
The Way of the GPU
(based on GPGPU SIGGRAPH Course)

CS334
Spring 2025

Daniel G. Aliaga
Department of Computer Science

Purdue University

Computer Graphics Pipeline

Modeling Transformation

Lighting

Viewing Transformation

Clipping

Projection

Scan Conversion

Geometry

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface…)

(this is really from 20 years ago…)

◼2

Today, we have GPUs…

(GPU = graphical processing unit)
◼3

Some history and context…

• 1980s

• 1990s and programming shading

• 2000s and PCs

• GPUs…

◼4

Motivation: Computational Power

• Why are GPUs fast?

– Arithmetic intensity: the specialized nature of
GPUs makes it easier to use additional transistors
for computation not cache

– Economics: multi-billion dollar video game market
is a pressure cooker that drives innovation

◼5

Motivation: Flexible and Precise

• Modern GPUs are deeply programmable

– Programmable pixel, vertex, video engines

– Solidifying high-level language support

• Modern GPUs support high precision

– 32 bit floating point throughout the pipeline

– High enough for many (not all) applications

◼6

The Problem: Difficult To Use

• GPUs designed for & driven by video games

– Programming model unusual

– Programming idioms tied to computer graphics

– Programming environment tightly constrained

• Underlying architectures are:

– Inherently parallel

– Rapidly evolving (even in basic feature set!)

– Largely secret

• Can’t simply “port” CPU code!
◼7

Diagram of a Modern GPU

fast

memory

fast

memory

fast

memory

fast

memory

Input from CPU

Host interface

Geometry/Vertex processing

Triangle setup

Pixel processing

Memory Interface

◼8

nVIDIA GPU

• GTX 3090 Founder’s Edition

– 10496 (CUDA) cores @ 1.7GHz (i.e., mini processors)

– 936 GB/sec (memory bandwidth)

– 36 TFLOPS (shader)

– 24 GB video memory

– 7680x4320 pixels

– 350W power

– 91C max GPU temp

– $1500-$3000

◼9

nVIDIA GPU

• GeForce 256 (from 1999)

– 120 MHz

– 4.8 GB/sec (memory bandwidth)

– 32 MB memory

– $100

◼10

Before…

• SGI InfiniteReality (inside Onyx) (1995)

– 2-4 raster boards (i.e., boards used in parallel)

– 0.8 GB/sec (memory bandwidth)

– 0.000640 TFLOPS

– 2560x2048 pixels

– ?? power

– ?? max GPU temp

– $390,000

◼11

Before

• SGI Personal IRIS 4D (1985)

– 0.000000940 TFLOPS

– $68000

◼12

Before

• IBM PC 5150 (~1985)
– 0.000004.77 GHz

– 16-640 KB

– ~200W power

◼13

Modern GPU has more ALU’s

◼14

GPU Pipeline: Transform

• Vertex/Geometry processor (multiple in parallel)

– Transform from “world space” to “image space”

– Compute per-primitive and per-vertex lighting

◼15

GPU Pipeline: Rasterize
(typically not programmable)

• Rasterizer

– Convert geometric rep. (vertex) to image rep.
(fragment)

• Fragment = image fragment
– Pixel + associated data: color, depth, stencil, etc.

– Interpolate per-vertex quantities across pixels

◼16

GPU Pipeline: Shade

• Fragment processors (multiple in parallel)

– Compute a color for each pixel

– Optionally read colors from textures (images)

◼17

GPU Programming Languages

• Many options!

– A while ago: “Renderman”

– cG (from NVIDIA)

– GLSL (GL shading Language)

– CUDA (more general that graphics)…

• Lets focus first on the concept, later on the
language specifics…

◼18

GLSL Demo

• http://glslsandbox.com/

(backup:
https://www.youtube.com/watch?v=9ETfgTD6L2I

https://www.youtube.com/watch?v=8gHx7nMCVp4

https://www.youtube.com/watch?v=t2yPfenzkII

https://www.youtube.com/watch?v=M_FsjL9j0HY)

◼19

http://glslsandbox.com/
https://www.youtube.com/watch?v=9ETfgTD6L2I
https://www.youtube.com/watch?v=8gHx7nMCVp4
https://www.youtube.com/watch?v=t2yPfenzkII
https://www.youtube.com/watch?v=M_FsjL9j0HY

◼20

Mapping Parallel Computational
Concepts to GPUs

• GPUs are designed for graphics
– Highly parallel tasks

• GPUs process independent vertices & fragments
– Temporary registers are zeroed

– No shared or static data

– No read-modify-write buffers

• Data-parallel processing
– GPUs architecture is ALU-heavy

• Multiple vertex & pixel pipelines, multiple ALUs per pipe

– Hide memory latency (with more computation)

◼21

Example: Simulation Grid

• Common GPGPU computation style
– Textures represent computational grids = streams

• Many computations map to grids
– Matrix algebra

– Image & Volume processing

– Physically-based simulation

– Global Illumination

• ray tracing, photon mapping,
radiosity

• Non-grid streams can be
mapped to grids

◼23

e.g.: Scatter vs. Gather

• Grid communication

– Grid cells share information

◼24

Vertex Processor

• Fully programmable (SIMD / MIMD)

• Processes 4-vectors (RGBA / XYZW)

• Capable of scatter but not gather

– Can change the location of current vertex

– Cannot read info from other vertices

– Can only read a small constant memory

• Latest GPUs: Vertex Texture Fetch

– Random access memory for vertices

– Gather (But not from the vertex stream itself)

◼25

Fragment Processor

• Fully programmable (SIMD)

• Processes 4-component vectors (RGBA / XYZW)

• Random access memory read (textures)

• Capable of gather but not scatter
– RAM read (texture fetch), but no RAM write

– Output address fixed to a specific pixel

• Typically more useful than vertex processor
– More fragment pipelines than vertex pipelines

– Direct output (fragment processor is at end of pipeline)

◼26

GPU Simulation Overview

• A Simulation:

– Its algorithm steps are fragment programs

• Called Computational kernels

– Current state is stored in textures

– Feedback via “render to texture”

• Question:

– How do we invoke computation?

◼27

Invoking Computation

• Must invoke computation at each pixel

– Just draw geometry!

– Most common GPGPU invocation is a full-screen
quad

• Other Useful Analogies

– Rasterization = Kernel Invocation

– Texture Coordinates = Computational Domain

– Vertex Coordinates = Computational Range

◼28

Typical “Grid” Computation

• Initialize “view” (so that pixels:texels::1:1)
 glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(0, 1, 0, 1, 0, 1);

glViewport(0, 0, outTexResX, outTexResY);

• For each algorithm step:
– Activate render-to-texture

– Setup input textures, fragment program

– Draw a full-screen quad (1x1)

◼29

Example: N-Body Simulation
• Brute force

• N = 8192 bodies

• N2 gravity computations

• 64M force comps. / frame

• ~25 flops per force

• 10.5 fps

• 17+ GFLOPs sustained in this example
◼Nyland, Harris, Prins,

GP2 2004 poster

◼30

Computing Gravitational Forces

• Each body attracts all other bodies

– N bodies, so N2 forces

• Draw into an NxN buffer

– Pixel (i,j) computes force between bodies i and j

– Very simple fragment program

• More than N=2048 bodies is tricky

• Why?

31

Computing Gravitational Forces
N-body force Texture

force(i,j)

Ni

N

0

j

i

j

Body Position Texture

F(i,j) = gMiMj / r(i,j)2,

r(i,j) = |pos(i) - pos(j)|

Force is proportional to the inverse square

of the distance between bodies

◼32

Computing Gravitational Forces

float4 force(float2 ij : WPOS,

 uniform sampler2D pos) : COLOR0

{

 // Pos texture is 2D, not 1D, so we need to

 // convert body index into 2D coords for pos tex

 float4 iCoords = getBodyCoords(ij);

 float4 iPosMass = texture2D(pos, iCoords.xy);

 float4 jPosMass = texture2D(pos, iCoords.zw);

 float3 dir = iPos.xyz - jPos.xyz;

 float r2 = dot(dir, dir);

 dir = normalize(dir);

 return dir * g * iPosMass.w * jPosMass.w / r2;

}

◼33

Computing Total Force
• Have: array of (i, j) forces

• Need: total force on each
particle i
– Sum of each column of the force

array

• Can do all N columns in
parallel

This is called a Parallel Reduction

force(i,j)

N-body force Texture

Ni

N

0

• so far: GPGPU limited to texture output

• new APIs allow geometry generation on GPU

Geometry processing on GPUs

◼34

Examples

Fluid Simulation 3D Smoke & Fire

Particles

Grid displacement

Water Simulation 3D Water Surfaces

◼35

Examples

Particles

Grid displacement

Point Decompression

Fluid Simulation 3D Smoke & Fire

Water Simulation
3D Water Surfaces

Point Compression

Point Rendering ◼36

◼37

High Level Shading Languages

• Cg, HLSL, & OpenGL Shading Language

– Cg:
• http://www.nvidia.com/cg

– HLSL:
• http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/directx9_c/directx/graphics/reference/highlevellanguageshade
rs.asp

– OpenGL Shading Language:
• http://www.3dlabs.com/support/developer/ogl2/whitepapers/ind

ex.html

‘printf’ Debugging

• MOV suspect register to output

– Comment out anything else writing to output

– Scale and bias as needed

• Recompile

• Display/readback frame buffer

• Check values

• Repeat until error is (hopefully) found

◼38

‘printf’ Debugging Examples

◼40

‘printf’ Debugging Examples

◼41

‘printf’ Debugging Examples

◼42

	Slide 1: The Way of the GPU (based on GPGPU SIGGRAPH Course)
	Slide 2: Computer Graphics Pipeline
	Slide 3: Today, we have GPUs…
	Slide 4: Some history and context…
	Slide 5: Motivation: Computational Power
	Slide 6: Motivation: Flexible and Precise
	Slide 7: The Problem: Difficult To Use
	Slide 8: Diagram of a Modern GPU
	Slide 9: nVIDIA GPU
	Slide 10: nVIDIA GPU
	Slide 11: Before…
	Slide 12: Before
	Slide 13: Before
	Slide 14: Modern GPU has more ALU’s
	Slide 15: GPU Pipeline: Transform
	Slide 16: GPU Pipeline: Rasterize (typically not programmable)
	Slide 17: GPU Pipeline: Shade
	Slide 18: GPU Programming Languages
	Slide 19: GLSL Demo
	Slide 20: Mapping Parallel Computational Concepts to GPUs
	Slide 21: Example: Simulation Grid
	Slide 23: e.g.: Scatter vs. Gather
	Slide 24: Vertex Processor
	Slide 25: Fragment Processor
	Slide 26: GPU Simulation Overview
	Slide 27: Invoking Computation
	Slide 28: Typical “Grid” Computation
	Slide 29: Example: N-Body Simulation
	Slide 30: Computing Gravitational Forces
	Slide 31: Computing Gravitational Forces
	Slide 32: Computing Gravitational Forces
	Slide 33: Computing Total Force
	Slide 34: Geometry processing on GPUs
	Slide 35: Examples
	Slide 36: Examples
	Slide 37: High Level Shading Languages
	Slide 38: ‘printf’ Debugging
	Slide 40: ‘printf’ Debugging Examples
	Slide 41: ‘printf’ Debugging Examples
	Slide 42: ‘printf’ Debugging Examples

