

Global Illumination

CS535

Daniel G. Aliaga Department of Computer Science Purdue University

- Light sources
 - Point light
 - Models an omnidirectional light source (e.g., a bulb)
 - Directional light
 - Models an omnidirectional light source at infinity
 - Spot light
 - Models a point light with direction
- Light model
 - Ambient light
 - Diffuse reflection
 - Specular reflection

- Diffuse reflection
 - Lambertian model

- Specular reflection
 - Phong model

• Well....there is much more

For example...

- Reflection -> Bidirectional Reflectance Distribution Functions (BRDF)
- Diffuse, Specular -> Diffuse Interreflection, Specular Interreflection
- Color bleeding
- Transparency, Refraction
- Scattering
 - Subsurface scattering
 - Through participating media
- And more!

Illumination Models

- So far, you considered mostly local (direct) illumination
 - Light directly from light sources to surface
 - No shadows (actually is a global effect)
- Global (indirect) illumination: multiple bounces of light
 - Hard and soft shadows
 - Reflections/refractions (you kinda saw already)
 - Diffuse and specular interreflections

Welcome to Global Illumination

- *Direct illumination* + *indirect illumination*; e.g.
 - Direct = reflections, refractions, shadows, ...
 - Indirect = diffuse and specular inter-reflection, ...

with global illumination

only diffuse inter-reflection

direct illumination

Global Illumination

- *Direct illumination + indirect illumination;* e.g.
 - Direct = reflections, refractions, shadows, …
 - Indirect = diffuse and specular inter-reflection, ...

$L_r(x,\omega_r) = \overline{L_e(x,\omega_r) + L_i(x,\omega_i)f(x,\omega_i,\omega_r)(\omega_i \bullet n)}$

Emission

Reflected Light (Output Image)

Incident E Light (from light source)

BRDF Cosine of Incident angle

[Slides with help from Pat Hanrahan and Henrik Jensen]

Sum over all light sources

BRDF

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \sum L_i(x,\omega_i) f(x,\omega_i,\omega_r)(\omega_i \bullet n)$$

Reflected Light (Output Image)

Emission

Incident Light (from light source) Cosine of Incident angle

Replace sum with integral

$L_r(x,\omega_r) = L_e(x,\omega_r) + \int$		$L_i(x,\omega_i)f(x,\omega_i,\omega_r)\cos\theta_i d\omega_i$		
Reflected Light (Output Image)	C Emission	2 Incident Light (from light source)	BRDF	Cosine of Incident angle

$$L_r(x,\omega_r) = L_e(x,\omega_r) + \int_{\Omega} L_i(x,\omega_i) f(x,\omega_i,\omega_r) \cos\theta_i d\omega_i$$

The Challenge $L_r(x,\omega_r) = L_e(x,\omega_r) + \int_{\Omega} L_i(x,\omega_i) f(x,\omega_i,\omega_r) \cos \theta_i d\omega_i$

 Computing reflectance equation requires knowing the incoming radiance from surfaces

 ...But determining incoming radiance requires knowing the reflected radiance from surfaces

$$L_{r}(x, \omega_{r}) = L_{e}(x, \omega_{r}) + \int_{\Omega} L_{r}(x', -\omega_{i}) f(x, \omega_{i}, \omega_{r}) \cos \theta_{i} d\omega_{i}$$

Reflected Light Emission Reflected BRDF Cosine of
(Output Image) Light (from Incident angle

$$L_{r}(x, \omega_{r}) = L_{e}(x, \omega_{r}) + \int_{\Omega} L_{r}(x', -\omega_{i}) f(x, \omega_{i}, \omega_{r}) \cos \theta_{i} d\omega_{i}$$
Reflected Light Emission Reflected BRDF Cosine of
(Output Image) Light Incident angle
UNKNOWN KNOWN KNOWN KNOWN KNOWN

Rendering Equation (Kajiya 1986)

Figure 6. A sample image. All objects are neutral grey. Color on the objects is due to caustics from the green glass balls and color bleeding from the base polygon.

Rendering Equation as Integral Equation

$$\begin{split} L_r(x, \omega_r) &= L_e(x, \omega_r) + \int_{\Omega} L_r(x', -\omega_i) f(x, \omega_i, \omega_r) \cos \theta_i d\omega_i \\ \text{Reflected Light} & \text{Emission} & \text{Reflected} & \text{BRDF} & \text{Cosine of} \\ \text{Output Image}) & \text{Light} & \text{Incident angle} \\ \text{UNKNOWN} & \text{KNOWN} & \text{UNKNOWN} & \text{KNOWN} & \text{KNOWN} \end{split}$$

Is a Fredholm Integral Equation of second kind [extensively studied numerically] with canonical form

$$l(u) = e(u) + \int l(v) K(u, v) dv$$

Kernel of equation

Linear Operator Equation

$$l(u) = e(u) + \int l(v) K(u,v) dv$$
Kernel of equation

L = E + KL

which is effectively a simple matrix equation (or system of simultaneous linear equations) where

L, E are vectors, K is the light transport matrix (more on this later!)

Solving the Rendering Equation (=how to compute L?)

- In general, too hard for analytic solution
- But there are approximations and some nice observations...

Solving the Rendering Equation (=how to compute L?) L = E + KLIL - KL = E(I - K)L = E $\boldsymbol{L} = (\boldsymbol{I} - \boldsymbol{K})^{-1}\boldsymbol{E}$ (using Binomial Theorem) $L = (I + K + K^{2} + K^{3} + ...)E$ $L = E + KE + K^2E + K^3E + \dots$ where term n corresponds to n-th bounces of light

Ray Tracing

$\mathbf{L} = E + KE + K^2E + K^3E + \dots$

Emission directly From light sources

> Direct Illumination on surfaces Global Illumination (One bounce indirect) [Mirrors, Refraction] (Two bounce indirect) [Caustics, etc...]

Ray Tracing

$\mathbf{L} = \mathbf{E} + \mathbf{K}\mathbf{E} + \mathbf{K}^{2}\mathbf{E} + \mathbf{K}^{3}\mathbf{E} + \dots$

Emission directly From light sources

> Direct Illumination on surfaces

OpenGL Shading Global Illumination (One bounce indirect) [Mirrors, Refraction] (Two bounce indirect) [Caustics, etc...]

Successive Approximation

Pat Hanrahan, Spring 2009

Global Illumination and Related Concepts

- Colors and Perception
 - Color models
- Example based:
 BRDFs
- Making it faster:
 - Ambient occlusion
 - (Path tracing)
- Analytical:
 - Light Transport
 - Radiosity