

Lightfields and Lumigraphs

CS535 Daniel G. Aliaga Department of Computer Science Purdue University

Photographs

 We have tools that acquire and tools that display photographs at a convincing quality level

Online

- 24 MP:
 - <u>https://www.flickr.com/photos/markgaler/399262</u>
 <u>71622</u>
- Gigapixel:
 - <u>https://360gigapixels.com/360-paris-skyline-gigapixel-photo/</u>

Plenoptic Function

- P(x, y, z, φ, φ, λ, t)
 - 7D function to describe light intensity passing through every viewpoint, for every direction, for every wavelength, and for every time instant

Plenoptic Function

- "Holodeck" (Star Trek)
- Layered Depth Images
- 3D Image Warping
- View Interpolation
- (Sea of Images)
- Lightfield/Lumigraph
- (Plenoptic Stitching)
- Concentric Mosaics
- Panoramic Images

Light Ray Organization

- Surface-centric
- Viewpoint-centric

or

- Inside-looking-out
- Outside-looking-in

Reducing Dimensions of the Plenoptic Function

- Use constant frequencies
- Use static environments
- Use open spaces

Light Ray Parameterization

- Random collection of rays
- Two slab representation (s,t,u,v)
- Box representation

4D Lightfield / Lumigraph

- Demo

4D Lightfield / Lumigraph

4D Lightfield / Lumigraph

Discreet 4D Lightfield

Lightfield

• Set of images with COPs on regular grid

(a)

u

Lightfield

• Set of images of a point seen at various angles

t

(b)

 \mathbf{S}

Depth Correction of Rays

camera positions

blue screening

acquisition stage

Filling in gaps using pull-push algorithm

- Pull phase
 - low res levels are created
 - gaps are shrunk
- Push phase
 - gaps at high res levels are filled using low res levels

Acquiring a 4D Lightfield/Lumigraph

- Capture (many images)
- Organize into a (s,t,u,v) parameterization
 - Do not "need" to resample the pixels
 - Use (linear) interpolation to extract an arbitrary ray/line
 - Optionally compress/decompress data
 - Interactively extract rays/lines to create a visual representation

Limitations of a Lightfield/Lumigraph

- Resolution
- High storage requirement
- Difficult capture (?)
- No geometry
 - Cannot add new geometry and (easily) do occlusion and re-illumination

- Google, AR/VR, and Lightfields:
 - <u>https://www.youtube.com/watch?v=IRK0Mtlyj0U</u>
- Seeing through things with lightfields:
 - <u>http://graphics.stanford.edu/papers/plane+parallax_calib/</u>
- Microscope Lightfields
 - <u>http://graphics.stanford.edu/projects/lfmicroscope/</u>
- Stanford New Lightfield Archive
 - <u>http://graphics.stanford.edu/data/LF/lfs.html</u>
 - e.g., "http://graphics.stanford.edu/data/LF/chess_lf/preview.zip&zoom=1"
 - Old: http://graphics.stanford.edu/software/lightpack/lifs.html

Deep Learning Lightfields

- Learning-Based View Synthesis for Light Field Cameras
 - <u>https://www.youtube.com/watch?v=RCD2B5o1K8U</u>
- Light Field Video Capture Using a Learning-Based Hybrid Imaging System
 - <u>https://www.youtube.com/watch?v=TqVKcssYfAo</u>