

BRDFs and Example-Based Shading

CS535

Daniel G. Aliaga Department of Computer Science Purdue University

Dimensionality of Appearance

 $(x, y, t, \theta, \phi, \lambda)_{in} \rightarrow (x, y, t, \theta, \phi, \lambda)_{out}$

General function = 12D

Assume time doesn't matter (no phosphorescence) Assume wavelengths are equal (no fluorescence, raman scattering)

Scattering function = 9D

Assume wavelength is discretized or integrated into RGB (This is a common assumption for computer graphics)

Single-wavelength Scattering function = 8D

 $(x, y, \theta, \phi)_{in} \rightarrow (x, y, \theta, \phi)_{out}$

(this diagram thanks to Srinivasa Narasimhan)

Measuring BRDFs

• BRDF is 4-dimensional, though simpler measurements (0D/1D/2D/3D) are often useful

Measuring Reflectance

0°/45° Diffuse Measurement 45°/45° Specular Measurement

Gloss Measurements

• "Haze" is the width of a specular peak

BRDF Measurements

• Next step up: measure over a 1- or 2-D space

Gonioreflectometers

• Or a 4D space

Image-Based BRDF Measurement

- A camera acquires with each picture a 2D image of sampled measurements
 - Requires mapping light angles to camera pixels

Ward's BRDF Measurement Setup

Ward's BRDF Measurement Setup

Each picture captures light from a hemisphere of angles

Marschner et al.'s Modification

Example Measurement Process

SIGGRAPH2005

Measurement

- Light Source
 - Hamamatsu SQ Xenon lamp
 - Stable emission output
 - Continuous and relatively constant radiation spectrum

SIGGRAPH2005

]

Measurement

- Turntable
 - Kaidan MD-19
 - Computer-controlled
- Dark Room
 - Walls painted with flat black paint
- Spherical Samples

Calibration

- Geometric calibration
 - Contact digitizer
 - Faro Arm
 - Intrinsic & extrinsic camera parameters
 - Sphere center & radius
 - Light Position

parameterized on a circle in 3D

Course 10: Realistic Materials in Computer Graphics

SIGGRAPH2005

]

Measurement

- 20-80 million reflectance measurements per material
- Each tabulated BRDF entails 90x90x180x3=4,374,000 measurement bins

Course 10: Realistic Materials in Computer Graphics

Rendering from Tabulated BRDFs

- These BRDFs are immediately useful
- Direct renderings from measurements

Course 10: Realistic Materials in Computer Graphics

Wojciech Matusik

SIGGRAPH2005

Linear Combinations of BRDFs (LCB)

- Can we find a linear combination of our existing BRDFs that match any new one?
- Requires only estimating 100 coefficients for source BRDFs
- Compute a set of 800 constraints that allow estimating these 100 coefficients robustly

$$\alpha_1 = + \alpha_2 = + \alpha_3 = + \alpha_4 = + \dots = =$$

Course 10: Realistic Materials in Computer Graphics

BRDFs as Vectors in High Dimensional Space

 Each tabulated BRDF is a vector in 90x90x180x3 =4,374,000 dimensional space

Linear Analysis (PCA)

Navigation Results

SIGGRAPH2005

Adding Silver Trait

Course 10: Realistic Materials in Computer Graphics

Navigation Results

SIGGRAPH2005

 $\widehat{}$

]

Adding Specular Trait

Course 10: Realistic Materials in Computer Graphics

Navigation Results

Adding Metallic Trait

Course 10: Realistic Materials in Computer Graphics

Representing Physical Processes

Steel Oxidation

Course 10: Realistic Materials in Computer Graphics

Human Face

• Don't both with resampling, just acquire all

options!

Debevec et al.: Light Stage 1 [**demo**]

[demo]

Benjamin Button...

Light Stages

- Up to 8M in diameter
- Up to 6,666 LED lights
- Up to 990 Hz frames per second (33 repeating light conditions)

Shape and Material by Example

- <u>http://grail.cs.washington.edu/pub/p</u> <u>apers/HertzmannSeitzCVPR2003.pdf</u>
- Method:
 - Performs photometric reconstruction
 - But they ALSO exploit "orientation consistency" so that material can be copied (i.e., propagated) from example to reconstruction
 - They also cluster the occurrences to one of the determined distinct materials

