
CS535
Deep Visual Computing:

Deep Basics

Daniel G. Aliaga

Perceptron
𝑥𝑥0 𝑝𝑝

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

𝑦𝑦0

Example: 𝑏𝑏 = 0,𝑚𝑚 = 1

𝑥𝑥

𝑦𝑦

𝑦𝑦 = 𝑥𝑥

Perceptron
𝑥𝑥0 𝑝𝑝

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

𝑦𝑦0

Activation Function

Biology 101

• In human brain:
• Neuron switching time
 ~ 0.001 second
• Number of neurons
 ~ 1010

• Connections per neuron
 ~ 104-5

• Scene recognition time
 ~ 0.1 second
• Huge amount of parallel computation

 100 inference steps is not enough

© Eric Xing @ CMU, 2006-2011

From Biology to Computers…

• Biology Perceptron

• Activation function

© Eric Xing @ CMU, 2006-2011 5

Soma Soma

Synapse

Synapse

Dendrites

Axon

Synapse

Dendrites
Axon

Threshold

Inputs

x1

x2

Output
Y∑

Hard
Limiter

w2

w1

Linear
Combiner

θ

∑
=

=
n

i
iiwxX

1

ω<−
ω≥+

=
0

0

X
X

Y
 if ,
 if ,

1
1

Axon

Synapse

Soma

Dendrites

Axon

Dendrites

Synapse

Synapse

Soma

[image: image1.wmf]x

1

w2

(

w1

(

�

Linear

Combiner

Hard

Limiter

Y

Output

x2

Inputs

Threshold

Activation Functions

𝑥𝑥

𝑦𝑦

Linear

NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit

Multilayer Perceptron
𝑥𝑥 𝑝𝑝0

ℎ = 𝑚𝑚0𝑥𝑥 + 𝑏𝑏0

𝑦𝑦

Example: b0 = b1 = 0,𝑚𝑚0 = 𝑚𝑚1 = 0.5

𝑥𝑥

𝑦𝑦

𝑝𝑝1

𝑦𝑦 = 𝑚𝑚1ℎ + 𝑏𝑏1

𝑦𝑦 = 𝑚𝑚1(𝑚𝑚0𝑥𝑥 + 𝑏𝑏0) + 𝑏𝑏1

𝑦𝑦 = 0.25𝑥𝑥

Multilayer Perceptron
𝑥𝑥 𝑝𝑝0

ℎ = 𝑚𝑚0𝑥𝑥 + 𝑏𝑏0

𝑦𝑦

Example: b0 = b1 = 0,𝑚𝑚0 = 2,𝑚𝑚1 = 1

𝑝𝑝1

𝑦𝑦 =
1

1 + 𝑒𝑒−𝑚𝑚1(ℎ+𝑏𝑏1)

𝑦𝑦 =
1

1 + 𝑒𝑒−2𝑥𝑥
𝑦𝑦

𝑥𝑥

Intuitively: y will
be “high” for
smaller values of x

Example: b0 = b1 = 0,𝑚𝑚0 = 0.5,𝑚𝑚1 = 1

𝑦𝑦 =
1

1 + 𝑒𝑒−0.5𝑥𝑥

𝑦𝑦

𝑥𝑥

Intuitively: y will
be “high” for
larger values of x

Multilayer Perceptron

x

y

𝑝𝑝0

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

Layer 1
Node Bias x-Weight y-Weight

0 -0.375 -3 1

1 -0.125 0 1

2 -0.375 3 1

3 0.125 -0.75 1

4 0.125 0.75 1

Layer 2
From Node Bias Weight

0 -0.2 1

1 -0.2 1

2 -0.2 1

3 -0.2 1

4 -0.2 1

(Sigmoid activation functions)

Rounded to 0
or 1

Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp

https://www.cs.utexas.edu/%7Eteammco/misc/mlp/

Basic Machine Learning Recipe

1. Obtain training data
2. Choose decision and loss functions
3. Define goal
4. Optimize!

Training Data

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 for i ∈ [1,𝑁𝑁]

Fundamental categories:
1. Synthetic data
2. Real data (annotated)
3. Real data (unannotated) <- tricky!

Properties:
1. Data should span/populate the distribution of expected input values
2. Data should be plenty – kinda same as above
3. Data should have low errors/noise (ideally)

Decision and Loss Functions

�𝑦𝑦 = f𝜃𝜃(xi)

The function you wish to “decide” that given the inputs, and the
parameters 𝜃𝜃, yields an output �𝑦𝑦 that is equal or close to desired values;
thus, you seek

𝑙𝑙 �𝑦𝑦,𝑦𝑦𝑖𝑖 → 0

Properties:
1. Decision should be “doable” so that convergence is possible
2. Loss function should exploit as much as possible of domain

knowledge

Define (Training) Goal

𝜃𝜃∗ = argmin
𝜃𝜃

�
𝑖𝑖=1

𝑁𝑁

𝑙𝑙(𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Define a function to find parameters 𝜃𝜃∗ that minimize the loss function
for the entire training data set; i.e., find network weights and biases
that make the network “learn” the desired (high-dimensional) function

Optimize!

• Perform small steps (opposite the gradient)…

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑡𝑡𝛻𝛻𝑙𝑙 f𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

Move a small step against the gradient to eventually
reach a set of network parameters that minimize the
loss function

Optimize!

• Methods:
• Stochastic Gradient Descent (SGD),
• Adam, or
• Others

• Adam: an adaptive moment
estimation based optimization – the
learning rate changes during the
optimization [Kingma and Ba, 2015]

SGD: Learning Rate

• It is a scale factor for how much
the network parameters (𝜃𝜃) are
updated during training

• To the right is a graph of different
learning rates for 3-blob
classification trained on multilayer
perceptron of 50 nodes, using
ReLU, for 200 epochs

• Orange = train
• Blue = test

• Best is 0.1 to 0.001 (in this case)

SGD: Moment

• It is like giving the optimization step
short term memory and keeping it
partially moving the direction it was
going – in a sense a dynamic learning
rate

• Effect of moment-based SGD on the
same example as previous slide:

• Best is 0.9 or 0.99 in this case because
converged and fastest

• Formulation?

SGD: Learning Rate Decay

• Slowly reduce the learning rate
• Using same example from before,

we experiment with different
decay rates

Adaptive Learning Rate Methods

• Different adaptive learning rate
methods on the same example

• SGD has fixed learning rate 0.01

Back Propagation
Initialize all network parameters with small random numbers (e.g., [-1,1])

REPEAT

FOR every pattern in the training set

 // Propagate the input forward through the network:

 Present the pattern to the network

 FOR each layer in the network

 FOR every node in the layer

 1. Calculate the weight sum of the inputs to the node

 2. Add the bias to the sum

 3. Calculate the activation for the node

 end

 end

// Propagate the errors backward through the network

 FOR every node in the output layer

 Calculate the error signal

 end

 FOR all hidden starting at outmost layers

 FOR every node in the layer

 1. Calculate the node's signal error

 2. Update each node's weight in the network

 end

 end

 // Calculate Global Error

 Calculate the Error Function

end

UNTIL ((maximum number of iterations > than specified) OR

 (Error Function is < than specified))

Batch Normalization

• Rather than compute gradient per
𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 :
• compute for a “mini batch” and then,
• normalize the output of the previous output

layer by subtracting the mean over the batch
divided by the standard deviation

• This reduces internal covariant shift and
makes things more “Gaussian”

 [Ioffe and Szegedy, 2015]

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑡𝑡/𝑚𝑚�
𝑖𝑖=1

𝑚𝑚

𝛻𝛻𝑙𝑙 f𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• Typical batch sizes are few to 100(?)

• https://playground.tensorflow.org

https://playground.tensorflow.org/

Batch Normalization

• One formulation:

Deep Graphics?

• Lets start with NERF:
https://www.matthewtancik.com/nerf

https://www.matthewtancik.com/nerf

	CS535�Deep Visual Computing:��Deep Basics
	Perceptron
	Perceptron
	Biology 101
	From Biology to Computers…
	Activation Functions
	Multilayer Perceptron
	Multilayer Perceptron
	Multilayer Perceptron
	Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp
	Basic Machine Learning Recipe
	Training Data
	Decision and Loss Functions
	Define (Training) Goal
	Optimize!
	Optimize!
	SGD: Learning Rate
	SGD: Moment
	SGD: Learning Rate Decay
	Adaptive Learning Rate Methods
	Back Propagation
	Batch Normalization
	Batch Normalization
	Deep Graphics?

