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Who am I?

* Daniel G. Aliaga

http://www.cs.purdue.edu/~aliaga and aliaga@cs.purdue.edu

CS faculty doing Graphics

Doctorate in Graphics

Master’s in Graphics

Bachelors in Graphics

High School Degree doing graphics/robots/science
1980 (TRS80 Model I)

Then: http://www.youtube.com/watch?v=3yuqdC81d48)
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
Now: http://www.youtube.com/watch?v=QAEkuVgt6Aw

* CGVLAB

http://www.cs.purdue.edu/cgvlab



http://www.cs.purdue.edu/~aliaga
mailto:aliaga@cs.purdue.edu
http://en.wikipedia.org/wiki/TRS-80
http://www.youtube.com/watch?v=3yuqdC8Id48
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://www.youtube.com/watch?v=QAEkuVgt6Aw
http://www.cs.purdue.edu/cgvlab

Who am I?

 CGVLAB: www.cs.purdue.edu/cgvlab

* Home page: www.cs.purdue.edu/homes/aliaga

e Research Computer Graphics/Computer Vision:

— Urban Modeling: 3D acquisition, forward and inverse
procedural modeling, urban design, planning, and
simulation


http://www.cs.purdue.edu/cgvlab
http://www.cs.purdue.edu/homes/aliaga

Who are you?



* History

* Graphics: Basics

* Rays, Beams, and Cones
* Polygons

* Points and Splats

* Shading and lllumination
(midterm)

* Shading and lllumination
* Image-based Rendering
* Generating Modeling

e Style and Appearance
(final project, final exam)

Syllabus




Preview: CS635

Neural Networks, CNNs, GANs

More 3D Deep Learning

Surface Reconstruction

Probabilistic Graphical Models

3D Reconstruction Passive and Active
Fancy Cameras and Displays
Perception Issues

Generative Modeling




Graphics, APIs, GUIs, CUDA,
OpenCL, OpenCV, and more!

CS535 Fall 2024

Daniel G. Aliaga
Department of Computer Science
Purdue University



History 101

1950: MIT Whirlwind (CRT)

1955: Sage, Radar with CRT and
light pen

1958: Willy Higinbotham “Tennis”
1960: MIT “Spacewar” on DEC-
PDP-1

1963: lvan Sutherland’s
“Sketchpad” (CAD)

1968: Tektronix storage tube

1968: Evans & Sutherland’s flight
simulators

1968: Douglas Engelbart:
computer mouse

1969: ACM SIGGRAPH

1970:
1971:
1974:
1975:
1979:
1981.:
1982:
1982:
1984
1984

Xerox GUI

Gouraud shading
Z-buffer

Phong Model
Eurographics

Apollo Workstation, PC
Whitted: Ray tracing
SGI

X Window System

15t SGI Workstation

->1995: SGI dominance
->2003: PC dominance

Today: programmable graphics
hardware (again)



Applications

Training

Education

Computer-aided design (CAD)
Scientific Visualization
E-commerce

Computer art

Entertainment



Reprise: Graphics @

* First graphics visual image:

— Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior
projects was an oscilloscope based
graphics engine)
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Whirlwind Computer @ MIT ~ '/

* Video display of real-time data:
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lvan Sutherland (1963) - SKETCHPAD

* pOp-up menus
* constraint-based drawing
* hierarchical modeling



IKONAS and TAAC

* Nick England and more...
* (see other slides)



Display hardware

e vector displays
— 1963 — modified oscilloscope
— 1974 — Evans and Sutherlz
* raster displays
— 1975 — Evans and Sutherlz
— 1980s — cheap frame buffs
— 1990s — liquid-crystal disp
— 2000s — micro-mirror proj
— 2010s — high dynamic ranf
e other
— stereo, head-mounted dis
— autostereoscopic displays




Input hardware

e 2D

— light pen, tablet, mouse, joystick, track ball, touch
panel, etc.

— 1970s & 80s - CCD analog image sensor + frame
grabber






Input hardware

e 2D
— light pen, tablet, mouse, joystick, track ball, touch

panel, etc.

— 1970s & 80s - CCD analog image sensor + frame
grabber

— 1990s & 2000’s - CMOS digital sensor + in-camera
processing
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High Dynamic Range Imag

combine multiple exposures = 250,000:1 (18 stops)

negative film
paper prints




Input hardware

PROCEEDINGS

aaaaa

* 4D and higher

— multiple cameras
— multi-arm gantries
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Rendering

1960s - the visibility problem

— Roberts (1963), Appel (1967) - hidden-line
algorithms

— Warnock (1969), Watkins (1970) - hidden-surface




%;}Jg — e
algorithms L
— Sutherland (1974) - visibility = sor{iugee

 1970s - raster graphics
— Gouraud (1971) - diffuse lighting
— Phong (1974) - specular lighting
— Blinn (1974) - curved surfaces, texture
— Crow (1977) - anti-aliasing



 1970s - raster graphics
— Gouraud (1971) - diffuse lighting
— Phong (1974) - specular lighting
— Blinn (1974) - curved surfaces, texture
— Catmull (1974) - Z-buffer hidden-surface algorithm
— Crow (1977) - anti-aliasing




early 1980s - global illumination
— Whitted (1980) - ray tracing

— Goral, Torrance et al. (1984), Cohen (1985) -
radiosity

— Kajiya (1986) - the rendering equation




* |ate 1980s - photorealism
— Cook (1984) - shade trees
— Perlin (1985) - shading languages
— Hanrahan and Lawson (1990) - RenderMan



early 1990s - non-photorealistic rendering

— Drebin et al. (1988), Levoy (1988) - volume
rendering

— Haeberli (1990) - impressionistic paint programs




early 1990s - non-photorealistic rendering

— Drebin et al. (1988), Levoy (1988) - volume
rendering

— Haeberli (1990) - impressionistic paint programs

(1994-) - automatiaq AN




Research Conferences...

Papers at
http://kesen.realtimerendering.com/

SIGGRAPH, SIGGRAPH Asia, Eurographics, 13D
CVPR, ICCV, ECCV...

NeurlPS, AAAI, ICLR, ICML...

IEEE Visualization


http://kesen.realtimerendering.com/

Computer Graphics Pipeline

* How do we create a rendering such as this?
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Computer Graphics Pipeline ~ @

é

* Design the scene (technical drawing in “wireframe”)




Computer Graphics Pipeline

Apply perspective transformations to the scene geometry for a virtual
camera




Computer Graphics Pipeline

e Hidden lines removed and colors added




Computer Graphics Pipeline

 Geometric primitives filled with constant color




Computer Graphics Pipeline @

* View-independent lighting model added




Computer Graphics Pipeline @

* View-dependent lighting model added




Computer Graphics Pipeline @

* Texture mapping: pictures are wrapped around objects




Computer Graphics Pipeline @

* Reflections, shadows, and bumpy surfaces




Computer Graphics Pipeline ~ &

Geometric Primitives

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface...)



But...

* Now, we have deep learning...

* Or, did we always?



Deep Visual Computing

* Since the beginning, it turns out visual
computing and machine learning have been
deeply connected

* Do you know why?

* Lets see... (get it: lets “see”



£

A long time ago in a computer far, far
inferior to your phone, it all began...

-Daniel Aliaga, August 25, 2020



ENIAC

Completed in 1945
Was called a “Giant Brain”
Cost $6.3M of today’s dollars

However, computers then lacked a key
prerequisite for intelligence:

they could barely remember...they only executed a
few commands



Logic Theorist (1956)

A program designed to mimic the problem solving
skills of a human

From 1957-1974, Al flourished and failed and
flourished...

In 1968, A. Clarke and S. Kubrik said “by the year
2001 we will have machines with intelligence that
matches or exceeded humans’s”

In 1970, Marvin Minsky (MIT) said that in 3-8 years
“we will have a machine with the general intelligence
of an average human being”



Al Timeline

ARTIFICIAL INTELLIGENCE TIMELINE

| == artificial intelligence

1997: First publicly available
speech recongition software
developed by Dragon Systems
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1980s

Expert systems became popular: dedicated systems

“Deep learning techniques” was a coined phrase but
with diverse meanings...

| was around then, and even a paid undergraduate
researcher in a major Al lab

- our job was to create a robot that could be programmed
remotely and could execute algorithms for navigating and
deciding how to avoid obstacles (e.g., walls and boxes)



(Single Layer) Perceptron @

* The Perceptron: A Probabilistic Model for
Information Storage and Organization in the
Brain, F. Rosenblatt, Psychological Re ' "
65(6), 1958.

* Model based on the human visual system



' o) INHINTORY CONNECTION
. e EXCITATONRY CONNECTION

R, sounceser
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ceptron¥ (shading shows active sets for R,

response).




Perceptron

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ ;.
Initialize w and b randomly.

while not converged do

# # # Loop through the examples.
for j =1, mdo

## # Compare the true label and the prediction.

error = y; - o(w' x; +b)

### It the model wrongly predicts the class, we update the weights and bias.
if error I= () then

#i# Update the weights,

W =W+ error x rj

#it# Update the bias,
b="b+error

Test for convergence

Output: Set of weights w and bias b for the perceptron.




Perceptrons

 Book by M. Minsky and S. Papert (1969)

* Was actually “An Introduction to
Computational Geometry” — thus visual as
well

* Commented on the limited ability of
perceptrons and on the difficulty in training
multi-layer perceptrons



Try this...

https://playground.tensorflow.
org/

- First try something linear
- Then try something more
complex...


https://playground.tensorflow.org/
https://playground.tensorflow.org/

1940
DarkEra
Until1940

1943

Neural Nets
McCulloch &
Pitt

Made by Favio Vazquez

Deep Learning Timeline

1950
Computing
Machinery
and
Intelligence
Alan Turing

1960
ADALINE
Widrow &
Hoff

1958
Perceptron
Rosenblatt
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Minsky&  Organizing Network  Perceptron Jordan RNN Networks- Hinton  Networks
Papert Map JohnHopfield Rumelhart, Schuster&  pretraining Sabour, Frosst,

Kohonen Hinton & Paliwal Hinton Hinton

Williams



Reprise: Computer Vision

* |[n 1959, Russell Kirsch and colleagues
developed an image scanner: transform an
image into a grid of numbers so that a
machine can understand it!

* One of the first scanned images:
(176x176 pixels)




1982

* David Marr, British neuroscientists, published
influential paper

“Vision: A computational investigation into the human
representation and processing of visual information”

Among many things, he gave the insight that vision is
hierarchical (i.e., primal sketch, 2.5D, and then 3D
recognition)

(now at CVPR, the Marr Prize exists)



1999

e David Lowe’s work “Object Recognition from
Local Scale-Invariant Features” indicated a
shift to feature-based visual object-
recognition (instead of full 3D models as Marr

proposed)

— Scale-Invariant Feature Transform (SIFT)

— and many subsequent derivatives



2010

* ImageNet Large Scale Visual Recognition
Competition (ILSVRC) runs annually

— 2010/2011: error rates were around 26% (using
Lowe-style approaches)

— 2012: the beginning of a new beginning — AlexNet
—reduced errors to 16%!



AlexNet

* University of Toronto created a CNN model
(AlexNet) that changed everything (Krizhevsky
et al. 2012)
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Just a note: 1980s

e Kunihiko Fukushima developed Neocognitron
for visual pattern recognition which included
several convolutional layers whose (typically
rectangular) receptive fields had weight
vectors (known as filters)

* This was perhaps the earliest deep and
convolutional network



Just a note: 1989

* Yann LeCun

— applied backpropagation to Fukushima’s network
and with other improvements released LeNet-5 —
quite similar to today’s CNNs

* Yann today:
— Chief Scientist at Meta, now at AMI Labs
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ILSVRC (2010-2017)
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Deep Learning in Computer g
:
Graphics

* Like in computer vision, since 2010’ish deep
learning has revolutionized computational
imaging and computational photography

* However, hand-crafted methods have
significantly improved other domains such as
geometry processing, rendering and
animation, video processing, and physical
simulations



Representations

* How are the objects described in a computer?
— Points (or vertices)
— Lines
— Triangles
— Polygons
— Curved surfaces, etc.
— Functions



Representations

 What information is needed per geometric
primitive?
— Color
— Normal
— Material properties (e.g. textures...)



Texture Mapping




Lighting and Shading @

...Shadows?






Advanced Topics: Global IIIuminatior@




Graphics APIs

Starbase

— From HP, 1980s

gl

— From SGlI, 1980s-1990s

OpenGL

— From Khronos Group 1990s-2017

— Khronos Group (180+): AMD, Apple, Google, Intel, NVIDIA,
Qualcomm, Samsung (Microsoft)

DirectX (and Direct3D)
— From Microsoft 1990s-onwards

Vulkan (or gINext)

— From 2016 onwards...



OpenGL

Software interface to graphics hardware
~150 distinct commands
Hardware-independent and widely supported

— To achieve this, no windowing tasks are included
GLU (Graphics Library Utilities)

— Provides some higher-level modeling features
such as curved surfaces, objects, etc.



OpenGL Online

* Programming Guide v1.1 (“Red book”)

— http://www.glprogramming.com/red/

* Reference Manual v1.1 (“Blue book”)

— http://www.glprogramming.com/blue/

e Current version is 4.6 (from 2017)


http://www.glprogramming.com/red/
http://www.glprogramming.com/red/
http://www.glprogramming.com/blue/
http://www.glprogramming.com/blue/

OpenGL

* Rendering parameters

— Lighting, shading, lots of little details...
* Texture information

— Texture data, mapping strategies
* Matrix transformations

— Projection

— Model view

— (Texture)
— (Color)



Vulkan (or gINext)

* hello_triangle.cpp: 1182 lines...
* hello_triangle.py: ~500 lines...

e Why use it?
— high-performance,
— low-level control over GPUs
— multi-core utilization, and
— lower battery use.
— BUT: significantly more verbose/cumbersome



Simple OpenGL Program

<Initialize OpenGL state>

<Load and define textures>

<Specify lights and shading parameters>
<Load projection matrix>

For each frame

<Load model view matrix>
<Draw primitives>

End frame



Simple Program

#include <GL/gl.h>
main ()
{
InitializeAWindowPlease() ;
glMatrixMode (GL_PROJECTION) ;
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR BUFFER BIT);
glColor3f (1.0, 1.0, 1.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslate3£(1.0, 1.0, 1.0):
glBegin (GL_POLYGON) ;
glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);
glEnd() ;
glFlush() ;
UpdateTheWindowAndCheckForEvents () ;



OpenGL + Windows + GUIs

e Windows
— GLUT, GLFW, SDL/SDL2, TinyWindow, Qt, ...

e GUIs:
— (glui), imgui, Qt, ...



(Free)GLUT

* = @Graphics Library Utility Toolkit

— Adds functionality such as windowing operations to
OpenGL

* Event-based callback interface
— Display callback
— Resize callback
— |dle callback
— Keyboard callback
— Mouse movement callback
— Mouse button callback



Simple OpenGL + GLUT Program

#include <.>

DisplayCallback ()

{
<Clear window>
<Load Projection matrix>
<Load Modelview matrix>
<Draw primitives>
(<Swap buffers>)

}

IdleCallback ()
{

<Do some computations>
<Maybe force a window refresh>

}

KeyCallback ()
{

}

<Handle key presses>

KeyCallback ()
{

}

<Handle key presses>

MouseMovementCallback

{
}

<Handle mouse movement>

MouseButtonsCallback
{

}

<Handle mouse buttons>

Main ()

{
<Initialize GLUT and callbacks>
<Create a window>
<Initialize OpenGL state>

<Enter main event loop>



Simple OpenGL + GLUT Program

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadldentity ();
gluLookAt (0,0, 5,0,0,0,0, 1, 0);
glScalef (1.0, 2.0, 1.0);
glutWireCube (1.0);
glFlush ();

void reshape (int w, int h)

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();

glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutlnitWindowPosition (100, 100);
glutCreateWindow (argv([0]);

init ();

glutDisplayFunc(display);
glutReshapeFunc(reshape);

glutMainLoop();

return 0;



Example Program with Lighting

#tinclude <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
GLfloat mat_specular[] ={1.0,1.0,1.0,1.0 };
GLfloat mat_shininess[] = {50.0 };
GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };
glClearColor (0.0, 0.0, 0.0, 0.0);
giShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

}
void display(void)
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);
glFlush ();

}

void reshape (int w, int h)

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOortho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

int main(int argc, char** argv)

glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB |
GLUT _DEPTH);

glutlnitWindowsSize (500, 500);
glutlnitWindowPosition (100, 100);
glutCreateWindow (argv[0]);

init ();

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();

return O;



Simple OpenGL + GLUT Program@}X




GLUI

* Very lightweight (no longer being developed)

: GLUI HE B = Panel
Static text — e GLUI Sample jr"f-
Checkbox v Wireframe |
| |
Checkbox A
(disabled) Radius [125475 2] t—— Spirmer
Mame:
-
Object Type [ Editable Text
Fadio bttons ——— . sphete
& Torus
Butt
it o




GLUI

' GLUI M[=] E3
atatic Text Listhox 1 | Option 3 j "~ Rollout (oper) —|
- Panel Listhox 2 | Dption 1 v Editte:-c:tl Hi there!

Radio Group

t« Radio Button 3

Edittext (inf) [ 123
Radio Button 1
? H:d:g Eaﬁgz ! @ @ Edittext (floaf)[23.124

@ Checkbox 1 Fotation 1 Rotation 2 Spinner (inthEEISE =
[T Checkbox 2 i_}> _‘ Spinner (ﬂnatlelEd.EE =
N
Button J N
Translation ¥%  Translation 7 - _polout (closed) +p
Another Button ranslanon ranslation
T &nother closed rallout + P
Yet Another Button , -
N—
hvd

Translation Translation %




GLUI

" Propetties —|
[~ Wireframe
Segments:la? =

Scale:[241545 2

C Lights + [
C Options + [

Bounding box: on Text: [Bounding box: on 7|

VPO > — ]

Dhjects  Sphere Torus Blue Light Ohjects ®%  Ohjects ¥ Ohbjects ¥




Imgul

* Flexible, medium weight...

[ erhe by Timo Suoranta January 2, 2022
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at L

* Qtis across-platform heavy-weight
application and Ul framework with APlIs for
C++ programming and Ul creation



http://qt.nokia.com/products/
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Alternatives graphics pipeline?

e Traditional pipeline...ok

* Parallel pipeline
— Cluster of PCs?
— Cluster of PS3?

— What must be coordinated? What changes? What are
the bottlenecks?

— Sort-first vs. Sort-last pipeline
* PixelFlow
* Several hybrid designs



What can you do with a graphics
pipeline?

>
PU

&

* Uhm...graphics



What can you do with a graphics %
pipeline? v

 Uhm...graphics
* Paperweight?




What can you do with a graphics %
pipeline? v

Uhm...graphics

Paperweight?

.......

How about large number crunching tasks?
How about general (parallelizable) tasks?



CUDA and OpenCL

 NVIDIA defined “CUDA” (new)

— Compute Unified Device Architecture
— http://www.nvidia.com/object/cuda _home.htmli#

* Khrono's group defined “OpenCL” (newer)

— Open Standard for Parallel Programming of
Heterogeneous Systems

— http://www.khronos.org/opencl/



http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

CUDA Example

* Rotate a 2D image by an angle

— On the CPU (PC)
e simple-tex.pdf

— On the GPU (graphics card)
* simple-tex-kernel.pdf



simple-tex.pdf
simple-tex.pdf
simple-tex.pdf
simple-tex.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf

OpenCL Example

* Compute a Fast Fourier Transform

— On the CPU (PC)
e cl-cpu.pdf

— On the GPU (graphics card)
e cl-gpu.pdf



cl-cpu.pdf
cl-cpu.pdf
cl-cpu.pdf
cl-cpu.pdf
cl-gpu.pdf
cl-gpu.pdf
cl-gpu.pdf
cl-gpu.pdf

GLSL

* OpenGL Shading Language

— Specification

— Quick reference

— Example:
* phong.pix

* phong.vrt



GLSL-spec-4.20.8.pdf
GLSL-spec-4.20.8.pdf
GLSL-quick-reference-card.pdf
GLSL-quick-reference-card.pdf
phong.pix
phong.pix
phong.vrt
phong.vrt

OpenCV

* Alibrary for computer-vision related software

* Derived from research work and high-
performance code from Intel

* http://opencv.willowgarage.com/wiki/
— e.g., find fundamental matrix



http://opencv.willowgarage.com/wiki/
http://opencv.willowgarage.com/wiki/
opencv.pdf
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