
Camera Models

Spring 2025

Daniel G. Aliaga
Department of Computer Science

Purdue University

◼1

Typical OpenGL Matrices

• Projection Matrix

– Defines the projection process: perspective,
orthographic, etc.

• ModelView Matrix (or View Matrix)

– Defines where is the camera

• Model Matrices

– Applied to geometry/model to define scene objects

• Texture Matrix

– Is applied to the “texture” (more on this later)
◼2

Transformations

• Most popular transformations in graphics

– Translation

– Rotation

– Scale

– Projection

• In order to use a single matrix for all, we use
homogeneous coordinates (we talked about
this already)

◼3

3D Transformations

◼4

3D Transformations

Perspective projection

◼5

Projection Transformations

void glFrustum(GLdouble left, GLdouble right, GLdouble

bottom, GLdouble top, GLdouble near, GLdouble far);

◼6

Projection Transformations

void gluPerspective(GLdouble fovy, GLdouble aspect, GLdouble

near, GLdouble far);

◼7

Projection Transformations

void glOrtho(GLdouble left, GLdouble right, GLdouble

bottom,

GLdouble top, GLdouble near, GLdouble far);

void gluOrtho2D(GLdouble left, GLdouble right,

GLdouble bottom, GLdouble top);
◼8

View/Model Transformations

• The order of operations matters!

• How to rotate CW 90o?

• Solution?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Rotate(90)

◼9

View/Model Transformations

• The order of operations matters!

• How to rotate CW 90o?

• Solution?

Rotate(90)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t ◼10

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t ◼11

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t ◼12

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Rotate(-90)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t ◼13

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• Solution?

Translate(-a)

Rotate(-90)

Translate(a)

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t ◼14

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

◼15

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

◼16

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

Translate(-a)

[assuming a was updated to

new position]

◼17

View/Model Transformations

• The order of operations matters!

• How to rotate CCW 90o?

• What if I rotate first?

Ant position = a

Rotate(d): rotate CW by d degrees

Translate(t): translate by vector t

Previous solution:

 Translate(-a)

 Rotate(-90)

 Translate(a)

Rotate(-90)

Translate(-a)

Translate(a)

◼18

View/Model Transformations

• In matrix form:

rMat = RotateMat(-90)

inv_tMat = TranslateMat(-a)

tMat = TranslateMat(a)

p’ = tMat * rMat * inv_tMat * p

(rotates points p of the ant “about itself”)

p’ = tMat * inv_tMat * rMat * p = rMat * p

(rotates points p of the ant around the origin

◼19

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟏 𝟎 𝟎]

𝒛 = [𝟎 𝟎 𝟏]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

◼20

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟏 𝟎 𝟎]

𝒛 = [𝟎 𝟎 𝟏]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

Where is point [𝒂 𝒃 𝒄] in
basis S?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑺
𝒂
𝒃
𝒄

[𝒂 𝒃 𝒄]

◼21

Change of Basis Transformation

• Standard basis:

𝒚 = [𝟎 𝟏 𝟎]

𝒙 = [𝟏 𝟎 𝟎]

𝒛 = [𝟎 𝟎 𝟏]

𝒛𝑻

𝑺 =
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

𝒙𝑻 𝒚𝑻

Where is point [𝒂 𝒃 𝒄] in
basis S?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑺
𝒂
𝒃
𝒄

𝒂 𝒃 𝒄 𝑻

𝒑𝒙 𝒑𝒚 𝒑𝒛
𝑻

◼22

Change of Basis Transformation

• Basis B:

𝒖 = [𝒖𝒙 𝒖𝒚 𝒖𝒛]

𝒘 = [𝒘𝒙 𝒘𝒚 𝒘𝒛]

𝑩 =

. . .

. . .

. . .

 What is B?

Where is point [𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′]
from basis B?

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑩

𝒑𝒙′

𝒑𝒚′

𝒑𝒛′

𝒗 = [𝒗𝒙 𝒗𝒚 𝒗𝒛]

𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′
𝑻

◼23

Change of Basis Transformation

• Basis B:

𝒖 = [𝒖𝒙 𝒖𝒚 𝒖𝒛]

𝒘 = [𝒘𝒙 𝒘𝒚 𝒘𝒛]

𝑩 =

𝒖𝒙 𝒗𝒙 𝒘𝒙

𝒖𝒚 𝒗𝒚 𝒘𝒚

𝒖𝒛 𝒗𝒛 𝒘𝒛

Where is point [𝒑′𝒙 𝒑′𝒚 𝒑′𝒛] in
basis B?

𝒗 = [𝒗𝒙 𝒗𝒚 𝒗𝒛]

𝒑𝒙 𝒑𝒚 𝒑𝒛
𝑻

𝒖𝑻 𝒗𝑻 𝒘𝑻
𝒑𝒙′ 𝒑𝒚′ 𝒑𝒛′

𝑻

𝒑𝒙

𝒑𝒚

𝒑𝒛

= 𝑩

𝒑𝒙′

𝒑𝒚′

𝒑𝒛′

◼24

Change of Basis Transformation

• In matrix form:

// change p’ from basis b to standard basis

bMat = makeBasisMat(u,v,w)

p’ = position(1,1,1)

p = bMat * p’

// change from standard to basis B

p’ = inverse(bMat) * p

◼25

Change of Basis Transformation

• What else is this change of basis useful for?

– Rotating to an arbitrary basis

– “I was in basis frame (x,y,z) and now I want to
rotate to be basis frame (u,v,w)”

◼26

Change of Basis Transformation

• Recall we did “inverse(bMat)”

• What is the inverse of matrix?
𝐵−1𝐵 = 𝐼

• A nice property:

– If 𝐵 is formed by orthogonal basis vectors, then its
inverse is simply:

𝐵−1 = 𝐵𝑇 =

𝑢𝑥 𝑢𝑦 𝑢𝑧

𝑣𝑥 𝑣𝑦 𝑣𝑧

𝑤𝑥 𝑤𝑦 𝑤𝑧

◼27

	Slide 1: Camera Models
	Slide 2: Typical OpenGL Matrices
	Slide 3: Transformations
	Slide 4: 3D Transformations
	Slide 5: 3D Transformations
	Slide 6: Projection Transformations
	Slide 7: Projection Transformations
	Slide 8: Projection Transformations
	Slide 9: View/Model Transformations
	Slide 10: View/Model Transformations
	Slide 11: View/Model Transformations
	Slide 12: View/Model Transformations
	Slide 13: View/Model Transformations
	Slide 14: View/Model Transformations
	Slide 15: View/Model Transformations
	Slide 16: View/Model Transformations
	Slide 17: View/Model Transformations
	Slide 18: View/Model Transformations
	Slide 19: View/Model Transformations
	Slide 20: Change of Basis Transformation
	Slide 21: Change of Basis Transformation
	Slide 22: Change of Basis Transformation
	Slide 23: Change of Basis Transformation
	Slide 24: Change of Basis Transformation
	Slide 25: Change of Basis Transformation
	Slide 26: Change of Basis Transformation
	Slide 27: Change of Basis Transformation

