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Perceptron
𝑥𝑥0 𝑝𝑝

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

𝑦𝑦0

Example: 𝑏𝑏 = 0,𝑚𝑚 = 1 

𝑥𝑥

𝑦𝑦

𝑦𝑦 = 𝑥𝑥



Perceptron
𝑥𝑥0 𝑝𝑝

𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏

𝑦𝑦0

Activation Function



Biology 101

• In human brain:
• Neuron switching time 
 ~ 0.001 second
• Number of neurons 
 ~ 1010

• Connections per neuron 
 ~ 104-5

• Scene recognition time 
 ~ 0.1 second
• Huge amount of parallel computation

 100 inference steps is not enough

© Eric Xing @ CMU, 2006-2011



From Biology to Computers…

• Biology                                                                    Perceptron

• Activation function

© Eric Xing @ CMU, 2006-2011 5
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Activation Functions

𝑥𝑥

𝑦𝑦

Linear

NOTE: ReLU = Rectified Linear Unit, ELU = Exponential Linear Unit



Multilayer Perceptron
𝑥𝑥 𝑝𝑝0

ℎ = 𝑚𝑚0𝑥𝑥 + 𝑏𝑏0

𝑦𝑦

Example: b0 = b1 = 0,𝑚𝑚0 = 𝑚𝑚1 = 0.5 

𝑥𝑥

𝑦𝑦

𝑝𝑝1

𝑦𝑦 = 𝑚𝑚1ℎ + 𝑏𝑏1

𝑦𝑦 = 𝑚𝑚1(𝑚𝑚0𝑥𝑥 + 𝑏𝑏0) + 𝑏𝑏1

𝑦𝑦 = 0.25𝑥𝑥



Multilayer Perceptron
𝑥𝑥 𝑝𝑝0

ℎ = 𝑚𝑚0𝑥𝑥 + 𝑏𝑏0

𝑦𝑦

Example: b0 = b1 = 0,𝑚𝑚0 = 2,𝑚𝑚1 = 1

𝑝𝑝1

𝑦𝑦 =
1

1 + 𝑒𝑒−𝑚𝑚1(ℎ+𝑏𝑏1)

𝑦𝑦 =
1

1 + 𝑒𝑒−2𝑥𝑥
𝑦𝑦

𝑥𝑥

Intuitively: y will 
be “high” for 
smaller values of x

Example: b0 = b1 = 0,𝑚𝑚0 = 0.5,𝑚𝑚1 = 1

𝑦𝑦 =
1

1 + 𝑒𝑒−0.5𝑥𝑥

𝑦𝑦

𝑥𝑥

Intuitively: y will 
be “high” for 
larger values of x



Multilayer Perceptron

x

y

𝑝𝑝0

𝑝𝑝1

𝑝𝑝2

𝑝𝑝3

𝑝𝑝4

𝑝𝑝5

Layer 1
Node Bias x-Weight y-Weight

0 -0.375 -3 1

1 -0.125 0 1

2 -0.375 3 1

3 0.125 -0.75 1

4 0.125 0.75 1

Layer 2
From Node Bias Weight

0 -0.2 1

1 -0.2 1

2 -0.2 1

3 -0.2 1

4 -0.2 1

(Sigmoid activation functions)

Rounded to 0 
or 1



Star Classifier: https://www.cs.utexas.edu/~teammco/misc/mlp

https://www.cs.utexas.edu/%7Eteammco/misc/mlp/


Basic Machine Learning Recipe

1. Obtain training data
2. Choose decision and loss functions
3. Define goal
4. Optimize!



Training Data

𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖  for i ∈ [1,𝑁𝑁]

Fundamental categories:
1. Synthetic data
2. Real data (annotated)
3. Real data (unannotated)  <- tricky!

Properties:
1. Data should span/populate the distribution of expected input values
2. Data should be plenty – kinda same as above
3. Data should have low errors/noise (ideally)



Decision and Loss Functions

�𝑦𝑦 = f𝜃𝜃(xi)

The function you wish to “decide” that given the inputs, and the 
parameters 𝜃𝜃, yields an output �𝑦𝑦 that is equal or close to desired values; 
thus, you seek

𝑙𝑙 �𝑦𝑦,𝑦𝑦𝑖𝑖 → 0

Properties:
1. Decision should be “doable” so that convergence is possible
2. Loss function should exploit as much as possible of domain 

knowledge



Define (Training) Goal

𝜃𝜃∗ = argmin
𝜃𝜃

�
𝑖𝑖=1

𝑁𝑁

𝑙𝑙(𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

Define a function to find parameters 𝜃𝜃∗ that minimize the loss function 
for the entire training data set; i.e., find network weights and biases 
that make the network “learn” the desired (high-dimensional) function



Optimize!

• Perform small steps (opposite the gradient)… 

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑡𝑡𝛻𝛻𝑙𝑙 f𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

Move a small step against the gradient to eventually 
reach a set of network parameters that minimize the 
loss function



Optimize!

• Methods:
• Stochastic Gradient Descent (SGD),
• Adam, or
• Others

• Adam: an adaptive moment 
estimation based optimization – the 
learning rate changes during the 
optimization [Kingma and Ba, 2015]



SGD: Learning Rate

• It is a scale factor for how much 
the network parameters (𝜃𝜃) are 
updated during training

• To the right is a graph of different 
learning rates for 3-blob 
classification trained on multilayer 
perceptron of 50 nodes, using 
ReLU, for 200 epochs

• Orange = train
• Blue = test

• Best is 0.1 to 0.001 (in this case)



SGD: Moment

• It is like giving the optimization step 
short term memory and keeping it 
partially moving the direction it was 
going – in a sense a dynamic learning 
rate

• Effect of moment-based SGD on the 
same example as previous slide:

• Best is 0.9 or 0.99 in this case because 
converged and fastest

• Formulation?



SGD: Learning Rate Decay

• Slowly reduce the learning rate
• Using same example from before, 

we experiment with different 
decay rates



Adaptive Learning Rate Methods

• Different adaptive learning rate 
methods on the same example

• SGD has fixed learning rate 0.01



Back Propagation
Initialize all network parameters with small random numbers (e.g., [-1,1])

REPEAT

FOR every pattern in the training set

     // Propagate the input forward through the network:

     Present the pattern to the network 

     FOR each layer in the network 

            FOR every node in the layer 

                  1. Calculate the weight sum of the inputs to the node 

                  2. Add the bias to the sum 

                  3. Calculate the activation for the node 

           end 

    end 

// Propagate the errors backward through the network

    FOR every node in the output layer 

           Calculate the error signal 

    end 

    FOR all hidden starting at outmost layers 

           FOR every node in the layer 

                  1. Calculate the node's signal error 

                  2. Update each node's weight in the network 

           end 

    end 

    // Calculate Global Error

    Calculate the Error Function 

end 

UNTIL ((maximum number of iterations > than specified) OR 

          (Error Function is < than specified))



Batch Normalization

• Rather than compute gradient per 
𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 :
• compute for a “mini batch” and then,
• normalize the output of the previous output 

layer by subtracting the mean over the batch 
divided by the standard deviation

• This reduces internal covariant shift and 
makes things more “Gaussian”

 [Ioffe and Szegedy, 2015]

𝜃𝜃𝑡𝑡+1 = 𝜃𝜃𝑡𝑡 − 𝛼𝛼𝑡𝑡/𝑚𝑚�
𝑖𝑖=1

𝑚𝑚

𝛻𝛻𝑙𝑙 f𝜃𝜃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

• Typical batch sizes are few to 100(?)

• https://playground.tensorflow.org

https://playground.tensorflow.org/


Batch Normalization

• One formulation:



Deep Graphics?

• Lets start with NERF:
https://www.matthewtancik.com/nerf

https://www.matthewtancik.com/nerf
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