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Motivation

• Time of flight

• Structured light

• Stereo images

• Shape from shading

• Etc.

◼http://graphics.stanford.edu/projects/mich/
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Geometry
processing

Motivation

etc.

Surface
reconstruction
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Marching Squares (2D)
Marching Cubes (3D)

• The premise of the algorithm is to divide the 
input volume into a discrete set of 
squares/cubes. By assuming linear 
reconstruction filtering, each square/cube, 
which contains a piece of a given isosurface, 
can be easily represented with lines/triangles.
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Marching Squares
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[https://www.cs.carleton.edu/cs_comps/0405/shape/marching_cubes.html]
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Marching Cubes

If the function is sampled on a regular voxel grid, we 
can independently triangulate each voxel.
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Marching Cubes

Iso-vertices on an edge are only determined by the 
values on the corner of the edge:

 Iso-vertices are consistent across voxels.
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Marching Cubes

Iso-edges on a face are only determined by the values 
on the face:

 Each iso-edge is shared by two triangles so the mesh is 
water-tight.
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Challenges

Extracting a surface by independently triangulating the 
leaf octants, depth-disparities can cause:

– Inconsistent extrapolation to edges 

 Inconsistent iso-vertex positions
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Challenges

Extracting a surface by independently triangulating the 
leaf octants, depth-disparities can cause:

– Inconsistent extrapolation to faces

 Inconsistent iso-edges

◼14



Marching Cubes
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Ball-pivoting

Bernardini et al., IBM

Fixed-radius ball “rolling” 

over points selects subset of 

alpha-shape.
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Pivoting in 2D

(a) Circle of radius ρ pivots from point to point, connecting them with edges. 

(b)  When sampling density is low, some of the edges will not be created, leaving holes.

◼ (c) When the curvature of the manifold is larger than 1/ρ, some of the  points will 

not be reached by the pivoting ball, and features will be missed.
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The algorithm [Edge representation]

• Edge (si, sj)

– Opposite point so, center of empty ball c

– Edge: “Active”, “Boundary”, or “Frozen”

si

sj

so

c
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Pivoting example

Active edge

Point on front

Initial seed triangle:

Empty ball of radius ρ passes through the three 

points

◼19



Pivoting example

Active edge

Point on frontBall pivoting around active edge
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Pivoting example

Active edge

Point on frontBall pivoting around active edge
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Pivoting example

Active edge

Point on frontBall pivoting around active edge
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Pivoting example

Active edge

Point on frontBall pivoting around active edge
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Pivoting example

Active edge

Point on front

Internal point

Ball pivoting around active edge
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Pivoting example

Boundary edge

Point on front

Internal point

Ball pivoting around active edge

No pivot found

Active edge
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Pivoting example

Point on front

Internal point

Active edge

Ball pivoting around active edge

Boundary edge
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge

No pivot found
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge

Frozen edge

Points in frozen region
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge

Frozen edge

Points in frozen region
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge

Frozen edge

Points in frozen region
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Pivoting example

Point on front

Internal point

Active edge

Boundary edge

Ball pivoting around active edge

Frozen edge

Points in frozen region
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Ball Pivoting Algorithm 
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Ball Pivoting Algorithm
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Implicit Representation

Another option is representing a 3D model by an 
implicit function for:

– Reconstruction

– Fluid Dynamics

– 3D Texturing

◼Kazhdan 2005

◼Losasso et al. 2004
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Implicit Function Fitting

Given point samples:

– Define a function with value zero at the points.

– Extract the zero isosurface. >0

<0

0

F(q)Sample points

F(q)<0

F(q)>0

F(q) =0
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Triangulation Complexity
(in general)

• Theorem: (Gary et. al. 1978) A simple n-vertex 

polygon can be triangulated  in O(nlogn) time 

and O(n) storage

• The problem has been studied extensively 

between 1978 and 1991, when in 1991 Chazelle 

presented an O(n) time complexity algorithm. 
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Delaunay Triangulation

• Another very popular algorithm…

• But first, Voronoi Diagrams…

• Relevant Conversation:

– Captain Kirk: “Spock! Which tricorder tower (i.e., cell 
phone) should I be using?”

– Commander Spock: “Logically, the closest one, Jim.”

• How do you do that?
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Where to place cell phone towers? or
Which cell phone tower should I use?
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P = { p1, p2, … , pn} a set of n points in the plane.

Cell phone towers
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P = { p1, p2, … , pn} a set of n points in the plane.

Voronoi Diagram
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Voronoi(P):   # regions = n,  # edges  3n-6,  # vertices  2n-5.

Voronoi Diagram: 
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DT(P):   # vertices = n,  # edges  3n-6,  # triangles  2n-5.

Delaunay Triangulation = 
Dual of the Voronoi Diagram

◼43



Delaunay triangles have the “empty circle” property.

Delaunay Triangulation
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Voronoi Diagram and Delaunay Triangulation
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◼  Each Voronoi region V(pi) is a convex polygon (possibly 

unbounded).

◼  V(pi) is unbounded        pi is on the boundary of CH(P).

◼  Consider a Voronoi vertex v = V(pi)  V(pj)  V(pk).

    Let C(v) = the circle centered at v passing through pi, pj, pk.

◼  C(v) is circumcircle of Delaunay Triangle (pi, pj, pk).

◼  C(v) is an empty circle, i.e., its interior contains no other sites of P.

VD Properties
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Voronoi Regions in Nature
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Computing Delaunay Triangulation

• Many algorithms: O(nlogn)

• Lets use flipping:
– Recall: A Delaunay Triangulation is a set of 

triangles T in which each edge of T possesses at 
least one empty circumcircle.

– Empty:  A circumcircle is said to be empty if it 
contains no nodes of the set V
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What is a flip?

A non-Delaunay edge flipped
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Flip Algorithm

• ??
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Flip Algorithm

1. Let V be the set of input vertices.

2. T =  Any Triangulation of V.

3. Repeat until all edges of T are Delaunay 
edges.

a. Find a non-delaunay edge that is flippable

b. Flip

Naïve Complexity: O(n2)
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Locally Delaunay → Globally Delaunay

• If T is a triangulation with all its edges locally 
Delaunay , then T is the Delaunay 
triangulation.

• Proof by contradiction: 
– Let all edges of T be locally Delaunay but an edge 

of T is not Delaunay, so flip it…
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Flipping

• Other flipping ideas?
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Randomized Incremental Flipping

• Complexity can be O(nlogn)
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Fortune’s Algorithm

• “A sweepline algorithm for Voronoi 
“Algorithms”, 1987, O(nlogn)

https://www.youtube.com/watch?v=k2P9yWSMaXE

     Pseudocode:
add a site event in the event queue for each site 
while the event queue is not empty 
 pop the top event 
 if the event is a site event 
  insert a new arc in the beachline 
  check for new circle events 
 else 
  create a vertex in the diagram 
  remove the shrunk arc from the beachline 
  delete invalidated events 
  check for new circle events 
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•Simultaneously drop pebbles on calm 

lake at n sites.

•Watch the intersection of expanding 

waves.

Wave Propagation View
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x

y x

z=time

y

 

◼p

◼p

apex 

of the cone

All sites have identical opaque cones.

Let Time be the 3rd Dimension
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x
z

y

All sites have identical opaque cones.

cone(p)  cone(q) = vertical hyperbola h(p,q).

vertical projection of h(p,q) on the xy base plane is PB(p,q).

p q

base plane

Let Time be the 3rd Dimension
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Voronoi Diagrams

• http://alexbeutel.com/webgl/voronoi.html
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http://alexbeutel.com/webgl/voronoi.html


Voronoi Diagram

• http://www.raymondhill.net/voronoi/rhill-
voronoi-demo5.html
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http://www.raymondhill.net/voronoi/rhill-voronoi-demo5.html
http://www.raymondhill.net/voronoi/rhill-voronoi-demo5.html


Examples Triangulations
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And Beyond…

• Not “relaxation” but more general:

– Reaction Diffusion…

• https://pmneila.github.io/jsexp/grayscott/

• Textures:
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https://pmneila.github.io/jsexp/grayscott/
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