
What about no-triangulation?

→ Point-based Rendering
(Just a Quick View…)

CS334

Daniel Aliaga

Point-Based Rendering
• Options:

– Ray tracing
– Polygon rendering
– Point-based rendering

• Instead of drawing triangles, just draw lots of dots (or small circles, or
something)

• What are the advantages of this?
• What problems do you need to solve?

◼2

Some History

• The idea of splatting points onto the screen
originated with Levoy and Whitted in 1985

• It found some use in volume rendering

– Voxels were accumulated along rays and onto the screen

• A commonly cited commercial system is Animatek’s
Caviar player

– Interactive frame rates for complex models aimed at
games

• Image-based rendering can be viewed as point-based
rendering

◼3

Surfels
(by Pfister, Zwicker, van Baar and Gross)

• We’ve seen pixels, voxels, texels, and now
surfels
– You can probably guess what it means

• This paper focuses on the issues of:
– Sampling other representations into surfels

– Storing surfels

– Rendering with surfels

◼5

Sampling Objects
• The final pixel resolution

determines the sampling density

– Want at least one sample per pixel

– Typically go higher

• Cast rays through the object in an
axis aligned direction on a regular
grid spacing

– Do this for each of three axis align
directions

• Store pre-filtered texture colors at
the points

– Project the surfel into texture space
and filter to get a single color

◼6

Storing Surfels

• Store 3 layered depth images (LDI), one for
each axis-aligned orthographic viewing
direction
– Call the result a Layered Depth Cube (LDC)

– A layered depth image (LDI) stores multiple depths
per pixel, with color for each depth

• Build an octree hierarchy by down-sampling
high-res LDIs
– Nodes in the tree are called blocks

• Can also reduce a LDC to a single LDI (but with
some error) ◼7

Splatting and Reconstruction

◼10

QSplat
(by Rusinkiewicz and Levoy)

• Primary goal is interactive rendering of very
large point-data sets

• Built for the Digital Michelangelo Project

◼12

QSplat Sphere Tree

◼14

Splat Shape

• Several options

– Square (OpenGL “point”)

– Circle (triangle fan or texture mapped square)

– Gaussian (have to do two-pass)

• Can squash splats depending on viewing angle

– Sometimes causes holes at silhouettes, can be
fixed by bounding squash factor

◼16

Splat Shape

◼17

Splat Silhouettes

◼18

Few Splats

◼20

Many Splats

◼21

Frameless Rendering

• Continuously update pixels in randomized order

• Reconstruct image with filtering based on recent pixels

• Many guises: frameless rendering, the render cache, radiosity
interpolants

• Think raytracing:
– As things change from frame to frame, cast as many rays as you have

time for, and keep other rays from previous frame

• Hard parts are knowing which samples to keep/discard, and
filtering

• “Adaptive Frameless Rendering”
– Dayal et al. 2005

– Video

◼22

https://luebke.us/publications/pdf/afr.egsr.pdf
https://luebke.us/publications/afr.egsr.submitted.small.mp4

Recent 3D Gaussian Splatting

• https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

• https://3dgstutorial.github.io/3dv_part1.pdf

◼23

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://3dgstutorial.github.io/3dv_part1.pdf

	Slide 1: What about no-triangulation? Point-based Rendering (Just a Quick View…)
	Slide 2: Point-Based Rendering
	Slide 3: Some History
	Slide 5: Surfels (by Pfister, Zwicker, van Baar and Gross)
	Slide 6: Sampling Objects
	Slide 7: Storing Surfels
	Slide 10: Splatting and Reconstruction
	Slide 12: QSplat (by Rusinkiewicz and Levoy)
	Slide 14: QSplat Sphere Tree
	Slide 16: Splat Shape
	Slide 17: Splat Shape
	Slide 18: Splat Silhouettes
	Slide 20: Few Splats
	Slide 21: Many Splats
	Slide 22: Frameless Rendering
	Slide 23: Recent 3D Gaussian Splatting

