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Deep Visual Computing

* Since the beginning, it turns out visual computing and machine
learning have been deeply connected

* Do you know why?

* Lets see... (get it: lets “see”



A long time ago in a computer far, far
inferior to your phone, it all began...

-Daniel Aliaga, August 25, 2020
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Logic Theorist (1956)

* A program designed to mimic the problem solving skills of a human
* From 1957-1974, Al flourished and failed and flourished...

* In 1968, A. Clarke and S. Kubrik said “by the year 2001 we will have
machines with intelligence that matches or exceeded humans’s”

* In 1970, Marvin Minsky (MIT) said that in 3-8 years “we will have a
machine with the general intelligence of an average human being”



Al Timeline
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1980s

* Expert systems became popular: dedicated systems

* “Deep learning techniques” was a coined phrase but with diverse
meanings...

* | was around then, and even a paid undergraduate researcher in a
major Al lab
- our job was to create a robot that could be programmed remotely and could

execute algorithms for navigating and deciding how to avoid obstacles (e.g.,
walls and boxes)



Deep Learning Timeline
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(Single Layer) Perceptron

* The Perceptron: A Probabilistic Model for Information Storage and
Organization in the Brain, F. Rosenblatt, Psychological Review, 65(6),
1958.

* Model based on the human visual system




Biology 101

* In human brain:

* Neuron switching time
~ 0.001 second
Number of neurons
~ 1010
* Connections per neuron
~ 104-5
Scene recognition time
~ 0.1 second

Huge amount of parallel computation
— 100 inference steps is not enough




From Biology to Computers...

* Biology Perceptron
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Perceptron
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Perceptron

y=mx+b>b
Example:b=0m=1-2> y=x

y




Perceptron

U

‘ y=mx+b>b ‘

Activation Function



Activation Functions

Sigmoid | Leaky ReLU )
0(z) = s max (0.1, x)
|
tanh Maxout
/ tanh(z) - ¢ max(wi z + by, wd z + by)
: X . )
Linear ReLU / ELU
max (0, x) {:c | J
N ale*—1) z<0 - 7 o

NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit



Multilayer Perceptron

O o )
8 3

h =mgyx + by y =myh + by
y — ml(mox + bo) + b1
Example: bO — b1 — O, My =My = 0.5 9 Yy = 0.25x
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Multilayer Perceptron

2 w )
g 8

h:mox‘l‘bo y

=

1 4+ e—m1(h+by)

Example: bO — b1 — O,mo — 2, mq = 1 Example: bO — bl — O,mo — O.5,m1 =1
1 1
Yy = _ =
1+ e 4% Y T {1 o-05x
y y

Intuitively: y will Intuitively: y will
be “high” for be “high” for
smaller values of x larger values of x




Multilayer Perceptron

Rounded to O
orl

>

Layer 1 Layer 2
Node | tas | »cweight | v-elght Cbrom Noce [ Bas | welght
0375 -3 1 0 -0.2 1
R . (Sigmoid activation functions) " Y "
0375 3 1 2 -0.2 1
0125  -0.75 1 3 0.2 1
0125  0.75 1 4 -0.2 1



Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp



https://www.cs.utexas.edu/~teammco/misc/mlp/

Perceptron

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ .
Initialize w and b randomly.

while nor converged do

# # # Loop through the examples.
for j = 1, m do

# # # Compare the true label and the prediction.

error = y; - o(w' x; + b)

### If the model wrongly predicts the class, we update the weights and bias.
if error '= () then

### Update the weights,

W = W+ error x r;

#r# Update the bias.
b=b+ error

Test tor convergence

QOutput: Set of weights w and bias b for the perceptron.




Perceptrons

* Book by M. Minsky and S. Papert (1969)

e Was actually “An Introduction to Computational Geometry” — thus
visual as well

 Commented on the limited ability of perceptrons and on the difficulty
in training multi-layer perceptrons

* (Back propagation appeared in 1986 and helped a lot!)



Reprise: Computer Vision

* In 1959, Russell Kirsch and colleagues developed an image scanner:
transform an image into a grid of numbers so that a machine can
understand it!

* One of the first scanned images:
(176x176 pixels)




2010

* ImageNet Large Scale Visual Recognition Competition (ILSVRC) runs
annually

* 2010/2011: error rates were around 26%

e 2012: the beginning of a new beginning — AlexNet — reduced errors to 16%!



AlexNet

* University of Toronto created a CNN model (AlexNet) that changed
everything (Krizhevsky et al. 2012)
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ILSVRC (2011-2017)

Object Classification
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ILSVRC (2010-2017)

A4
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Reprise: Computer Graphics

* First graphics visual image:
* Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior
projects was an oscilloscope based
graphics engine)




Whirlwind Computer @ MIT

* Video display of real-time data:




1960s U

* l[van Sutherland used vector displays (=oscilloscope), light pens, and
Interaction




1965: The Ultimate Display...

* Fred Brooks using one of lvan’s displays....the birth of VR/AR

* NOTE: Fred Brooks was on my PhD committee, | worked in his research
group and my MS and PhD revolved around VR/AR and graphics.



Deep Learning in Computer Graphics

* Like in computer vision, since 2010’ish deep learning has
revolutionized computational imaging and computational
photography, rendering, and more

* However, hand-crafted methods have significantly improved other
domains such as geometry processing, rendering and animation,
video processing, and physical simulations



Basic Machine Learning Recipe

Obtain training data
Choose decision and loss functions

Define goal

B w e

Optimize!




1. Training Data

{xi'yi} fori € [1, N]

Fundamental categories:

1. Synthetic data

2. Real data (annotated)

3. Real data (unannotated) <- tricky!

Properties:

1. Data should span/populate the distribution of expected input values
2. Data should be plenty — kinda same as above

3. Data should have low errors/noise (ideally)



2. Decision and Loss Functions

y = 1o (xi)

The function you wish to “decide” that given the inputs, and the

parameters 60, yields an output y that is equal or close to desired values;
thus, you seek

l(nyl) - 0

Properties:

1. Decision should be “doable” so that convergence is possible

2. Loss function should exploit as much as possible of domain
knowledge



3. Define (Training) Goal

N
g+ — argéninz 1(fo (), )
=1

Define a function to find parameters 8* that minimize the loss function
for the entire training data set; i.e., find network weights and biases
that make the network “learn” the desired (high-dimensional) function



4. Optimize!
* Perform small steps (opposite the gradient)...

1 = 0t — a, V(£ (x;), ;)

Move a small step against the gradient to eventually
reach a set of network parameters that minimize the
loss function



4. Optimize!

MNIST Multilayer Neural Network + dropout

* Methods: — adacrad
\'\f RMSPro
* Stochastic Gradient Descent (SGD), - igogelf'imv
e Adam, or
* Others
 Adam: an adaptive moment

estimation based optimization — the
learning rate changes during the
optimization [Kingma and Ba, 2015] o

Comparison of Adam to Other Optimization Algorithms Training a
Multilayer Perceptron
Taken from Adam: A Method for Stochastic Optimization, 2015




Multilayer Perceptron: Fully Connected

A4

* Fully Connected (FC) Network has lots of weights and biases to learn

* 1 MP image has Lx10%% parameters for L layers (or several billion
parameters)
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A mostly complete chart of

Neural Networks ........

©2016 Fiodor van Veen - asimovinstitute.org

Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Recurrent Neural Network (RNN) Long / Short Term Memary (LSTM)  Gated Recurrent Unit (GRU)
a o a0 oy oy

e WY
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Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE)

Sparse AE (SAE)

Deep Belief Network (OBN)

(R R\ )
0 0 B

Deconvolutional Network (DN} Deep Convolutional Inverse Graphics Network (DCIGN)

Liguid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Network (ESN)

Kohanen Network (KN)  Support Vector Machine (SVM)  Neural Turing Machine (NTM)

® O ¢

https://towardsdatascience.com/the-

mostly-complete-chart-of-neural-

networks-explained-3fb6f2367464



https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464

Can we reduce the number of parameters t
learn with our training data? A4

* Yes! Convolutional Neural Networks (CNN)

* Uses:
e Spatial locality
* Kernel reuse
* Weight sharing

* Example result:

* Instead of “billions of parameters”, using 100 kernels of 10x10 pixels with weight sharing
needs only 10,000 parameters



(Image) Convolution

Input image Convolution Feature map
Kemel
-1 -1 -1
-1 8 -1

1 -1 -1




CNN

[Slides based on Ming Li, U. Waterloo]



CNN: Convolution Layer

These are the network
parameters to be learned.

1]-1]|-1
1/0[0|0]0]1 111 | 1| Filter1
o|1|l0]|0|1]0 11111
ojlo|1]1|0]0

1/0[{0|0]1]|0 11171
ol1lolol1lo 1|1 | -1 | Filter2
ojlo|l1]0|1]0 11171

6 X 6 Image

Each filter detects a
[Slides based on Ming Li, U. Waterloo] small pattern (3 X 3)-



CNN: Convolution Layer

stride=1

6 X 6 Image

[Slides based on Ming Li, U. Waterloo]

Filter 1




101 ]-1
CNN: Convolution Layer 1|1 ]-1] Filter2
111 ]-1
stride=1

6 X 6 Image

Two 4 x 4 images

[Slides based on Ming Li, U. Waterloo] Forming 2 X 4 x 4 matrix



CNN: Max Pooling

1]-1]|-1 11 |-1
111 |-1| Filter1 -1| 1 ]|-1]Filter2
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[Slides based on Ming Li, U. Waterloo]



LeNet (1998)

* 32x32 image using CPU

C3: . maps 16E10x10
INPUT C1: feature maps 54 1. maps 16E5x5
APy BE28x28

S2: 1. maps

5 layer .
EE1dx1d YET Fa: layer E1ZH5ITF’LIT

| Full cumjlecﬂgn | Gaussian conneclions
Convolutions Subsampling Conveolutions  Subsampling Full connection

LeNet: a layered model composed of convolution and subsampling operations followed by a holistic representation and
ultimately a classifier for handwritten digits. [ LeNet ]



AlexNet (2012) -- diagrammatic

Input data Convl Conv2 Conv3 Conv4 Convs FC6 FC7 FC8

13X 13 X384 13x 13 x 384 13% 13 X 256

27%x 27 X 256

55X 55 X 96

1000

227% 227 X 3 4096 4096



Figure 3: 96 convolutional kernels of size
11x11 x 3 learned by the first convolutional
layer on the 224 x 224 x 3 input images. The
top 48 kernels were learned on GPU 1 while
the bottom 48 kernels were learned on GPU
2. See Section 6.1 for details.




Comparison

LeNet

e 32%32%*1

* 7 layers

e 2 conv and 4 classification
* 60 thousand parameters

* Only two complete convolutional
layers

* Cony, nonlinearities, and pooling as one
complete layer

AlexNet

e 224%*224%*3

e 8 layers

5 conv and 3 fully classification

5 convolutional layers, and 3,4,5 stacked
on top of each other

Three complete conv layers
60 million parameters

* Since insufficient data, did data
augmentation:

* Patches (224 from 256 input), translations,
reflections

e PCA, simulate changes in intensity and colors



i ot

* https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Demo




Generative Adversarial Networks (GANSs)

[Goodfellow et al. 2014]

Scores if discriminator
can’t distinguish output
from real image

~ —»Player 1: generatorf

| Player 2: discriminator — real/fake
Scores if it can distinguish
between real and fake

N

from dataset

[CreativeAl — SIGGRAPH Course]



Generative Adversarial Networks (GANSs)




GAN Information Flow
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Bl Forward propagation (generation and classification)

GENERATIVE
NETWORK

L I

Bl Backward propagation (adversarial training)

DISCRIMINATIVE
NETWORK

L I

Input random

variables.

The generative network

is trained to maximise the

final classification error.

[CreativeAl — SIGGRAPH Course]

The generated distribution
and the true distribution are
not compared directly.

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

The discriminative network
is trained to minimise the

final classification error.

The classification error
Is the basis metric for the
training of both networks.



2014 2015 2016

Example of the Progression in the Capabilities of GANs From
2014 to 2017. Taken from The Malicious Use of Artificial

Intelligence: Forecasting, Prevention, and Mitigation, 2018.

httfsVBALEA lear R RAR I G RHEESle-generative-adversarial-networks-gans/


https://arxiv.org/abs/1802.07228
https://arxiv.org/abs/1802.07228

StyleGAN

Additional Tricks:
* Coarse-to-fine training

content

* Transformation of p(z) N
to a more complex distr. '

style

[CreativeAl — SIGGRAPH Course]



StyleGAN
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StyleGAN Demo

* https://thispersondoesnotexist.com/



https://thispersondoesnotexist.com/

Conditional GAN: Pix2Pix

Labels to Street Scene Labels to Facade BW to Color

Edges to Photo
P
f//Q AN

Image-to-image Translation with Conditional Adversarial Nets
Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. CVPR 2017

[CreativeAl — SIGGRAPH Course] slide credit: Phillip Isola & Jun-Yan Zhu



Edges - Images

Output

Edges from [Xie & Tu, 2015]

[CreativeAl — SIGGRAPH Course] slide credit: Phillip Isola & Jun-Yan Zhu



Sketches - Images

Trained on Edges - Images
Data from [Eitz, Hays, Alexa, 2012]

[CreativeAl — SIGGRAPH Course] slide credit: Phillip Isola & Jun-Yan Zhu



Pix2Pix Demo

* https://affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/

Neural Reflectance Field (NERF)

* A neural radiance field (NeRF) is a fully-connected neural network

that can generate novel views of complex 3D scenes, based on a
partial set of 2D images

Input Images Optimize NeRF Render new views
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E R TS
FaAMaLEgFed R . .
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https://arxiv.org/abs/2003.08934
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Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]

Instant-NERF: https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/

Other NERFs: https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/



https://datagen.tech/guides/synthetic-data/neural-radiance-field-nerf/
https://blogs.nvidia.com/blog/2022/03/25/instant-nerf-research-3d-ai/

Diffusion Models

* From noise to data...

Po(xs_1|x;)
0 0 0n —~COp

pd CAGHTCR b

Flgure 2: The directed graphical model considered in this work.

* Four popular diffusion models:
* OpenAl’s Dall-E 2
* Google’s Imagen
 StabilityAl’s Stable Diffusion
* Midjourney



Diffusion Models

For T timesteps

Diffusion
Model

[https://learnopencv.com/image-generation-using-diffusion-models/]
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