
Physically Based Simulations 
(on the GPU)

CS535

Daniel G. Aliaga
Department of Computer Science

Purdue University



Simulating the world

• Floating point arithmetic on GPUs and their 
speed enable us to simulate a wide variety of 
phenomena using PDEs 



Some Basics

• Operators (on images/lattices)
• Diffusion
• Bouyancy



Operators

• Given an image:
– Gradient (vector)

𝛻𝛻𝑓𝑓 𝑥𝑥,𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑥𝑥 + 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�𝑦𝑦

– Laplacian (scalar)

𝛻𝛻2𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2



Discrete Laplacian

• 𝛻𝛻2𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝑓𝑓 𝑥𝑥 − 1,𝑦𝑦 + 𝑓𝑓 𝑥𝑥 + 1, 𝑦𝑦 +
𝑓𝑓 𝑥𝑥, 𝑦𝑦 − 1 + 𝑓𝑓 𝑥𝑥, 𝑦𝑦 + 1 −
4𝑓𝑓 𝑥𝑥, 𝑦𝑦

• Matrix form = ??



Discrete Laplacian

• 𝛻𝛻2𝑓𝑓 𝑥𝑥,𝑦𝑦 =
𝑓𝑓 𝑥𝑥 − 1,𝑦𝑦 + 𝑓𝑓 𝑥𝑥 + 1, 𝑦𝑦 +
𝑓𝑓 𝑥𝑥, 𝑦𝑦 − 1 + 𝑓𝑓 𝑥𝑥, 𝑦𝑦 + 1 −
4𝑓𝑓 𝑥𝑥, 𝑦𝑦

• Matrix form = 
0 1 0
1 −4 1
0 1 0



Heat Equation

𝜕𝜕𝑓𝑓
𝜕𝜕𝜕𝜕

= 𝛻𝛻2𝑓𝑓



Diffusion Equation
[Weisstein 1999]

𝑓𝑓 𝑥𝑥,𝑦𝑦 ′ = 𝑓𝑓 𝑥𝑥,𝑦𝑦 +
𝑐𝑐𝑑𝑑
4
𝛻𝛻2𝑓𝑓(𝑥𝑥, 𝑦𝑦)

where 𝑐𝑐𝑑𝑑 is the coefficient of diffusion…



(Anisotropic) Diffusion



Buoyancy

• Used in convection, cloud formations, etc.
• Given a temperature state T:

– a vertical buoyancy velocity is ‘upwards’ if a node 
is hotter than its neighbors’ and 

– a vertical buoyancy velocity is ‘downwards’ if a 
node is cooler than its neighbors



Buoyancy

𝑣𝑣 𝑥𝑥, 𝑦𝑦 ′ = 𝑣𝑣 𝑥𝑥, 𝑦𝑦 +
𝑐𝑐𝑏𝑏
2

(2𝑓𝑓 𝑥𝑥, 𝑦𝑦 − 𝑓𝑓 𝑥𝑥 + 1, 𝑦𝑦 − 𝑓𝑓(𝑥𝑥 − 1, 𝑦𝑦))

where 𝑐𝑐𝑏𝑏 is the buoyancy strength



Bouyancy
(considering neighbors)

• 𝑓𝑓 𝑥𝑥, 𝑦𝑦 ′ =
𝑓𝑓 𝑥𝑥,𝑦𝑦 −

𝜎𝜎
2
𝑓𝑓 𝑥𝑥, 𝑦𝑦

[𝜌𝜌(𝑓𝑓 𝑥𝑥, 𝑦𝑦 + 1 − 𝜌𝜌(𝑓𝑓 𝑥𝑥,𝑦𝑦 − 1 ]

where 𝜌𝜌 𝑓𝑓 = tanh 𝛼𝛼 𝑓𝑓 − 𝑓𝑓𝑐𝑐 (an approx. of 
density relative to temperature 𝑓𝑓) and 𝜎𝜎 is 
buoyancy strength and 𝛼𝛼 and 𝑓𝑓𝑐𝑐 are constants



Euler Method (for ODE)

• Given:
𝑦𝑦′ 𝜕𝜕 = 𝑓𝑓 𝜕𝜕, 𝑦𝑦 𝜕𝜕 with 𝑦𝑦 𝜕𝜕0 = 𝑦𝑦0

• Do:
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓(𝜕𝜕𝑛𝑛,𝑦𝑦𝑛𝑛)



Classical Runge Kutta Method

• Given:
𝑦𝑦′ 𝜕𝜕 = 𝑓𝑓 𝜕𝜕, 𝑦𝑦 𝜕𝜕 with 𝑦𝑦 𝜕𝜕0 = 𝑦𝑦0

• Do:
𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ/6(𝑘𝑘1 + 2𝑘𝑘2 + 2k3 + k4)

𝜕𝜕𝑛𝑛+1 = 𝜕𝜕𝑛𝑛 + ℎ
where



Example: (Water) Boiling

• Based on [Harris et al. 2002]
• State = Temperature
• Three operations:

– Diffusion, buoyancy, & latent heat

• 3D Simulation
– Stack of 2D texture slices



Turing: Morphogenesis and 
Reaction-Diffusion (1952)

“Alan Turing in 1952 describing the way in which non-uniformity 
(stripes, spots, spirals, etc.) may arise naturally out of a 
homogeneous, uniform state. The theory (which can be called a 
reaction–diffusion theory of morphogenesis), has served as a 
basic model in theoretical biology, and is seen by some as the 
very beginning of chaos theory.”

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑈𝑈𝛻𝛻2𝜕𝜕 − 𝑘𝑘 𝜕𝜕𝑈𝑈 − 16
𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝑉𝑉𝛻𝛻2𝑈𝑈 + 𝑘𝑘 𝜕𝜕𝑈𝑈 − 12 − 𝑈𝑈

http://en.wikipedia.org/wiki/Alan_Turing
http://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
http://en.wikipedia.org/wiki/Morphogenesis
http://en.wikipedia.org/wiki/Theoretical_biology
http://en.wikipedia.org/wiki/Chaos_theory


Gray-Scott Reaction-Diffusion

• State = two scalar chemical concentrations
• Simple: 

– just Diffusion and Reaction ops

  

∂U
∂t

= Du∇
2U −UV 2 + F(1−U ),

∂V
∂t

= Dv∇
2V +UV 2 − (F + k)V

U, V are chemical concentrations,  
F, k, Du, Dv are constants



Some research…

• http://www.cc.gatech.edu/~turk/reaction_diff
usion/reaction_diffusion.html

http://www.cc.gatech.edu/%7Eturk/reaction_diffusion/reaction_diffusion.html
http://www.cc.gatech.edu/%7Eturk/reaction_diffusion/reaction_diffusion.html


Navier-Stokes Equations

• Describe flow of an incompressible fluid

   

∂u
∂t

= −(u ⋅∇)u −
1
ρ
∇p −ν∇2u + f

Advection Pressure
Gradient

Diffusion 
(viscosity)

External Force

  ∇ ⋅u = 0 Velocity is divergence-free



Fluid Dynamics

• Solution of Navier-Stokes flow eqs.
– Stable for arbitrary time steps (=fast!)
– [Stam 1999], [Fedkiw et al. 2001]

• Can be implemented on latest GPUs
– Quite a bit more complex than R-D or boiling

• See “Fast Fluid Dynamics Simulation on the 
GPU” (Harris, GPU Gems, 2004)



Fluid Simulations



Thermodynamics

• Temperature affected by
– Heat sources
– Advection
– Latent heat released / absorbed during 

condensation / evaporation

• ∆ temperature = advection + latent heat 
release 
    + temperature input



Cloud Dynamics
• 3 components

– 7 unknowns

• Fluid dynamics
– Motion of the air

• Thermodynamics
– Temperature changes

• Water continuity
– Evaporation, 

condensation

Water vapor mixing ratio: qv

Liquid water mixing ratio: qc

Velocity:

Pressure:  p 
   u = (u,v,w)

Potential temperature: θ
         (see dissertation)



Cloud Dynamics



Wave Equation

• Remember heat equation:
– Rate of change of value proportional to Laplacian

• Wave equation:
– Rate of change of the rate of change is also 

proportional to the Laplacian



Wave Equation

𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

= 𝑐𝑐2𝛻𝛻2𝑢𝑢

where 𝑢𝑢 models the displacement and 𝑐𝑐 is the 
propagation speed



Water Simulation:
Wave Equation

𝜕𝜕 = 𝑣𝑣𝑣𝑣𝑣𝑣𝑢𝑢𝑣𝑣,𝑈𝑈 = 𝑟𝑟𝑣𝑣𝜕𝜕𝑣𝑣 𝑜𝑜𝑓𝑓 𝑐𝑐ℎ𝑣𝑣𝑐𝑐𝑐𝑐𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑏𝑏
𝑘𝑘

+ 𝑑𝑑𝛻𝛻2𝜕𝜕

𝜕𝜕𝑈𝑈
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝛻𝛻2𝜕𝜕



Water Simulation:
Wave Equation

• Demo…



Water Simulation:
Sine Waves

𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐(𝜔𝜔𝑥𝑥 + 𝜕𝜕)



Water Simulation:
Sine Waves

𝐴𝐴1𝐴𝐴𝐴𝐴𝑐𝑐(𝜔𝜔1𝑥𝑥 + 𝜕𝜕1) + 𝐴𝐴2𝐴𝐴𝐴𝐴𝑐𝑐 𝜔𝜔2𝑥𝑥 + 𝜕𝜕2 + ⋯



Water Simulation:
Sine Waves

• Using sine-wave summations:

𝐻𝐻 𝑥𝑥, 𝑦𝑦, 𝜕𝜕 = �𝐴𝐴𝑖𝑖𝐴𝐴𝐴𝐴𝑐𝑐(𝐷𝐷𝑖𝑖 � 𝑥𝑥, 𝑦𝑦 𝜔𝜔𝑖𝑖 + 𝜕𝜕𝜙𝜙𝑖𝑖)

[use H as height or a pixel intensity]

• Pixel values over time are:
𝑃𝑃 𝑥𝑥, 𝑦𝑦, 𝜕𝜕 = (𝑥𝑥, 𝑦𝑦,𝐻𝐻 𝑥𝑥,𝑦𝑦, 𝜕𝜕 )



Water Simulation:
Sine Waves

(here, pixel normals are computed as well for reflections)



Water: Surface Normals

• Use binormal and tangent:

𝐵𝐵 𝑥𝑥,𝑦𝑦, 𝜕𝜕 = 𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

, 𝑑𝑑𝜕𝜕
𝑑𝑑𝜕𝜕

, 𝑑𝑑𝑑𝑑 𝜕𝜕,𝜕𝜕,𝑡𝑡
𝑑𝑑𝜕𝜕

= (1,0, 𝑑𝑑𝑑𝑑 𝜕𝜕,𝜕𝜕,𝑡𝑡
𝑑𝑑𝜕𝜕

)

𝑇𝑇 𝑥𝑥, 𝑦𝑦, 𝜕𝜕 = ⋯ = 0,1,
𝑑𝑑𝐻𝐻 𝑥𝑥,𝑦𝑦, 𝜕𝜕

𝑑𝑑𝑦𝑦
• Normal is:
𝑁𝑁 𝑥𝑥,𝑦𝑦, 𝜕𝜕 = 𝐵𝐵 × 𝑇𝑇

𝑁𝑁 𝑥𝑥,𝑦𝑦, 𝜕𝜕 = (−
𝑑𝑑𝐻𝐻 𝑥𝑥, 𝑦𝑦, 𝜕𝜕

𝑑𝑑𝑥𝑥
,−

𝑑𝑑𝐻𝐻 𝑥𝑥, 𝑦𝑦, 𝜕𝜕
𝑑𝑑𝑦𝑦

, 1) 



Water Simulation: Gerstner Waves

• These waves also change the 𝑥𝑥, 𝑦𝑦 of the wave 
imitating how points at top of wave are 
squished together and points at bottom are 
separated



Water Simulation: 
Gerstner Waves

𝑃𝑃 𝑥𝑥,𝑦𝑦, 𝜕𝜕

=

𝑥𝑥 + �𝑄𝑄𝑖𝑖𝐴𝐴𝑖𝑖𝐷𝐷𝑖𝑖 . 𝑥𝑥 cos(𝜔𝜔𝑖𝑖𝐷𝐷𝑖𝑖 � 𝑥𝑥,𝑦𝑦 + 𝜙𝜙𝑖𝑖𝜕𝜕)

𝑦𝑦 + �𝑄𝑄𝑖𝑖𝐴𝐴𝑖𝑖𝐷𝐷𝑖𝑖 . 𝑦𝑦 cos(𝜔𝜔𝑖𝑖𝐷𝐷𝑖𝑖 � 𝑥𝑥, 𝑦𝑦 + 𝜙𝜙𝑖𝑖𝜕𝜕)

�𝐴𝐴𝑖𝑖sin(𝜔𝜔𝑖𝑖𝐷𝐷𝑖𝑖 � 𝑥𝑥, 𝑦𝑦 + 𝜙𝜙𝑖𝑖𝜕𝜕)

where 𝑄𝑄𝑖𝑖=sharpness



Water Simulation: 
Gerstner Waves



Video

• https://www.youtube.com/watch?v=lqPa389v
i4s

https://www.youtube.com/watch?v=lqPa389vi4s
https://www.youtube.com/watch?v=lqPa389vi4s


Simulation Algorithm

• Advect quantities
– Similar to [Stam, 1999]

• Compute and apply accelerations
– Buoyancy

• Compute condensation, evaporation, 
and temperature changes

• Enforce momentum conservation
– Otherwise velocity dissipates, loses “swirls”
– Projection step of “Stable Fluids” [Stam, 1999]



Simulation Algorithm

• Most steps are simple
– Most use one fragment program, one pass
– Programs come directly from equations

• Tricky parts:
– Staggered grid discretization 
– Stable Fluids projection step
– Boundary conditions
– 3D Simulation



Flat 3D Textures



Flat 3D Textures

• Advantages
– One texture update per operation
– Better use of GPU parallelism
– Non-power-of-two Textures
– Quick simulation preview

• Disadvantage
– Must compute texture offsets
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