

CS535

Daniel G. Aliaga Department of Computer Science Purdue University

• Calculating the overall light propagation within a scene is a very difficult problem.

• With a standard ray tracing algorithm, this is a very time consuming task, since a huge number of rays have to be shot.

- For this reason, the radiosity method was invented.
- The main idea of the method is

to store illumination values on the surfaces of the objects, as the light is propagated starting at the light sources.

• Radiosity is inspired by ideas from heat transfer and is an application of a finite element method to solving the rendering equation for scenes with purely diffuse surfaces

$$
L_o(\mathbf{x}, \omega, \lambda, t) = L_e(\mathbf{x}, \omega, \lambda, t) + \int_{\Omega} f_r(\mathbf{x}, \omega', \omega, \lambda, t) L_i(\mathbf{x}, \omega', \lambda, t) (-\omega' \cdot \mathbf{n}) d\omega'
$$

no equation)

(rendering equation)

[Radiosity slides heavily based on Dr. Mario Costa Sousa, Dept. of of CS, U. Of Calgary]

• Equation: $B_i dA_i = E_i dA_i + R_i \int_i B_j F_{ji} dA_j$

Diffuse Interreflection

Radiosity Assumptions

- #1: surfaces are diffuse emitters and reflectors of energy, emitting and reflecting energy uniformly over their entire area.
- $\frac{\#2:}{\#2:}$ an equilibrium solution can be reached; that all of the energy in an environment is accounted for, through absorption and reflection.
- #3: solution can-be/will-be viewpoint independent; i.e., the solution will be the same regardless of the viewpoint of the image.

- The "radiosity equation" describes the **amount of energy** which can be emitted from a surface
	- Is a sum of the energy inherent in the surface (e.g., a light source) plus energy which strikes the surface (e.g., from another surface)
- The energy which leaves a surface (surface "j") and strikes another surface (surface "i") is attenuated by two factors:
	- the **"form factor"** between surfaces "i" and "j" (physical relationship)
	- the **reflectivity of surface "i"** (material property)

Classic Radiosity Algorithm

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Between differential areas, the form factor equals:

Between differential areas, the form factor equals:

=

The overall form factor between i and j is found by integrating

Form Factors in (More) Detail

Form Factors in (More) Detail

- Several ways to find form factors
- Hemicube was original method + Hardware acceleration + Gives $F_{dA/A}$ for all *j* in one pass
	- Aliasing
- Area sampling methods now preferred \rightarrow Slower than hemicube but GPU-able \rightarrow As accurate as desired since adaptive

Area Sampling

We have now $F_{dA/A}$

Classic Radiosity Algorithm

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering & Shooting
- Progressive Radiosity

$$
\begin{bmatrix}\n1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}\n\end{bmatrix}\n\begin{bmatrix}\nB_1 \\
B_2 \\
\vdots \\
B_n\n\end{bmatrix} =\n\begin{bmatrix}\nE_1 \\
E_2 \\
\vdots \\
E_n\n\end{bmatrix}
$$

Radiosity Matrix

• The "full matrix" radiosity solution calculates the form factors between each pair of surfaces in the environment, then forms a series of simultaneous linear equations.

$$
\begin{bmatrix}\n1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}\n\end{bmatrix}\n\begin{bmatrix}\nB_1 \\
B_2 \\
\vdots \\
B_n\n\end{bmatrix} =\n\begin{bmatrix}\nE_1 \\
E_2 \\
\vdots \\
E_n\n\end{bmatrix}
$$

• This matrix equation is solved for the "B" values, which can be used as the final intensity (or color) value of each surface.

Radiosity Matrix

- This method produces a complete solution, at the substantial cost of
	- first calculating form factors between each pair of surfaces
	- and then the solution of the matrix equation.
- This leads to substantial costs not only in computation time but in storage.

Solving for radiosity solution

- The "Full Matrix" Radiosity Algorithm
- Gathering & Shooting
- Progressive Radiosity

Gathering

• In a sense, the light leaving patch i is determined by *gathering* in the light from the rest of the environment

$$
B_i = E_i + \rho_i \sum_{j=1}^n B_j F_{ij}
$$

 B_i *due* to $B_j = \rho_i B_j F_{ij}$

Gathering

Gathering light through a hemi-cube allows one patch radiosity to be updated.

GATHERING

Gathering

Row of F times B

Calculate one row of F and discard

Successive Approximation

 L_e

 $\overline{K \circ L_{\rho}}$

 $K \circ K \circ L_{\rho}$

 $\overline{K\circ K\circ K\circ L_{\rho}}$

 L_e

 $L_e + K \circ L_e$ $L_e + \cdots K^2 \circ L_e$ $L_e + \cdots K^3 \circ L_e$

Shooting

Shooting light through a single hemi-cube allows the whole environment's radiosity values to be updated simultaneously.

Shooting

Brightness order

Column of F times B

Progressive Radiosity

 (a)

 (b)

(a) Traditional Gauss-Seidel iteration of 1, 2, 24 and 100. (b) Progressive Refinement (PR) iteration of 1, 2, 24 and 100.

From Cohen, Chen, Wallace, Greenberg 1988

Classic Radiosity Algorithm

Mesh Surfaces into Elements

Compute Form Factors

Between Elements

Display Solution

Reference Solution Uniform Mesh

Table in room sequence from Cohen and Wallace

Artifacts – What can we do?

Error Image

- A. Blocky shadows
- **B. Missing features**
- C. Mach bands
- D. Inappropriate shading discontinuities
- **E. Unresolved discontinuities**

Option 1: Increasing Resolution4

Option 2: Adaptive Meshing

Example Radiosity Results

The Cornell Box

- This is the original Cornell box, as simulated by Cindy M. Goral, Kenneth E. Torrance, and Donald P. Greenberg for the 1984 paper *Modeling the interaction of Light Between Diffuse Surfaces*, Computer Graphics (SIGGRAPH '84 Proceedings), Vol. 18, No. 3, July 1984, pp. 213-222.
- Because form factors were computed analytically, no occluding objects were included inside the box.

The Cornell Box

- This simulation of the Cornell box was done by Michael F. Cohen and Donald P. Greenberg for the 1985 paper *The Hemi-Cube, A Radiosity Solution for Complex Environments*, Vol. 19, No. 3, July 1985, pp. 31-40.
- The hemi-cube allowed form factors to be calculated using scan conversion algorithms (which were available in hardware), and made it possible to calculate shadows from occluding objects.

Discontinuity Meshing

Opera Lighting

- This scene from *La Boheme* demonstrates the use of focused lighting and angular projection of predistorted images for the background.
- It was rendered by Julie O'B. Dorsey, Francois X. Sillion, and Donald P. Greenberg for the 1991 paper *Design and Simulation of Opera Lighting and Projection Effects*.

Radiosity Factory

- These two images were rendered by Michael F. Cohen, Shenchang Eric Chen, John R. Wallace and Donald P. Greenberg for the 1988 paper *A Progressive Refinement Approach to Fast Radiosity Image Generation*.
- The factory model contains 30,000 patches, and was the most complex radiosity solution computed at that time.
- The radiosity solution took approximately 5 hours for 2,000 shots, and the image generation required 190 hours; each on a VAX8700.

Museum

- Most of the illumination that comes into this simulated museum arrives via the baffles on the ceiling.
- As the progressive radiosity solution executed, users could witness each of the baffles being illuminated from above, and then reflecting some of this light to the bottom of an adjacent baffle.
- A portion of this reflected light was eventually bounced down into the room.
- The image appeared on the proceedings cover of SIGGRAPH 1988.

