&

CS535
Interactive Computer Graphics

Spring 2026

Daniel G. Aliaga
Department of Computer Science
Purdue University

Who am I?

* Daniel G. Aliaga

http://www.cs.purdue.edu/~aliaga and aliaga@cs.purdue.edu

CS faculty doing Graphics

Doctorate in Graphics

Master’s in Graphics

Bachelors in Graphics

High School Degree doing graphics/robots/science
1980 (TRS80 Model I)

Then: http://www.youtube.com/watch?v=3yuqdC81d48)
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
Now: http://www.youtube.com/watch?v=QAEkuVgt6Aw

* CGVLAB

http://www.cs.purdue.edu/cgvlab

http://www.cs.purdue.edu/~aliaga
mailto:aliaga@cs.purdue.edu
http://en.wikipedia.org/wiki/TRS-80
http://www.youtube.com/watch?v=3yuqdC8Id48
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://thinkingscifi.files.wordpress.com/2012/12/starwars-graphics.png
http://www.youtube.com/watch?v=QAEkuVgt6Aw
http://www.cs.purdue.edu/cgvlab

Who am I?

 CGVLAB: www.cs.purdue.edu/cgvlab

* Home page: www.cs.purdue.edu/homes/aliaga

e Research Computer Graphics/Computer Vision:

— Urban Modeling: 3D acquisition, forward and inverse
procedural modeling, urban design, planning, and
simulation

http://www.cs.purdue.edu/cgvlab
http://www.cs.purdue.edu/homes/aliaga

Who are you?

* History

* Graphics: Basics

* Rays, Beams, and Cones
* Polygons

* Points and Splats

* Shading and lllumination
(midterm)

* Shading and lllumination
* Image-based Rendering
* Generating Modeling

e Style and Appearance
(final project, final exam)

Syllabus

Preview: CS635

Neural Networks, CNNs, GANs

More 3D Deep Learning

Surface Reconstruction

Probabilistic Graphical Models

3D Reconstruction Passive and Active
Fancy Cameras and Displays
Perception Issues

Generative Modeling

Graphics, APIs, GUIs, CUDA,
OpenCL, OpenCV, and more!

CS535 Fall 2024

Daniel G. Aliaga
Department of Computer Science
Purdue University

History 101

1950: MIT Whirlwind (CRT)

1955: Sage, Radar with CRT and
light pen

1958: Willy Higinbotham “Tennis”
1960: MIT “Spacewar” on DEC-
PDP-1

1963: lvan Sutherland’s
“Sketchpad” (CAD)

1968: Tektronix storage tube

1968: Evans & Sutherland’s flight
simulators

1968: Douglas Engelbart:
computer mouse

1969: ACM SIGGRAPH

1970:
1971:
1974:
1975:
1979:
1981.:
1982:
1982:
1984
1984

Xerox GUI

Gouraud shading
Z-buffer

Phong Model
Eurographics

Apollo Workstation, PC
Whitted: Ray tracing
SGI

X Window System

15t SGI Workstation

->1995: SGI dominance
->2003: PC dominance

Today: programmable graphics
hardware (again)

Applications

Training

Education

Computer-aided design (CAD)
Scientific Visualization
E-commerce

Computer art

Entertainment

Reprise: Graphics @

* First graphics visual image:

— Ben Laposky used an oscilloscope in 1950s

(note: one of my undergrad senior
projects was an oscilloscope based
graphics engine)

1T _~—

Whirlwind Computer @ MIT ~ '/

* Video display of real-time data:

&

lvan Sutherland (1963) - SKETCHPAD

* pOp-up menus
* constraint-based drawing
* hierarchical modeling

IKONAS and TAAC

* Nick England and more...
* (see other slides)

Display hardware

e vector displays
— 1963 — modified oscilloscope
— 1974 — Evans and Sutherlz
* raster displays
— 1975 — Evans and Sutherlz
— 1980s — cheap frame buffs
— 1990s — liquid-crystal disp
— 2000s — micro-mirror proj
— 2010s — high dynamic ranf
e other
— stereo, head-mounted dis
— autostereoscopic displays

Input hardware

e 2D

— light pen, tablet, mouse, joystick, track ball, touch
panel, etc.

— 1970s & 80s - CCD analog image sensor + frame
grabber

Input hardware

e 2D
— light pen, tablet, mouse, joystick, track ball, touch

panel, etc.

— 1970s & 80s - CCD analog image sensor + frame
grabber

— 1990s & 2000’s - CMOS digital sensor + in-camera
processing

ing

[Debevec97]

[Nayar0O0]

130:1 (7 stops)

= 46:1

BEBERCEENANENSNEN
LT PR T T St T
EENERERERERENENEN
EENENENERNNEC RGN
L LD BT T J8E el e fd bl
EENERENNNERENEREE
NEEEACENEEEEEEEER
NENEECN NN
EENEEERERENENCENEE
CEL B IS BB EEL Tt T
L]

High Dynamic Range Imag

combine multiple exposures = 250,000:1 (18 stops)

negative film
paper prints

Input hardware

PROCEEDINGS

aaaaa

* 4D and higher

— multiple cameras
— multi-arm gantries

&

Rendering

1960s - the visibility problem

— Roberts (1963), Appel (1967) - hidden-line
algorithms

— Warnock (1969), Watkins (1970) - hidden-surface

%;}Jg — e
algorithms L
— Sutherland (1974) - visibility = sor{iugee

 1970s - raster graphics
— Gouraud (1971) - diffuse lighting
— Phong (1974) - specular lighting
— Blinn (1974) - curved surfaces, texture
— Crow (1977) - anti-aliasing

 1970s - raster graphics
— Gouraud (1971) - diffuse lighting
— Phong (1974) - specular lighting
— Blinn (1974) - curved surfaces, texture
— Catmull (1974) - Z-buffer hidden-surface algorithm
— Crow (1977) - anti-aliasing

early 1980s - global illumination
— Whitted (1980) - ray tracing

— Goral, Torrance et al. (1984), Cohen (1985) -
radiosity

— Kajiya (1986) - the rendering equation

* |ate 1980s - photorealism
— Cook (1984) - shade trees
— Perlin (1985) - shading languages
— Hanrahan and Lawson (1990) - RenderMan

early 1990s - non-photorealistic rendering

— Drebin et al. (1988), Levoy (1988) - volume
rendering

— Haeberli (1990) - impressionistic paint programs

early 1990s - non-photorealistic rendering

— Drebin et al. (1988), Levoy (1988) - volume
rendering

— Haeberli (1990) - impressionistic paint programs

(1994-) - automatiaq AN

Research Conferences...

Papers at
http://kesen.realtimerendering.com/

SIGGRAPH, SIGGRAPH Asia, Eurographics, 13D
CVPR, ICCV, ECCV...

NeurlPS, AAAI, ICLR, ICML...

IEEE Visualization

http://kesen.realtimerendering.com/

Computer Graphics Pipeline

* How do we create a rendering such as this?

A7
Py

Computer Graphics Pipeline ~ @

é

* Design the scene (technical drawing in “wireframe”)

Computer Graphics Pipeline

Apply perspective transformations to the scene geometry for a virtual
camera

Computer Graphics Pipeline

e Hidden lines removed and colors added

Computer Graphics Pipeline

 Geometric primitives filled with constant color

Computer Graphics Pipeline @

* View-independent lighting model added

Computer Graphics Pipeline @

* View-dependent lighting model added

Computer Graphics Pipeline @

* Texture mapping: pictures are wrapped around objects

Computer Graphics Pipeline @

* Reflections, shadows, and bumpy surfaces

Computer Graphics Pipeline ~ &

Geometric Primitives

Image

Transform into 3D world coordinate system

Simulate illumination and reflectance

Transform into 3D camera coordinate system

Clip primitives outside camera’s view

Transform into 2D camera coordinate system

Draw pixels (incl. texturing, hidden surface...)

But...

* Now, we have deep learning...

* Or, did we always?

Deep Visual Computing

* Since the beginning, it turns out visual
computing and machine learning have been
deeply connected

* Do you know why?

* Lets see... (get it: lets “see”

£

A long time ago in a computer far, far
inferior to your phone, it all began...

-Daniel Aliaga, August 25, 2020

ENIAC

Completed in 1945
Was called a “Giant Brain”
Cost $6.3M of today’s dollars

However, computers then lacked a key
prerequisite for intelligence:

they could barely remember...they only executed a
few commands

Logic Theorist (1956)

A program designed to mimic the problem solving
skills of a human

From 1957-1974, Al flourished and failed and
flourished...

In 1968, A. Clarke and S. Kubrik said “by the year
2001 we will have machines with intelligence that
matches or exceeded humans’s”

In 1970, Marvin Minsky (MIT) said that in 3-8 years
“we will have a machine with the general intelligence
of an average human being”

Al Timeline

ARTIFICIAL INTELLIGENCE TIMELINE

| == artificial intelligence

1997: First publicly available
speech recongition software
developed by Dragon Systems

0.000240% «
0.000220% 4
RN 1980: Edward Feigenbaum

0/, 1955: Logic 1heorists, the introduces expert systems
0.000200% first Al program, is invented pertas

0/ o
0.000180% 6 it 1970: “From 3-8 years

» artmou we will have a machine .
0.000160% - 1938-1946: 1950: Can Summer Research with the general 1982: Jdpan’s Fifth (li?:?gat?((:}c;) o
Golden Ageof ~ Machines Think? | Project on Artificial 1965 intelligence of a human | Gener ion Computer s ig,chess
0.000140% |Science Fiction l-Alan Turing Intelligence Moore's Law being” -M. Minsky Proj :
0.000120% I I I I i | I |
0.000100%- 1949: Machester 1963: DARPA £356: Navlb, e
Mark 1, the first funds Al at MIT car. is built b
0.000080%- storted program Camegie Ml
computer, is invented 1968: “By the year 2001 we will
0.000060%- have machines with intelligence
; that matched or exceeded

o, J human’s”
0.000040% -Arthur Clarke and Stev
0.000020% 4
0.000000% 1 T 1 1 L) |l

1930 1940 1950 1960 1970 1980 1990

2000

1980s

Expert systems became popular: dedicated systems

“Deep learning techniques” was a coined phrase but
with diverse meanings...

| was around then, and even a paid undergraduate
researcher in a major Al lab

- our job was to create a robot that could be programmed
remotely and could execute algorithms for navigating and
deciding how to avoid obstacles (e.g., walls and boxes)

(Single Layer) Perceptron @

* The Perceptron: A Probabilistic Model for
Information Storage and Organization in the
Brain, F. Rosenblatt, Psychological Re ' "
65(6), 1958.

* Model based on the human visual system

' o) INHINTORY CONNECTION
. e EXCITATONRY CONNECTION

R, sounceser

F16. 2B. Venn diagram of the same per-
ceptron¥ (shading shows active sets for R,

response).

Perceptron

Algorithm 1: Perceptron Learning Algorithm

Input: Training examples {x;, y; }™ ;.
Initialize w and b randomly.

while not converged do

Loop through the examples.
for j =1, mdo

Compare the true label and the prediction.

error = y; - o(w' x; +b)

It the model wrongly predicts the class, we update the weights and bias.
if error I= () then

#i# Update the weights,

W =W+ error x rj

#it# Update the bias,
b="b+error

Test for convergence

Output: Set of weights w and bias b for the perceptron.

Perceptrons

 Book by M. Minsky and S. Papert (1969)

* Was actually “An Introduction to
Computational Geometry” — thus visual as
well

* Commented on the limited ability of
perceptrons and on the difficulty in training
multi-layer perceptrons

Try this...

https://playground.tensorflow.
org/

- First try something linear
- Then try something more
complex...

https://playground.tensorflow.org/
https://playground.tensorflow.org/

1940
DarkEra
Until1940

1943

Neural Nets
McCulloch &
Pitt

Made by Favio Vazquez

Deep Learning Timeline

1950
Computing
Machinery
and
Intelligence
Alan Turing

1960
ADALINE
Widrow &
Hoff

1958
Perceptron
Rosenblatt

A4

2006

1974 1985 1986 Deep

Backpropaga Boltzmann Restricted 1997 Boltzmann

tion 1980 Machine ~ Boltzmamn 1990 ISTMs ~ Machines 2014

Werbos (and Neocogitron Hinton& ~ Machine LeNet Hochreiter& Salakhutdinov GANS

more) Fukushima ~ Sejnowski ~ Smolensky ~ Lecun Schmidhuber & Hinton Goodfellow

‘L f # 1

1969 1980 1982 1986 1986 1997 2006 2012 2007
XOR problem Self Hopfield ~ Multilayer RNNs Bidirectional DeepBelief Dropout Capsule
Minsky& Organizing Network Perceptron Jordan RNN Networks- Hinton Networks
Papert Map JohnHopfield Rumelhart, Schuster& pretraining Sabour, Frosst,

Kohonen Hinton & Paliwal Hinton Hinton

Williams

Reprise: Computer Vision

* |[n 1959, Russell Kirsch and colleagues
developed an image scanner: transform an
image into a grid of numbers so that a
machine can understand it!

* One of the first scanned images:
(176x176 pixels)

1982

* David Marr, British neuroscientists, published
influential paper

“Vision: A computational investigation into the human
representation and processing of visual information”

Among many things, he gave the insight that vision is
hierarchical (i.e., primal sketch, 2.5D, and then 3D
recognition)

(now at CVPR, the Marr Prize exists)

1999

e David Lowe’s work “Object Recognition from
Local Scale-Invariant Features” indicated a
shift to feature-based visual object-
recognition (instead of full 3D models as Marr

proposed)

— Scale-Invariant Feature Transform (SIFT)

— and many subsequent derivatives

2010

* ImageNet Large Scale Visual Recognition
Competition (ILSVRC) runs annually

— 2010/2011: error rates were around 26% (using
Lowe-style approaches)

— 2012: the beginning of a new beginning — AlexNet
—reduced errors to 16%!

AlexNet

* University of Toronto created a CNN model
(AlexNet) that changed everything (Krizhevsky
et al. 2012)

I 192 28 2078 \ [2088 \Uense

AN 13 \ [\13

- 13 1 dense| [densé
27 EN 3|\ A B

3.\ 1000
192 192 128 Max
Max 128 Max pooling
pooling pooling

2048 2048

Just a note: 1980s

e Kunihiko Fukushima developed Neocognitron
for visual pattern recognition which included
several convolutional layers whose (typically
rectangular) receptive fields had weight
vectors (known as filters)

* This was perhaps the earliest deep and
convolutional network

Just a note: 1989

* Yann LeCun

— applied backpropagation to Fukushima’s network
and with other improvements released LeNet-5 —
quite similar to today’s CNNs

* Yann today:
— Chief Scientist at Meta, now at AMI Labs

Top-5 error(%)
— [] (o] ()
wn = un o

—_
L

ILSVRC (2011-2017)

Object Classification

25.81

AlexNet

16.42 ZFNet

Trimps-Soushen

11.74 GoogleNet

6.66 ResNet ResNeXt
3.56 3.03 2,99
X % QO
y @ ¢ ¥ oF ¢
:f} x\‘f} 0*5‘ Y @b & ¥
Ny ¢ oy o K ¢ 2y
S ® & §
v L & W &
A Vv N

ILSVRC (2010-2017)

>200 Layers
Fi
¥
i
F
!
4
152 Layers
X
22 Layers | .
F

28.2
25.8

16.4

1.7 19 Layers

13
8 Layers 8 Layers ="
Traditional b=
e B = I}
ILSVRC'10 ILSVRC'1 ILSVRC'12 ILSVRC'13 ILSVRC'14
- - AlexNet VGGNat

- -‘ 3.57 2.99

ILSVRC'14
GoogLeNet

ILSVRC'15
ResNet

ILSVRC'16
Ensemble

Deep Learning in Computer g
:
Graphics

* Like in computer vision, since 2010’ish deep
learning has revolutionized computational
imaging and computational photography

* However, hand-crafted methods have
significantly improved other domains such as
geometry processing, rendering and
animation, video processing, and physical
simulations

Representations

* How are the objects described in a computer?
— Points (or vertices)
— Lines
— Triangles
— Polygons
— Curved surfaces, etc.
— Functions

Representations

 What information is needed per geometric
primitive?
— Color
— Normal
— Material properties (e.g. textures...)

Texture Mapping

Lighting and Shading @

...Shadows?

Advanced Topics: Global IIIuminatior@

Graphics APIs

Starbase

— From HP, 1980s

gl

— From SGlI, 1980s-1990s

OpenGL

— From Khronos Group 1990s-2017

— Khronos Group (180+): AMD, Apple, Google, Intel, NVIDIA,
Qualcomm, Samsung (Microsoft)

DirectX (and Direct3D)
— From Microsoft 1990s-onwards

Vulkan (or gINext)

— From 2016 onwards...

OpenGL

Software interface to graphics hardware
~150 distinct commands
Hardware-independent and widely supported

— To achieve this, no windowing tasks are included
GLU (Graphics Library Utilities)

— Provides some higher-level modeling features
such as curved surfaces, objects, etc.

OpenGL Online

* Programming Guide v1.1 (“Red book”)

— http://www.glprogramming.com/red/

* Reference Manual v1.1 (“Blue book”)

— http://www.glprogramming.com/blue/

e Current version is 4.6 (from 2017)

http://www.glprogramming.com/red/
http://www.glprogramming.com/red/
http://www.glprogramming.com/blue/
http://www.glprogramming.com/blue/

OpenGL

* Rendering parameters

— Lighting, shading, lots of little details...
* Texture information

— Texture data, mapping strategies
* Matrix transformations

— Projection

— Model view

— (Texture)
— (Color)

Vulkan (or gINext)

* hello_triangle.cpp: 1182 lines...
* hello_triangle.py: ~500 lines...

e Why use it?
— high-performance,
— low-level control over GPUs
— multi-core utilization, and
— lower battery use.
— BUT: significantly more verbose/cumbersome

Simple OpenGL Program

<Initialize OpenGL state>

<Load and define textures>

<Specify lights and shading parameters>
<Load projection matrix>

For each frame

<Load model view matrix>
<Draw primitives>

End frame

Simple Program

#include <GL/gl.h>
main ()
{
InitializeAWindowPlease() ;
glMatrixMode (GL_PROJECTION) ;
glOrtho(0.0, 1.0, 0.0, 1.0, -1.0, 1.0);
glClearColor (0.0, 0.0, 0.0, 0.0);
glClear (GL_COLOR BUFFER BIT);
glColor3f (1.0, 1.0, 1.0);
glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity () ;
glTranslate3£(1.0, 1.0, 1.0):
glBegin (GL_POLYGON) ;
glVertex3f (0.25, 0.25, 0.0);
glVertex3f (0.75, 0.25, 0.0);
glVertex3f (0.75, 0.75, 0.0);
glVertex3f (0.25, 0.75, 0.0);
glEnd() ;
glFlush() ;
UpdateTheWindowAndCheckForEvents () ;

OpenGL + Windows + GUIs

e Windows
— GLUT, GLFW, SDL/SDL2, TinyWindow, Qt, ...

e GUIs:
— (glui), imgui, Qt, ...

(Free)GLUT

* = @Graphics Library Utility Toolkit

— Adds functionality such as windowing operations to
OpenGL

* Event-based callback interface
— Display callback
— Resize callback
— |dle callback
— Keyboard callback
— Mouse movement callback
— Mouse button callback

Simple OpenGL + GLUT Program

#include <.>

DisplayCallback ()

{
<Clear window>
<Load Projection matrix>
<Load Modelview matrix>
<Draw primitives>
(<Swap buffers>)

}

IdleCallback ()
{

<Do some computations>
<Maybe force a window refresh>

}

KeyCallback ()
{

}

<Handle key presses>

KeyCallback ()
{

}

<Handle key presses>

MouseMovementCallback

{
}

<Handle mouse movement>

MouseButtonsCallback
{

}

<Handle mouse buttons>

Main ()

{
<Initialize GLUT and callbacks>
<Create a window>
<Initialize OpenGL state>

<Enter main event loop>

Simple OpenGL + GLUT Program

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);

}

void display(void)

{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glLoadldentity ();
gluLookAt (0,0, 5,0,0,0,0, 1, 0);
glScalef (1.0, 2.0, 1.0);
glutWireCube (1.0);
glFlush ();

void reshape (int w, int h)

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity ();

glFrustum (-1.0, 1.0, -1.0, 1.0, 1.5, 20.0);
glMatrixMode (GL_MODELVIEW);

int main(int argc, char** argv)

glutlnit(&argc, argv);

glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutlnitWindowsSize (500, 500);
glutlnitWindowPosition (100, 100);
glutCreateWindow (argv([0]);

init ();

glutDisplayFunc(display);
glutReshapeFunc(reshape);

glutMainLoop();

return 0;

Example Program with Lighting

#tinclude <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

void init(void)

{
GLfloat mat_specular[] ={1.0,1.0,1.0,1.0 };
GLfloat mat_shininess[] = {50.0 };
GLfloat light_position[] ={ 1.0, 1.0, 1.0, 0.0 };
glClearColor (0.0, 0.0, 0.0, 0.0);
giShadeModel (GL_SMOOTH);

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_shininess);
glLightfv(GL_LIGHTO, GL_POSITION, light_position);

glEnable(GL_LIGHTING);
glEnable(GL_LIGHTO);
glEnable(GL_DEPTH_TEST);

}
void display(void)
{

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glutSolidSphere (1.0, 20, 16);
glFlush ();

}

void reshape (int w, int h)

glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadldentity();
if (w <= h)
glOortho (-1.5, 1.5, -1.5*(GLfloat)h/(GLfloat)w,
1.5*(GLfloat)h/(GLfloat)w, -10.0, 10.0);
else
glOrtho (-1.5*(GLfloat)w/(GLfloat)h,
1.5*(GLfloat)w/(GLfloat)h, -1.5, 1.5, -10.0, 10.0);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();

int main(int argc, char** argv)

glutinit(&argc, argv);
glutinitDisplayMode (GLUT_SINGLE | GLUT_RGB |
GLUT _DEPTH);

glutlnitWindowsSize (500, 500);
glutlnitWindowPosition (100, 100);
glutCreateWindow (argv[0]);

init ();

glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMainLoop();

return O;

Simple OpenGL + GLUT Program@}X

GLUI

* Very lightweight (no longer being developed)

: GLUI HE B = Panel
Static text — e GLUI Sample jr"f-
Checkbox v Wireframe |
| |
Checkbox A
(disabled) Radius [125475 2] t—— Spirmer
Mame:
-
Object Type [Editable Text
Fadio bttons ——— . sphete
& Torus
Butt
it o

GLUI

' GLUI M[=] E3
atatic Text Listhox 1 | Option 3 j "~ Rollout (oper) —|
- Panel Listhox 2 | Dption 1 v Editte:-c:tl Hi there!

Radio Group

t« Radio Button 3

Edittext (inf) [123
Radio Button 1
? H:d:g Eaﬁgz ! @ @ Edittext (floaf)[23.124

@ Checkbox 1 Fotation 1 Rotation 2 Spinner (inthEEISE =
[T Checkbox 2 i_}> _‘ Spinner (ﬂnatlelEd.EE =
N
Button J N
Translation ¥% Translation 7 - _polout (closed) +p
Another Button ranslanon ranslation
T ¬her closed rallout + P
Yet Another Button , -
N—
hvd

Translation Translation %

GLUI

" Propetties —|
[~ Wireframe
Segments:la? =

Scale:[241545 2

C Lights + [
C Options + [

Bounding box: on Text: [Bounding box: on 7|

VPO > —]

Dhjects Sphere Torus Blue Light Ohjects ®% Ohjects ¥ Ohbjects ¥

Imgul

* Flexible, medium weight...

[erhe by Timo Suoranta January 2, 2022

Edit Create Modify Wind

¥ Scene
™ Camera A
- CameraB

rectional light 0
Directional light 1
Directional light 2
Spot 0
Spot 1
Spot2
Cobra MK3

cuboctahedron

cylinder

dodecahedron
ahe
hedron

sphere
tetrahedron
torus

¥ Node Properties
Spot0
P Projection
¥ Light
Spot
o
0876
10.789
2000.000
1000 0454 0.000
0.033 0055 0.077
¥ Transform
¥ Trai
0000
10.000
0500
¥ Rotation

¥ Transform

Local

Global

500

+ Translate Tool

nap Enable

Rotate Tool

Rotate Snap Enable

5

+ Hide Inactive

Material

¥ Type
Inner Spot

Spot.

Range
Intensity
Color

Ambient

¥ Translate Snaj

¥ Rotate Snap

¥ Scene for Camera Camera A
¥ Camera

¥ Operations

Brushes Camera A

Merge
Catmull-Clark
sqrt3
Triangulate
Reverse
Subdivide
Gyro
Dual
Ambo.
Truncate

¥ Brushes
Cobra MK3
dodecahedron
icosahedron
octahedron
tetrahedron
cuboctahedron
cul
sphere
torus
eylinder
cone
¥ Materlals ¥ Log
Default Material ¥ Tail
Hue 0 0 Trim |Clear
Hue 36
Hue 72
Hue 108
Hue 144
Hue
Hue 216
Hue 252

Hue 288 key left al
¥ Frame
Hue 324
hover mes r primitive = 0 o

hover poly

¥ _Scene for Camera Camera B

Camera B W (Camera

Viewport config
0.042 A1000
Default Style
Selection

Debug Visualizations

content = true

¥ Light Camera

¥ camera

mouse command: (none)
Rea

Inactive

Brush_toolmotion_preview
solinsert

Disabled

Lay

v
>
>
>
>

¥ Debug View

Fly Camera

amera B ¥ Camera

40.000
0.065 0.065 0.065
0035 0.035

at L

* Qtis across-platform heavy-weight
application and Ul framework with APlIs for
C++ programming and Ul creation

http://qt.nokia.com/products/

=

O

>
PU

2

Alternatives graphics pipeline?

e Traditional pipeline...ok

* Parallel pipeline
— Cluster of PCs?
— Cluster of PS3?

— What must be coordinated? What changes? What are
the bottlenecks?

— Sort-first vs. Sort-last pipeline
* PixelFlow
* Several hybrid designs

What can you do with a graphics
pipeline?

>
PU

&

* Uhm...graphics

What can you do with a graphics %
pipeline? v

 Uhm...graphics
* Paperweight?

What can you do with a graphics %
pipeline? v

Uhm...graphics

Paperweight?

.......

How about large number crunching tasks?
How about general (parallelizable) tasks?

CUDA and OpenCL

 NVIDIA defined “CUDA” (new)

— Compute Unified Device Architecture
— http://www.nvidia.com/object/cuda _home.htmli#

* Khrono's group defined “OpenCL” (newer)

— Open Standard for Parallel Programming of
Heterogeneous Systems

— http://www.khronos.org/opencl/

http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/

CUDA Example

* Rotate a 2D image by an angle

— On the CPU (PC)
e simple-tex.pdf

— On the GPU (graphics card)
* simple-tex-kernel.pdf

simple-tex.pdf
simple-tex.pdf
simple-tex.pdf
simple-tex.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf
simple-tex-kernel.pdf

OpenCL Example

* Compute a Fast Fourier Transform

— On the CPU (PC)
e cl-cpu.pdf

— On the GPU (graphics card)
e cl-gpu.pdf

cl-cpu.pdf
cl-cpu.pdf
cl-cpu.pdf
cl-cpu.pdf
cl-gpu.pdf
cl-gpu.pdf
cl-gpu.pdf
cl-gpu.pdf

GLSL

* OpenGL Shading Language

— Specification

— Quick reference

— Example:
* phong.pix

* phong.vrt

GLSL-spec-4.20.8.pdf
GLSL-spec-4.20.8.pdf
GLSL-quick-reference-card.pdf
GLSL-quick-reference-card.pdf
phong.pix
phong.pix
phong.vrt
phong.vrt

OpenCV

* Alibrary for computer-vision related software

* Derived from research work and high-
performance code from Intel

* http://opencv.willowgarage.com/wiki/
— e.g., find fundamental matrix

http://opencv.willowgarage.com/wiki/
http://opencv.willowgarage.com/wiki/
opencv.pdf

	Slide 1: CS535 Interactive Computer Graphics
	Slide 2: Who am I?
	Slide 3: Who am I?
	Slide 4: Who are you?
	Slide 5: Syllabus
	Slide 6: Preview: CS635
	Slide 7: Graphics, APIs, GUIs, CUDA, OpenCL, OpenCV, and more!
	Slide 8: History 101
	Slide 9: Applications
	Slide 10: Reprise: Graphics
	Slide 11: Whirlwind Computer @ MIT
	Slide 12: Ivan Sutherland (1963) - SKETCHPAD
	Slide 13: IKONAS and TAAC
	Slide 14: Display hardware
	Slide 15: Input hardware
	Slide 16: Input hardware
	Slide 17: Input hardware
	Slide 18: High Dynamic Range Imaging
	Slide 19: Input hardware
	Slide 20: Rendering
	Slide 21:
	Slide 22:
	Slide 23:
	Slide 24:
	Slide 25:
	Slide 26:
	Slide 27: Research Conferences…
	Slide 28: Computer Graphics Pipeline
	Slide 29: Computer Graphics Pipeline
	Slide 30: Computer Graphics Pipeline
	Slide 31: Computer Graphics Pipeline
	Slide 32: Computer Graphics Pipeline
	Slide 33: Computer Graphics Pipeline
	Slide 34: Computer Graphics Pipeline
	Slide 35: Computer Graphics Pipeline
	Slide 36: Computer Graphics Pipeline
	Slide 37: Computer Graphics Pipeline
	Slide 38: But…
	Slide 39: Deep Visual Computing
	Slide 40
	Slide 41: ENIAC
	Slide 42: Logic Theorist (1956)
	Slide 43: AI Timeline
	Slide 44: 1980s
	Slide 45: (Single Layer) Perceptron
	Slide 46: Perceptron
	Slide 47: Perceptron
	Slide 48: Perceptrons
	Slide 49: Try this…
	Slide 50: Deep Learning Timeline
	Slide 51: Reprise: Computer Vision
	Slide 52: 1982
	Slide 53: 1999
	Slide 54: 2010
	Slide 55: AlexNet
	Slide 56: Just a note: 1980s
	Slide 57: Just a note: 1989
	Slide 58: ILSVRC (2011-2017)
	Slide 59: ILSVRC (2010-2017)
	Slide 60: Deep Learning in Computer Graphics
	Slide 61: Representations
	Slide 62: Representations
	Slide 63: Texture Mapping
	Slide 64: Lighting and Shading
	Slide 65: Advanced Topics: Ray tracing
	Slide 66: Advanced Topics: Global Illumination
	Slide 67: Graphics APIs
	Slide 68: OpenGL
	Slide 69: OpenGL Online
	Slide 70: OpenGL
	Slide 71: Vulkan (or glNext)
	Slide 72: Simple OpenGL Program
	Slide 73: Simple Program
	Slide 74: OpenGL + Windows + GUIs
	Slide 75: (Free)GLUT
	Slide 76: Simple OpenGL + GLUT Program
	Slide 77: Simple OpenGL + GLUT Program
	Slide 78: Example Program with Lighting
	Slide 79: Simple OpenGL + GLUT Program
	Slide 80: GLUI
	Slide 81: GLUI
	Slide 82: GLUI
	Slide 83: imgui
	Slide 84: Qt
	Slide 85: Alternatives graphics pipeline?
	Slide 86: What can you do with a graphics pipeline?
	Slide 87: What can you do with a graphics pipeline?
	Slide 88: What can you do with a graphics pipeline?
	Slide 89: CUDA and OpenCL
	Slide 90: CUDA Example
	Slide 91: OpenCL Example
	Slide 92: GLSL
	Slide 93: OpenCV

