

Physically Based Simulations on the GPU (just briefly...)

CS334

Daniel G. Aliaga

Department of Computer Science

Purdue University

Simulating the world

 Floating point arithmetic on GPUs and their speed enable us to simulate a wide variety of phenomena using PDEs

- Operators (on images/lattices)
- Diffusion
- Bouyancy

- Given an image:
 - Gradient (vector)

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y}$$

Laplacian (scalar)

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Discrete Laplacian

•
$$\nabla^2 f(x,y) =$$

$$f(x-1,y) + f(x+1,y) +$$

$$f(x,y-1) + f(x,y+1) -$$

$$4f(x,y)$$

Matrix form K = ??

Discrete Laplacian

•
$$\nabla^2 f(x,y) =$$

$$f(x-1,y) + f(x+1,y) +$$

$$f(x,y-1) + f(x,y+1) -$$

$$4f(x,y)$$

Matrix form K =

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Convolve an image with a kernel K:

Convolution

- Define a kernel
- "Convolve the image"

FUR

(Image) Convolution

• Kernel:
$$(1/16)\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

What if kernel is not normalized?

• Image:
$$\begin{bmatrix} p_{11} & \cdots & p_{m1} \\ \vdots & \ddots & \vdots \\ p_{1n} & \cdots & p_{mn} \end{bmatrix}$$

- What if image is multi-channel?
- What if kernel falls off the side of the image?

(Image) Convolution

(Image) Convolution

Edge Detection

What would you do? What kernel?

Roberts operator (1963) on image A:

•
$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} *A$$
, $G_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} *A$

$$\bullet \ G = \sqrt{G_x^2 + G_y^2}$$

•
$$\theta = \tan^{-1}(\frac{G_y}{G_x})$$

Sobel operator (1968) on image A:

•
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} *A, G_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} *A$$

$$\bullet \ G = \sqrt{G_x^2 + G_y^2}$$

•
$$\theta = \tan^{-1}(\frac{G_y}{G_x})$$

 Prewitt operator (1970) on image A (different spectral response as compared to Sobel):

•
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} *A, G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} *A$$

•
$$G = \sqrt{G_x^2 + G_y^2}$$

• $\theta = \tan^{-1}(\frac{G_y}{G_x})$

•
$$\theta = \tan^{-1}(\frac{G_y}{G_x})$$

Edge Detection

- Canny Edges (1986)
 - Multi-stage algorithm, uses Sobel/Prewitt (or other) edge detector on a Gaussian filtered image and then has a process of non-maximal suppression

Edge Detection: Second-Order Operator

 Laplacian: highlights regions of rapid intensity change

•
$$L_A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} *A$$

(positive Laplacian takes out outward edges; negative Laplacian is possible too)

- Online demo:
 - https://fiveko.com/online-tools/

Heat Equation

$$\frac{\partial f}{\partial t} = \nabla^2 f$$

Demo

[See "Ready" Demo: Heat Equation]

Diffusion Equation

[Weisstein 1999]

$$f(x,y)' = f(x,y) + \frac{c_d}{4} \nabla^2 f(x,y)$$

where c_d is the coefficient of diffusion...

(Anisotropic) Diffusion

(a) Original Image

(c) Time = 10

(b) Time = 5

(d) Time = 30

Buoyancy

- Used in convection, cloud formations, etc.
- Given a temperature state T:
 - a vertical buoyancy velocity is 'upwards' if a node is hotter than its neighbors' and
 - a vertical buoyancy velocity is 'downwards' if a node is cooler than its neighbors

Buoyancy

$$v(x,y)' = v(x,y) + \frac{c_b}{2} (2f(x,y) - f(x+1,y) - f(x-1,y))$$

where c_b is the buoyancy strength

•
$$f(x,y)' =$$

$$f(x,y) - \frac{\sigma}{2}f(x,y)$$

$$[\rho(f(x,y+1) - \rho(f(x,y-1))]$$

where $\rho(f) = \tanh(\alpha(f - f_c))$ (an approx. of density relative to temperature f) and σ is buoyancy strength and α and f_c are constants

Euler Method (for ODE)

• Given:

$$y'(t) = f(t, y(t))$$
 with $y(t_0) = y_0$

• Do:

$$y_{n+1} = y_n + hf(t_n, y_n)$$

Classical Runge Kutta Method

• Given:

$$y'(t) = f(t, y(t))$$
 with $y(t_0) = y_0$

Do:

$$y_{n+1} = y_n + h/6(k_1 + 2k_2 + 2k_3 + k_4)$$

 $t_{n+1} = t_n + h$

where
$$k_1 = f(t_n, y_n),$$

 $k_2 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_1),$
 $k_3 = f(t_n + \frac{h}{2}, y_n + \frac{h}{2}k_2),$
 $k_4 = f(t_n + h, y_n + hk_3).$

Example: (Water) Boiling

- Based on [Harris et al. 2002]
- State = Temperature
- Three operations:
 - Diffusion, buoyancy, & latent heat
- 3D Simulation
 - Stack of 2D texture slices

Wave Equation

- Remember heat equation:
 - Rate of change of value proportional to Laplacian
- Wave equation:
 - Rate of change of the rate of change is also proportional to the Laplacian

Wave Equation

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

where u models the displacement and c is the propagation speed

$$U = value, V = rate of change$$

$$\frac{\partial U}{\partial t} = \frac{b}{k} + d\nabla^2 U$$

$$\frac{\partial V}{\partial t} = k\nabla^2 U$$

Water Simulation: Wave Equation

Demo...

Demo

[See "Ready" Demo: Wave Equation]

Also:

https://www.ibiblio.org/enotes/webgl/gpu/contents.htm

Turing: Morphogenesis and Reaction-Diffusion (1952)

"Alan Turing in 1952 describing the way in which non-uniformity (stripes, spots, spirals, etc.) may arise naturally out of a homogeneous, uniform state. The theory (which can be called a reaction—diffusion theory of morphogenesis), has served as a basic model in theoretical biology, and is seen by some as the very beginning of chaos theory."

$$\frac{\partial U}{\partial t} = D_U \nabla^2 U - k(UV - 16)$$

$$\frac{\partial V}{\partial t} = D_V \nabla^2 V + k(UV - 12 - V)$$

Gray-Scott Reaction-Diffusion

- State = two scalar chemical concentrations
- Simple:
 - just Diffusion and Reaction ops

Some research...

 http://www.cc.gatech.edu/~turk/reaction_diff usion/reaction_diffusion.html

Demo

[See "Ready" Demo: Gray-Scott Equation]

- Also:
 - https://www.ibiblio.org/enotes/webgl/gpu/contents.htm

- Temperature affected by
 - Heat sources
 - Advection
 - Latent heat released / absorbed during condensation / evaporation

- Δ temperature = advection + latent heat release
 - + temperature input

Cloud Dynamics

- 3 components
 - 7 unknowns
- Fluid dynamics
 - Motion of the air
- Thermodynamics
 - Temperature changes
- Water continuity
 - Evaporation, condensation

Velocity: $\mathbf{u} = (u, v, w)$

Pressure: p

Potential temperature: θ (see dissertation)

Water vapor mixing ratio: q_{v}

Liquid water mixing ratio: q_c

Cloud Dynamics

 $Asin(\omega x + t)$

$$A_1sin(\omega_1x + t_1) + A_2sin(\omega_2x + t_2) + \cdots$$

Using sine-wave summations:

$$H(x, y, t) = \sum_{i} A_{i} sin(D_{i} \cdot (x, y)\omega_{i} + t\phi_{i})$$

[use H as height or a pixel intensity]

Pixel values over time are:

$$P(x, y, t) = (x, y, H(x, y, t))$$

(here, pixel normals are computed as well for reflections)

Water: Surface Normals

Use binormal and tangent:

$$B(x,y,t) = \left(\frac{dx}{dx}, \frac{dy}{dx}, \frac{dH(x,y,t)}{dx}\right) = (1,0, \frac{dH(x,y,t)}{dx})$$
$$T(x,y,t) = \dots = \left(0,1, \frac{dH(x,y,t)}{dy}\right)$$

Normal is:

$$N(x, y, t) = B \times T$$

$$N(x, y, t) = \left(-\frac{dH(x, y, t)}{dx}, -\frac{dH(x, y, t)}{dy}, 1\right)$$

Water Simulation: Gerstner Waves

 These waves also change the x, y of the wave imitating how points at top of wave are squished together and points at bottom are separated

Water Simulation: Gerstner Waves

$$P(x, y, t)$$

$$= \begin{bmatrix} x + \sum Q_i A_i D_i \cdot x \cos(\omega_i D_i \cdot (x, y) + \phi_i t) \\ y + \sum Q_i A_i D_i \cdot y \cos(\omega_i D_i \cdot (x, y) + \phi_i t) \\ \sum A_i \sin(\omega_i D_i \cdot (x, y) + \phi_i t) \end{bmatrix}$$

where Q_i =sharpness

Water Simulation: Gerstner Waves

Video

https://www.youtube.com/watch?v=lqPa389v
 i4s

 https://www.youtube.com/watch?v=8DxL-ErCRVo