Toolbox

CS535 Daniel G. Aliaga

Image Tools

- Features
 - Point, edge, line, corner, SIFT
 - Hough Transform

• What would you do?

Edge Detection: First Order Operator

• Roberts operator (1963) on image A:

•
$$G_x = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} * A, G_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} * A$$

• $G = \sqrt{G_x^2 + G_y^2}$
• $\theta = \tan^{-1}(\frac{G_y}{G_x})$

(pro: less ops than other methods)

• Sobel operator (1968) on image A:

•
$$G_{\chi} = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} * A, G_{\chi} = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix} * A$$

•
$$G = \sqrt{G_x^2 + G_y^2}$$

•
$$\theta = \tan^{-1}(\frac{G_y}{G_y})$$

• Prewitt operator (1970) on image A (different spectral response as compared to Sobel):

•
$$G_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} * A, G_y = \begin{bmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} * A$$

•
$$G = \sqrt{G_x^2 + G_y^2}$$

•
$$\theta = \tan^{-1}(\frac{G_y}{G_x})$$

- Canny Edges (1986)
 - Multi-stage algorithm, uses Sobel/Prewitt (or other) edge detector on a Gaussian filtered image and then has a process of non-maximal suppression

Edge Detection: Second-Order Operator

• Given an image:

- Gradient (vector)

$$\nabla f(x,y) = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y}$$

- Laplacian (scalar) (2nd order)

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Discrete Laplacian

•
$$\nabla^2 f(x, y) =$$

 $f(x - 1, y) + f(x + 1, y) +$
 $f(x, y - 1) + f(x, y + 1) -$
 $4f(x, y)$

• Matrix form = ??

Discrete Laplacian

•
$$\nabla^2 f(x, y) =$$

 $f(x - 1, y) + f(x + 1, y) +$
 $f(x, y - 1) + f(x, y + 1) -$
 $4f(x, y)$

• Matrix form =

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Edge Detection: Second-Order Operator

• Laplacian: highlights regions of rapid intensity change

•
$$L_A = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix} * A$$

(positive Laplacian takes out outward edges; negative Laplacian is possible too)

- Hough Transform (1972)
 - Associate with each line segment, a pair (r, θ)
 - Each line segment could be obtained by fitting to results of edge detection
 - Ex: find edges, find strong clusters/points in transform space, then draw lines

• What would you do?

A: Original image

B: Detected image

- Harris-Stephens Corner Detector
 - Let the SSD between two patches be:

$$f(\Delta x, \Delta y) = \sum_{(x_k, y_k) \in W} (A(x_k, y_k) - A(x_k + \Delta x, y_k + \Delta y))^2$$

- $A(x_k + \Delta x, y_k + \Delta y)$ can be approximated by its Taylor Expansion: = $A(x_k, y_k) + A_x(x_k, y_k)\Delta x + A_y(x_k, y_k)\Delta y$ (A_x, A_y are partial derivatives)
- Thus, $f(\Delta x, \Delta y) \cong \sum (A_x(x_k, y_k)\Delta x + A_y(x_k, y_k)\Delta y)^2$
- which can be rewritten as

$$f(\Delta x, \Delta y) \approx [\Delta x \Delta y] M \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

Where M is the second-moment tensor (or structural tensor):

$$M = \begin{bmatrix} \sum_{(x,y)\in W} A_X^2 & \sum_{(x,y)\in W} A_x A_y \\ \sum_{(x,y)\in W} A_x A_y & \sum_{(x,y)\in W} A_y^2 \end{bmatrix}$$

- Harris-Stephens Corner Detector
 - With a structural tensor, the eigenvectors summarize the distribution of the gradient within the associated pixel window
 - To define a strong corner, we want pixels were λ_1 and λ_2 of M are large, and hence f is large
 - $-\lambda_1 \gg \lambda_2 \text{ or } \lambda_2 \gg \lambda_1$ means an edge
 - $-\lambda_1 \approx \lambda_2$ and large means corner
 - One option, compute score:

 $\begin{aligned} R &= \det(M) - k \cdot tr(M)^2 \\ k \text{ empirically determined, usually } \begin{bmatrix} 0.04, 0.06 \end{bmatrix} \\ \det(M) &= \lambda_1 \lambda_2 \quad \text{tr}(M) = \lambda_1 + \lambda_2 \\ \text{R small} &= \text{flat, } \text{R} < 0 = \text{edge, } \text{R} > 0 = \text{corner} \end{aligned}$

• Shi-Tomasi Detector

– Similar to Harris but compute $min(\lambda_1, \lambda_2)$ directly (using characteristic equation)

(claimed to be better, perhaps)

Feature Detection

- Corners
- SIFT: Scale Invariant Feature Transform (1999)
- SURF: Speeded Up Robust Features (2006)
- Deep Learning Based Feature Detection...

- Properties:
 - Invariant to spatial rotation, translation, scale
 - Experimentally seen to be less sensitive to small spatial affine or perspective changes
 - Invariant to affine illumination changes

- Computational Steps:
 - Scale-space extrema detection
 - local extrema detection using DoG (difference of Gaussians)
 - Compare difference of Gaussians center on a pixel to lower and higher blurs
 - Pick the scale/pixel with highest differences

- Computational Steps:
 - Scale-space extrema detection
 - Keypoint localization
 - Similar to Harris Corner Detector, refine location of corners; ignore relatively weak corners

- Computational Steps:
 - Scale-space extrema detection
 - Keypoint localization
 - Compute orientation
 - Use an orientation histogram with 36 bins (or so)

- Computational Steps:
 - Scale-space extrema detection
 - Keypoint localization
 - Compute orientation
 - Keypoint descriptor creation
 - Use 16x16 pixel neighborhood to define 4x4 pixel subblocks yields a 128 vector as a descriptor of orientations and normalized to be illumination invariant

- Computational Steps:
 - Scale-space extrema detection
 - Keypoint localization
 - Compute orientation
 - Keypoint descriptor creation

Deep Learning Edge Detection

• HED

<u>https://arxiv.org/pdf/1504.06375.pdf</u>

DexiNET

<u>https://arxiv.org/pdf/1909.01955.pdf</u>

- Convolution
 - Define a kernel
 - "Convolve the image"

• Kernel: (1/16) $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

- What if kernel is not normalized?
- Image: $\begin{bmatrix} p_{11} & \cdots & p_{m1} \\ \vdots & \ddots & \vdots \\ p_{1n} & \cdots & p_{mn} \end{bmatrix}$
- What if image is multi-channel?
- What if kernel falls off the side of the image?

- Recall
 - Convolution in spatial domain = multiplication in frequency domain
 - Thus, low/high frequency filter is a simple multiplication in frequency space
 - <u>Phase component</u> also exists in frequency space so that makes things more complicated...

(Image) Correlation

- Convolution: result of a composition of two signals
- Correlation: measure of coincidence of two signals
 - Subtle difference...
 - Mathematically, the difference is only two signs
 - <u>https://www.youtube.com/watch?v=O9-HN-yzsFQ</u>
- Correlation = measure of similarity?
 - Maybe: Pearson correlation measure

$$ho_{X,Y} = rac{\mathrm{E}[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$$

— Does this work?

Image Similarity Metrics

• Use SIFT/SURF

Compute features and see how similar

- L2-norm
 - Per-pixel L2-norm
- Cross correlation
 - Kinda Pearson correlation
- SSIM
- Deep Learning...

Image Similarity Metrics

• SSIM: Structural Similarity Index

$$SSIM(x,y) = \left[l(x,y)^{\alpha} \cdot c(x,y)^{\beta} \cdot s(x,y)^{\gamma} \right]$$

where

l(x, y) measures luminance similarity, c(x, y) measures contrast similarity, and s(x, y) measures structure similarity (by covariance)

SSIM

MSE=0, SSIM=1

MSE=306, SSIM=0.928

(b)

MSE=309, SSIM=0.987

(C)

MSE=309, SSIM=0.576

(d)

MSE=313, SSIM=0.730 (e)

MSE=309, SSIM=0.580 (f)

MSE=308, SSIM=0.641 (g)

MSE=694, SSIM=0.505 (h)

- Blur:
 - Box Blur

Gaussian Blur

• Blur:

– Radial Blur

- Optical Blur:
 - PSF composed of Zernike Polynomials

• Basic notion:

- Blur is basically a PSF (Point Spread Function)

- Basic technique:
 - Apply a spatial blurring using a kernel and convolution

Note: Bilateral Filtering/Blurring

- It is a non-linear, edge-preserving, and noise-reducing smoothing filter
- It replaces the intensity of each pixel with a weighted average of intensity values from nearby pixels but not across edges

Bilateral Filter

• What is the formulation to account for value difference and spatial difference?

Bilateral Filter

- Given image *I*
- Value difference is $f(x_i, x)$ - E.g., $||I(x_i) - I(x)||$
- Spatial difference is $g(x_i, x)$ - E.g., $||x_i - x||$
- Altogether:

$$I^{ ext{filtered}}(x) = rac{1}{W_p} \sum_{x_i \in \Omega} I(x_i) f_r(\|I(x_i) - I(x)\|) g_s(\|x_i - x\|)$$

Deblurring

- <u>One option is to perform a deconvolution:</u>
 - Non-blind deconvolution
 - The PSF is known

Deblurring

- <u>Another option</u> is to perform a deconvolution:
 - Blind deconvolution
 - The PSF is NOT known

Several variations of blind deconvolution

Human Computation

- <u>https://www.youtube.com/watch?v=tx082gDwGc</u>
 <u>M</u>
 - Start at 6:45
- Relates to:
 - <u>Citizen science</u> is sometimes described as "public participation in scientific research
 - <u>Crowdsourcing</u> is a less-specific, more public group, to help with the work
 - whereas <u>outsourcing</u> is commissioned from a specific, named group, and includes a mix of bottom-up and top-down processes

Function Solving vs Optimization

- Finding "solutions":
 - Newton's method: $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
 - Gradient descent: $x_{n+1} = x_n \alpha_n \nabla F(x_n)$
 - If have no derivatives, use Powell's (conjugate direction) method:
 - Searches in a variety of directions and picks best
 - Linear system of equations: Ax = b
 - What is A is not square?
 - ...then it is over/under determined

- Linear least squares (LLS):
 - LLS is the problem of approximately solving an <u>overdetermined system</u> of linear equations, where the best approximation is defined as that which minimizes the sum of squared differences between the data values and their corresponding modeled values.
 - $-x = (A^T A)^{-1} A M^T y$ where y are dependent observations and A are independent observations (note: $(A^T A)^{-1} A^T$ is the Moore-Penrose inverse which is needed because A is not square – else would just be $x = A^{-1} y$

- Non-linear least squares (NLLS):
 - Requires successive approximations to solve

e.g. Levenbu
$$S = \sum_{i} W_{ii} \left(y_i - \sum_{j} X_{ij} \beta_j \right)^2 \text{ vMar} \text{ uses the Jacobian anc.}$$

$$f(x_i, p + \delta) \approx f(x_i, p) + J_i \delta$$

PROBLEM: NLLS very sensitive to the presence of outliers (i.e., x_i , y_i pairs that behavior weird, maybe noise)

- Random Sample Consensus (RANSAC)
 - Assumes that inliers exist and focuses on determining and using those
 - Randomly select data points and if they fit sufficiently well, use in the iterative optimization
- Rule of thumb:
 - If lots of inliers, use NLLS
 - If lots of outliers, use RANSAC

• Convexity: typical assumption which means that objective function is convex

- Fancier optimization methods:
 - ADMM (Alternating Direction Method of Multipliers): optimize by dividing into subproblems
 - and many more...

Randomization-based Algorithms

- Pro: does not need convexity, can handle many dimensions even with lots of local minima
- Con: no guarantees
 - Exception: if PDF of parameters is known and is Gaussian, then it is a maximum likelihood estimation which can essentially be ≈ NLLS

Randomization-based Algorithms

- Simulated Annealing
 - Inject noise while during optimization and hope for the best...
- Sequential Monte Carlo (or particle filters)
 - A set of Monte Carlo algorithms, that given some knowledge as to the expected parameter variance, can chose number and range of perturbations, that with some guarantees can field the optimum
 - Fun fact: developed in 1940s by Ulam and von Neumann who used the code name Monte Carlo since the work was secret – think WWII

Randomization-based Algorithms

- Markov Chain Monte Carlo (MCMC):
 - An ensemble of chains is created and walked along
 - Start with a set of points
 - Propose changes to the chains at different temperatures
 - Use acceptance probability to accept some chains (e.g., Metropolis-Hastings method)
 - Keep best chains and repeat
 - Terminate at max iterations or at little change
 - Used often in high-complexity (not-necessarily convex) problems in graphics/vision

Deep Learning

- Has lots of parameters to optimize (100M!)
 - SGD: Stochastic Gradient Descent
 - AdaGrad: Adaptive Gradient Descent
 - ADAM: Adaptive Moment Estimation

