2, Tx3197-1, Tx3197-2,
BTx623-2, RTx430-1, BTx623-1, SC301-1, and SC301-2.
These plants were measured from approximately the v2 stage
through grain fill at the University of Nebraska’s Greenhouse
Innovation Center (Ge et al., 2016) from April 26 to August
2, 2022.

2.3 Datasets

Our algorithm utilizes four image datasets:

1. Synthetic image–mask pairs generated from 3D plant
models for training the deep neural network (Li, 2022).

2. Real images paired with synthetically generated masks
using the methods of Gaillard et al. (2020b, 2020a) for
fine tuning the deep neural network.

3. Real images for evaluation from Miao et al. (2021).
Some of these images had leaf count values annotated by
experts.

4. Real images that were hand segmented on a per-pixel
basis to evaluate the segmentation model’s performance
separately from leaf counting.

2.3.1 Synthetic training dataset generation

Training deep neural models traditionally requires tens of
thousands of pairs of images for robust results. Phenotyp-
ing facilities can provide many images of plants from varying
angles at different stages of development. However, the plant
part labeling is not commonly accessible. The usual task is
to label the images manually (Gaggion et al., 2021; Lu et al.,
2017; Minervini et al., 2016; Miao et al., 2021) or with the
help of software (Miao et al., 2021). This tedious task is
prone to error and does not scale well. Moreover, each image
needs to be labeled multiple times by different people and
cross-validated to diminish possible human error.

Generating a dataset in our pipeline mimics the imaging
process within the real phenotyping facility. First, we generate
the skeleton of sorghum at the given age, randomize its param-
eters, and then generate the complete 3D sorghum plant. An
example of the skeleton and synthetic plant can be found in
Figure 3c. The synthetic sorghum is then placed into the vir-
tual phenotyping facility under simulated lighting conditions.
The intrinsic and extrinsic camera parameters are carefully
tuned to avoid image distortion and displacement. We col-
lect RGB images for each sorghum with raytraced light and
the colored mask as the label. We generate different colors
for each leaf and the stem. The sorghum is rotated within the
scene by a step of 36˚, and for each sorghum, we capture five
images and five masks for side views and one image and one
mask for the top view. Figure 5 shows a 3D synthetic sorghum
plant from multiple views and its masks, which are all the
output of this imaging process.

We have generated 10k different 3D sorghum plants along-
side a total of 60k image–mask pairs. Each plant was rendered
with a resolution of 512 × 512 pixels from five side views at
angles: {0, 36, 72, 108, 144} degrees and a top view. The age
of procedurally generated plants ranges from 1 to 8 weeks,
with between 4 and 13 leaves. The number of leaves for
each synthetic plant in the dataset is saved as ground truth to
validate our method of leaf counting. Of these 60k pairs gen-
erated, 1800 were withheld for validation and were not used
to train the model.

2.3.2 Real training dataset generation

We have generated 600 image–mask pairs for use in the fine-
tuning step of the training pipeline. While the input images
were real images from the phenotyping facility, the masks
were automatically generated using the segmentation pro-
cedure from Gaillard et al. (2020b, 2020a), where the real
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F I G U R E 5 A photorealistic rendering and mask of a sorghum plant rotating by 36˚ and its top view.

images were registered and used to calculate a 3D voxelization
of the plant which is then turned into a skeleton via thinning
and finally segmented. These segmented 3D models were then
re-projected onto the real images to give an approximate mask
where each leaf is represented as a different color.

2.3.3 Real validation data

We used a dataset of real plants imaged at the University
of Nebraska–Lincoln Greenhouse Innovation Center phe-
notyping facility in 2017 for validation data. All images
were acquired using the RGB imaging setup (see Gaillard
et al. (2020b) for details). Each plant is imaged from five
sides and one top view using a camera with a 2454 × 2056
pixels resolution.

This sorghum image dataset is originally from the work
of Miao et al. (2021) and consists of 343 unique sorghum
plants, representing 295 inbred lines, imaged from July to
August 2017 over 37 days. The total number of images
collected for this dataset is 27,770, and side view images
were taken at angles: {0, 36, 72, 108, 144} degrees. Images
were cropped to remove the imaging scaffold; thus, their
resolutions may vary.

In the previous work of Miao et al. (2021), experts were
asked to annotate the number of visible leaves in 5554 images.
Only the view at 108˚ of the plant was annotated for this
dataset because it should have the least occlusion and, there-
fore, the most visible leaf tips. Also, some images were

annotated twice to estimate the agreement between experts.
These annotations are used in our statistical analysis to quan-
tify the human counting error and evaluate our method on
leaf counting. The important point is that the experts did not
always agree with the leaf count, as the leaves are not always
easily discernible.

This dataset was pruned to exclude those plants that were
injured, tilted, out of frame, or had other abnormalities that
made them significantly different than the training data. The
valid subset totaled 1750 images.

2.3.4 Real segmented data

Trained experts manually segmented 10 sorghum plants to
calculate image segmentation performance. Each image was
segmented and stored by three participants. The partici-
pants manually colored each leaf a unique color while the
stem/branch was black and the background was white.

2.4 Implementation

2.4.1 Neural network architecture

The chosen network for our work is Axial-Deeplab (Wang
et al., 2020), a modification of the Panoptic-DeepLab network
from Cheng et al. (2020), which relies on an encoder–decoder
architecture. The decoder portion of Panoptic-DeepLab
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F I G U R E 6 Segmentation comparison on real plants: an input image is hand segmented by a human, the label predicted by our model (“AI”),
and the binary difference between the human and the prediction. The rows represent a segmentation with the highest (0.70) (a), an average (0.54) (b),
and the lowest (0.34) intersection over union (c) when averaged across the three human labelers.

remains unchanged from the original. It consists of two data
paths: one to predict the semantic label and another to predict
the instance center labels and center regression. The instance
centers are predicted as a set of blurred points on the image,
and then for each pixel, an offset is predicted such that if that
pixel were to be moved by that offset, it would lie in the center
of the instance it belongs to. The three outputs are then fused
to create a panoptic prediction consisting of each pixel labeled
with an objectID and an instanceID by shifting the pixels
by their offset, finding which center they are closest to, and
then accounting for which semantic class that center lies on.
Axial-DeepLab improves upon this architecture by providing
a different backbone for the encoder portion of the network
by replacing the residual blocks of the ResNet backbone with
axial self-attention modules. This network was chosen as it
was the most performant network on our task at the time of
the manuscript submission. However, computer vision moves
quickly, and our method is agnostic to the architecture as long
as the model can be trained on image–mask pairs (as almost all
current models are) and can output a pixel-level segmentation.

2.4.2 Pipeline

We implemented our system in Python using TensorFlow and
Axial-Deeplab from Deeplab2 (Weber et al., 2021). It has

been executed on a server equipped with two NVIDIA TITAN
Xp 12 GB graphics processing units (GPUs) and two Intel
Xeon E5-2680 v3 central processing units (CPUs). The batch
size used during training was eight images of size 512 × 512,
which took approximately 2.5 weeks to converge. The model
trained on synthetic image–mask pairs was then fine tuned
using real image–mask pairs where an image from the phe-
notyping facility was paired with an automatically generated
mask produced using the methods from Gaillard et al. (2020b,
2020a). This fine tuning further trained the model to match the
color and textures of real sorghum plants from the greenhouse
and overcome differences between our synthetic textures and
real sorghum images. The fine-tuning data was completely
synthetically generated without humans needing to hand seg-
ment any masks. The machine used for fine tuning was a
desktop computer equipped with an AMD Ryzen 9 5900X,
32 GB of RAM, and an NVIDIA GeForce RTX 3070 with 8
GB of video memory. The trained model was then used to per-
form the panoptic segmentation of the sorghum images, and
the output represents a prediction of which pixels correspond
to which leaves.

Our implementation modifies the Deeplab system so that it
outputs a raw numpy array of 𝑙𝑒𝑛𝑔𝑡ℎ ×𝑤𝑖𝑑𝑡ℎ × 3, where the
first channel is the semantic ID of each plant: (0-background,
1-leaf, 2-stem, and 3-panicle) and the second channel is
the instance ID. This modification was a performance
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OSTERMANN ET AL. 9 of 17

optimization because the larger raw arrays could be loaded
into our system faster than comparatively smaller regular
images when image decompression was accounted for.

To count just the leaves in the image, ignoring the pani-
cle, background, and stem, we then count unique instances
of the pixels with semantic ID = 1. The leaf number 𝐿𝑡 for
the plant at timestamp 𝑡 is the number of distinct seman-
tic IDs associated with leaves. This is analogous to counting
how many colors are in the output segmentation and ignor-
ing the background, panicle, and stem color, but it was
more performant.

2.5 Evaluation techniques

2.5.1 Leaf segmentation

The performance of the network’s segmentation is validated
by comparing images labeled by human annotators, and
Figure 6 shows side-by-side examples of varying quality seg-
mentation. A total of 10 images were chosen from the real
image dataset, where 5 were randomly selected from those our
method had a correct leaf count, and another 5 were selected
from those on which our method had the worst performance.
Each of the 10 images selected was annotated three times by
three different human annotators. The annotators were pro-
vided a background segmentation mask as a starting point
to aid their annotations. The images were provided at the
512 × 512 resolution seen by the network and a full-resolution
version of the image to help the annotators decide on diffi-
cult areas. The hand-labeled images were then manually color
matched to the colors produced by the model. For each color,
the intersection over union (IoU) was calculated by dividing
the area of pixels labeled correctly in both the ground truth
and the prediction by the area of pixels labeled that color
by either the ground truth or the prediction. The IoU values
for each color were then averaged to create an IoU score for
the entire image, which was then averaged across the three
human annotators.

Due to discrepancies in definitions between fields, the bio-
logical definition of the distinction between leaf and stem
differs from the one used to generate our procedural model.
We do not pay close attention to the segmentation of pixels in
the stem. To express this concern numerically, a pixel is part
of the intersection if it satisfies either of two cases: (1) it is
the same color in the annotation and the prediction, or (2) it
is labeled stem in the annotation but the leaf of interest in
the prediction.

2.5.2 Statistical analyses

Our algorithm is validated on the manually counted data
from Miao et al. (2021). This dataset contains plants taken at

their 108˚ view. It excludes those injured, tilted, out of frame,
or had other abnormalities that made them significantly dif-
ferent from the training data. The valid subset totaled 1750
images. It is important to note that human annotators do not
precisely agree with their counts. The root mean squared error
(RMSE) between two annotators on the same image is 0.71
leaves as reported by Miao et al. (2021).

A fixed integer number of human-counted leaves cannot be
used because it varies among participants. Instead, we cre-
ated a linear model that approximates the input data. The
ground-truth values for each image were calculated from the
human counts of all sorghum plants present in the Sorghum
2017 dataset with more than three leaves using a mixed linear
model. The model is used to compare our method’s pre-
dictions with a confidence interval for the true leaf number
calculated from the human annotations to account for the
underlying uncertainty for human counts. The equation fit by
the model was:

𝑦 = 𝑋𝛽 +𝑍𝑢 + 𝜖, (1)

where 𝑦 is the fit number of leaves for a particular image;
𝑋𝛽 represents the design matrix and coefficients for the fixed
effects in the model provided by the user ID of the annotator;
the 𝑍𝑢 is the design matrix, and random effects coefficients
provided by the counts for each image; and the 𝜖 is the unique
intercept for each image. In our analysis, the fixed effects
term,𝑋𝛽, was found to be negligible in the final model, which
was to be expected if particular human annotators perform
similarly between each other when counting leaves.

Equation (1) gives as output a new leaf count for each
image calculated from the distribution of human counts and
the standard error of human counts. We used the standard
error and the new predicted leaf counts to generate confidence
intervals for each image and report the percentage of counts
across a curated subset where our model performs within
those confidence intervals.

When counting the number of leaves on the real images
of plants (see Figure 7c,d), we compare both the exact
human annotations and the ground-truth values estimated
by a mixed linear model fit from all sorghum plants
counted.

2.5.3 Tracking leaf count over populations
and time

Our method has been used to track the leaf number across
a population being imaged several times during a growing
period. To validate the leaf tracking, we plot a comparison
of the average number of leaves counted on each day imaging
took place (see Figure 8). We plot the error bars between the
human-counted average number of leaves and our method’s
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10 of 17 OSTERMANN ET AL.

F I G U R E 7 Scatter plots (a,c) and histograms (b,d) showing the prediction performance of our method. Comparison to 1800 images of unseen
synthetic data (a,b) and 1750 real and manually annotated sorghum plants from Miao et al. (2021).

automatic count per plant. The error bounds are given by the
95% confidence interval calculated from the number of plants
imaged that day and the standard deviation produced by the
statistical model in Equation (1).

3 RESULTS

3.1 Leaf segmentation

The IoU performance is reported separately for the plants
counted correctly and the plants counted incorrectly. The cor-
rectly counted plants had mean IoU scores ranging from 0.35
to 0.71, with a mean value of 0.56 across the five plants.
Our method counted most incorrectly in plants with mean
IoU scores from 0.34 to 0.58, with an average of 0.47 across
those five plants. We note that the segmentation behavior
of different human annotators can vary in decisions made at
boundaries, resulting in one plant having a mean IoU from one
annotator of 0.13 while another annotator label calculated to
0.58 for the same image.

3.2 Leaf counting

Two different plots are used to represent the results: (1) a
scatter plot of the predicted leaf number w.r.t. the human-
annotated leaf number, and (2) a histogram of the distribution
of prediction errors, that is, the difference between the human
annotation and the prediction. In addition to the scatter plot,
we compute a set of metrics: a linear regression (red line) with
the 𝑅2, the RMSE, and the agreement, which is the percent-
age of exact prediction over the entire dataset. This evaluation
is executed on both the synthetic and the real dataset, and the
results are shown in Figure 7.

3.2.1 Synthetic dataset validation

Figure. 7a,b shows the trained and fine-tuned network’s per-
formance evaluated on a set of 1800 synthetic sorghum images
not seen by the model. The ground-truth number of leaves
for these images is calculated from the synthetic segmenta-
tion mask by counting the number of unique leaf colors. Our
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OSTERMANN ET AL. 11 of 17

F I G U R E 8 Comparison of the average leaf count on a particular day between our method’s predictions and ground-truth human counts. The 𝑥

-axis shows the day of 2017, and the 𝑦-axis is the count and the standard deviation. The error bars correspond to the 95% confidence interval around
each mean value.

method produces counts within one leaf of the correct num-
ber in 93% of images and has an exact agreement of 64%. The
RMSE for the synthetic leaf counts is smaller than one leaf
at 0.969 leaves over the 1800 plants. The model is expected
to perform well on the synthetic data because these validation
images are generated using the same procedural model as the
training images.

3.2.2 Real dataset validation

We agree exactly with a human annotator in 41% of images.
Still, since the RMSE between two human annotators on the
same image is 0.71 leaves, we also compare to the ground-
truth estimations produced by the linear model. Our method
predicts leaves within the 90% confidence interval leaf counts
in 97.12% of images. For an 80% confidence interval, we
predict within it for 87.69% of images. Compared to our
predictions, the RMSE for the fitted mixed linear model
was 1.11 leaves, and the model had a standard error of
1.47 leaves.

Annotated images captured from the angle of 108˚ show the
most details from the plant and the least occlusions of other
views in the dataset. We have trained our deep neural model
on images from multiple directions. We used the number of
leaves detected from the angle 108˚ as the point of compari-
son to the count from different angles, and Figure 9 shows the
results. The maximum error is for the top view, and for the side
views, the error decreases as the angle gets closer to the view
in which most of the detail is captured. The number of leaves
present in the predictions at the 108˚ images ranged from 4 to
20 leaves. The curated dataset of 1750 images was expanded
with the images corresponding to the other five views for
the 108˚ views chosen, which increases the dataset size for
Figure 9 to 10,500 total images.

F I G U R E 9 Error of the leaf count from different viewing
directions.

3.3 Tracking leaf number across
populations and time

We compare the leaf count over time to the human observa-
tions to show the application of leaf counting to leaf number
calculation across populations. We additionally account for
the variability in the number of plants imaged that day to
calculate the estimator for the standard error in the mean
and display the 95% confidence interval. Figure 8 shows that
although the exact number of leaves predicted does not match
the predictions and human observations, the 95% confidence
intervals around the mean number of leaves overlap between
predictions and the human annotations on all but 2 days that
were imaged. These plots show our approach is viable for
counting changes in the relative number of leaves in a group
of plants over time.

Figure 10 shows the detection of the number of leaves and
the corresponding plant in a period of leaf emergence. This
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12 of 17 OSTERMANN ET AL.

F I G U R E 1 0 Leaf count over a rapid leaf emergence period in 2018. While the leaf count between May 1st and May 7th is the same, some
leaves have died off (red arrow), and new leaves emerged.

F I G U R E 1 1 Leaf count over 1 month period of 343 plants.

sequence was captured in April–May 2018 and shows the leaf
count and the corresponding plant. The red arrow indicates
a dying leaf. Interestingly, the number of leaves is constant
between May 1 and 7, but the leaves vary in the plant.

Figure 11 shows the detection of the number of leaves in 2
months of data from the phenotyping facility between July 25
and August 31, 2017. A total of 23 data points were calculated
for 343 plants. Some images were discarded because the plant
was tipped over, cropped, etc. We evaluated, on average, 241
plant images per day, with a minimum of 22 on August 2 and a
second minimum of 24 on August 16. Figure 11 shows wider
error bars on these days because of the smaller sample size.
One can notice that of the 343 total plants and an average of
241 plants imaged per imaging day, the choice of phenotypes
and the age of the individuals imaged that day can affect the
mean leaf count on that day.

4 DISCUSSION

4.1 Leaf segmentation

By checking the segmentation performance on images where
our method had both the best and worst leaf counts, we
can check if the segmentation performance measured by IoU

roughly corresponds with leaf counting performance. The
minimum IoU values in the well-counted and poorly counted
five plants are similar and poor. This is likely due to taking
the average across all the leaves in the image and, second,
all the annotators, which exacerbates differences in how the
annotators segment the boundary of the leaves. Specifically,
there was disagreement among the human annotations with
defining the boundaries between the background and the edge
of leaves, which get slightly blurred in the image downsam-
pling process from an arbitrary but larger, cropped resolution
to the 512 × 512 seen by the model. The large amount of effort
needed to give pixel-level annotations for sorghum leaves in
images accurately further motivated our creation of an auto-
matic method. The exact leaf segmentation is not needed to
count leaves. Indeed, the IoU performance indicates that it is
not a perfect segmentation. The error comes from the uncer-
tainty in highly ambiguous and occlusive parts, such as the
middle region of mature plants, where leaf boundaries are
impossible to discern from single images exactly. The leaf
tips are well segmented, and the segmentation propagates
down the leaves to ambiguous areas, as shown in Figure 6b
in an example of an average case segmentation. However, our
method correctly segments even disconnected components
which is an essential property needed to count leaves in highly
occluded environments.
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OSTERMANN ET AL. 13 of 17

4.2 Ablation study and comparison to the
state-of-the-art

4.2.1 Comparison to state-of-the-art (SOTA)

Computer vision and image segmentation are quickly evolv-
ing. Our method serves as a framework where a model trained
on synthetic data generates the segmented leaf output. Any
state-of-the-art (SOTA) model architecture, such as the Seg-
ment Anything Model (SAM) (Kirillov et al., 2023), could
be used once trained on specific segmentation masks for
leaves. The need for this additional training on our synthetic
dataset is illustrated in Figure 12. SAM is a general segmenta-
tion with outstanding results on general tasks. However, it is
not trained on leaf-level masks because such datasets require
intractable amounts of hand labeling. Because of this data
gap in existing segmentation models, the masks produced are
limited to background separation and are insufficient for leaf
counting.

4.2.2 Ablation study

We performed an ablation study to test the necessity of fine
tuning on real data in our pipeline. To achieve this, we seg-
mented and counted portions of our pipeline with a model
trained on only synthetic data. Figure 13 shows the improve-
ment in counting performance that the fine tuning gives. The
non-fine-tuned model tends to overcount relative to humans,
while the fine-tuned model centers more on human counts.
We believe this difference is partly due to the real fine-tuning
data helping the network learn the exact lighting and texture
characteristics for the sorghum in the greenhouse and, as a
result, performing better with ambiguous areas that tend to
over-segment and thus overcount.

Due to the large number of images needed to train seg-
mentation networks, training on real data would require more
images than is feasible to gather. This limitation motivated
our work to use a 3D synthetic model to generate thousands
of labeled images to train such a network.

4.3 Leaf counting

Creating an automatic method that has high agreement with
a single human annotator is difficult due to the uncertainty
of how to define when exactly a new leaf emerges and when
senescent leaves fall off. This discrepancy becomes more
problematic when multiple experts count an image to con-
tain different numbers of leaves and can be measured with
the RMSE between annotators being 0.71 and the agreement
being 72% as reported by Miao et al. (2021). The most per-
formant model from that work agreed with human counts of

0.43 compared to our 0.41. However, their model is trained on
human-annotated data instead of synthetically generated data
that we use. Additionally, the disagreement between human
annotators makes comparisons to exact leaf count via agree-
ment and RMSE more difficult, so we instead compare our
predictions to the confidence intervals for the leaf number
from our mixed linear model. The high proportion of plants
that fall within reasonable confidence intervals to human
counts on the same image validates that our method counts
sorghum leaves with similar accuracy to humans despite any
artificial error inherently added by using synthetic training
data and stochastic processes.

4.4 Tracking leaf count over populations
and time

The imprecision inherent to leaf count can be mitigated by
averaging across populations and time. Figure 8 demonstrates
how our method can be used to automatically estimate leaf
count across a population even if not all plants are counted
exactly correctly on each sampling day. This result vali-
dates our technique as a tool to replace expensive manual
measurements of a population despite the agreement that a
single human counter on single images is insufficient for
exact counting.

4.5 Procedural sorghum model

Our method relies upon the generation of synthetic data from
our procedural model. The images produced by our synthetic
sorghum image pipeline could be added as data augmentation
to an existing dataset of real images. This would enable exist-
ing techniques to become more performant by increasing their
dataset sizes with images very close to their imaging envi-
ronment and tweaking synthetic sorghum plants to match the
phenotypes being imaged. The procedural model needs to cor-
rectly represent only the traits required for the task in question.
In our case, we focused on the shape and reflectance of leaves.
Researchers could generate synthetic training data by taking
measurements of only a representative sample of individuals’
geometric traits for each genotype of interest and then gener-
ate synthetic sorghum images that fall within the distribution
of characteristics for the population of interest.

5 CONCLUSIONS

This work introduces a novel sorghum segmentation and leaf
counting model based on a training dataset generated by a pro-
cedural sorghum generator. We show that the in silico model
has a good potential to replace the tedious human counting
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14 of 17 OSTERMANN ET AL.

F I G U R E 1 2 Segmentation comparison between our method and Segment Anything Model (SAM) (Kirillov et al., 2023). The rows represent
the input image (a), the segmentation from our method (b), the segmentation from SAM which is the current SOTA for general image segmentation
(c).

by generating training data that allow deep neural models to
perform comparably to humans.

Our method has several limitations. We do not determine
the exact location of the emergent leaf, but only the timestamp
of its emergence. Theoretically, we could cross-examine the
segmented images from multiple views and determine the dif-
ferences. While this seems like an obvious choice, sorghum’s
complexity, its variance over time, and the changes in viewing
conditions make this task rather complex. The second limita-
tion is the unknown set of parameters that need to be tuned
for the procedural model to work well. This approach is trial-

and-error and not entirely predictable. The third limitation
is a dependence on real-world ground-truth data. The data
provided by the multiple annotators had some discrepancies
(the leaf count was off by even four leaves for some images)
that made it difficult to validate the deep neural model. A
fourth limitation is that our approach is trained only on images
replicating a particular environment. While this makes our
method performant for the particular phenotyping facility that
we attempted to imitate, the model could perform poorly with
changes in the imaging setup, such as lighting conditions,
focal length, and chamber geometry. Our method would also
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F I G U R E 1 3 Histograms (a) and (b) show the distribution of the leaf counting error relative to human leaf counts for the fine-tuned model (a)
and the not-fine-tuned model (b). Note that Figure 7d has been repeated here as figure (a) for ease of visual comparison.

fail when used in a field setting. However, the flexibility of our
procedural sorghum model would allow for new training data
to be generated to replicate other imaging scenarios with some
additional modeling effort to match the target environment
closely. This flexibility also allows our method to be extended
to capture a wider range of phenotypes through the manual
collection of geometric traits and their subsequent input to our
procedural model before generating a wider variety of train-
ing data, including those phenotypes. Our method’s precision
is comparable to multiple human counting as it performs
within the expected error tolerance that is found when two
people count leaves in the same image as reported by Miao
et al. (2021). Being sufficiently close to the distribution of
multiple human counting makes our method suitable for track-
ing the number of leaves across a population of plants over
time. Future work could focus on improving the precision to
perform better than human subjects.
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