Toolbox

CS535
Daniel G. Aliaga

Image Tools

e Convolution
* Features

— Point, edge, line, corner, SIFT
— Hough Transform

(Image) Convolution

e Convolution

— Define a kernel
— “Convolve the image”

(Image) Convolution

1 2 1
Kernel: (1/16) |2 4 2
1 2 1
What if kernel is not normalized?
P11 " Pma1]
Image:| ¢ ™ :
Pin " Pmn.

What if image is multi-channel?
What if kernel falls off the side of the image?

Image) Convolution

(Image) Convolution

(Image) Convolution

(Image) Convolution

(Image) Convolution

e Recall

— Convolution in spatial domain = multiplication in frequency
domain

— Thus, low/high frequency filter is a simple multiplication in
frequency space

— Phase component also exists in frequency space so that
makes things more complicated...

(Image) Correlation

e Convolution: result of a composition of two signals

* Correlation: measure of coincidence of two signals
— Subtle difference...
— Mathematically, the difference is only two signs
— https://www.youtube.com/watch?v=09-HN-yzsFQ

* Correlation = measure of similarity?
— Maybe: Pearson correlation measure

E[(X — px)(Y — py)]

Ox0y

PXY =

— Does this work?

https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ

Edge Detection

 What would you do?

Edge Detection:
First Order Operator
* Roberts operator (1963) on image A:

G, = [(1) _01]*A, G, = [_01 (1)]*A

G=\/G§+G§

=15y
6 = tan (Gx)

(pro: less ops than other methods)

Edge Detection

Sobel operator (1968) on image A:

—1 0 1
Gy =|-2 0 2

-1 0 1
G = Gx + Gy

6 = tan_l()

*A, G, =

—1

0

1

—2
0
2

*A

Edge Detection

Prewitt operator (1970) on image A (different
spectral response as compared to Sobel):

—1 0 1
G,=|-1 0 1

-1 0 1.
G = \J Gy + G

6 = tan_l()

*A, G, =

—1
0

—1
0

*A

Edge Detection

 Canny Edges (1986)

— Multi-stage algorithm, uses Sobel/Prewitt (or other)
edge detector on a Gaussian filtered image and
then has a process of non-maximal suppression

Edge Detection:
Second-Order Operator

* Given an image:
— Gradient (vector)

Of o | Of ~
Viloy) =% +3,9

— Laplacian (scalar) (2"9 order)

0%f 0°%f
% =4
f&6y) 0x? T 0y?

Discrete Laplacian

s V2f(x,y) =
f(x_ 113’) !

-f(x+1,y) +

f(xry T 1) !
4f (x,y)

e Matrix form = 7?7

-f(x,y+1)—

Discrete Laplacian

s V2f(x,y) =
f(x_ 113’) !

-f(x+1,y) +

f(xry T 1) !
4f (x,y)

e Matrix form =

p—

-f(x,y+1)—

Edge Detection:
Second-Order Operator

* Laplacian: highlights regions
of rapid intensity change

0 -1 0
'LA:—l 4 —11*A
0 -1 0.

(positive Laplacian takes out
outward edges; negative Laplacian
is possible too)

Hough Transformation

* Maps “lines” to “points”

* E.g,
y=mx+c = (m,c)

X

XY space =) MC space

Edge Detection

 Hough Transform (1972)

— Associate with each line segment, a pair (,)

— Each line segment could be obtained by fitting to
results of edge detection

— Ex: find edges, find
strong clusters/points
in transform space,
then draw lines

Corner Detection

 What would you do?

10:31 AM

A: Original image B: Detected image

Corner Detection

Harris-Stephens Corner Detector
— Let the SSD between two patches be:

f£(Ax, Ay) = z (AG yi) — AQxy + Ax, vy, + Ay))?
(xk,yk)EW

— A(xy + Ax,y, + Ay) can be approximated by its Taylor Expansion:
= AQxy, yie) + Ax (i, Vi) Ax + Ay (X, yi) Ay (Ay, Ay are partial derivatives)

2
— Thus, f(Ax, Ay) = Z(Ax(xk,yk)Ax + Ay(xk,yk)Ay)
— which can be rewritten as

f(&x, Ay) ~ [Ax Ay]M [2;]

— Where M is the second- moment tensor (or structural tensor):

AL A
(XJ/)EW z(x,y)ew Y

AZ
Z(x J/)EW Z(x,y)ew Y

Corner Detection

* Harris-Stephens Corner Detector

— With a structural tensor, the eigenvectors summarize the distribution of
the gradient within the associated pixel window

— To define a strong corner, we want pixels were 1; and 4, of M are large,
and hence f is large

— A1 » A, or A, > A{ means an edge
— A4 = A, and large means corner

— One option, compute score:
R = det(M) — k - tr(M)?
k empirically determined, usually [0.04,0.06]
det(M) =14, tr(M)=1; + A,
R small = flat, R < 0 = edge, R >0 = corner

Corner Detection

 Shi-Tomasi Detector

— Similar to Harris but compute min(44, 4,) directly
(using characteristic equation)

(claimed to be better, perhaps)

Feature Detection

Corners

SIFT: Scale Invariant Feature Transform (1999)

SUR
Dee

-: Speeded Up Robust Features (2006)

0 Learning Based Feature Detection...

SIFT

* Properties:
— Invariant to spatial rotation, translation, scale

— Experimentally seen to be less sensitive to small
spatial affine or perspective changes

— Invariant to affine illumination changes

SIFT

 Computational Steps:

— Scale-space extrema detection

* local extrema detection using DoG (difference of
Gaussians)

* Compare difference of Gaussians center on a pixel to
lower and higher blurs

* Pick the scale/pixel with highest differences

SIFT

Computational Steps:
— Scale-space extrema detection

— Keypoint localization

e Similar to Harris Corner Detector, refine location of
corners; ignore relatively weak corners

SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization

— Compute orientation
e Use an orientation histogram with 36 bins (or so)

SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization
— Compute orientation

— Keypoint descriptor creation

* Use 16x16 pixel neighborhood to define 4x4 pixel
subblocks yields a 128 vector as a descriptor of
orientations and normalized to be illumination invariant

SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization
— Compute orientation
— Keypoint descriptor creation

Deep Learning Edge Detection

e HED
— https://arxiv.org/pdf/1504.06375.pdf

e DexiNET
— https://arxiv.org/pdf/1909.01955.pdf

https://arxiv.org/pdf/1504.06375.pdf
https://arxiv.org/pdf/1504.06375.pdf
https://arxiv.org/pdf/1909.01955.pdf
https://arxiv.org/pdf/1909.01955.pdf

Image Similarity Metrics

Use SIFT/SURF

— Compute features and see how similar

L2-norm

— Per-pixel L2-norm

Cross correlation
— Kinda Pearson correlation

SSIM
Deep Learning...

Image Similarity Metrics

e SSIM: Structural Similarity Index
SSIM(x,y) — [l(x'.Y)a) C(XJY)'B) S(.X',y)y]

where
[(x,y) measures luminance similarity,
c(x,y) measures contrast similarity, and
s(x,y) measures structure similarity (by covariance)

MSE=0, SSIM=1

(@) (b) {c) (d)

MSE=309, SSIM=0.987

MSE=313. SSIM=0.730 MSE=309, SSIM=0.580 MSE=308, SSIM=0.641 MSE=694, SSIM=0.505
(e} (f @) (h)

Blurring

e Blur:

— Box Blur

Blurring

e Gaussian Blur

Blurring

e Blur:
— Radial Blur

Blurring

* Optical Blur:
— PSF composed of Zernike Polynomials
¢ =
%3* ‘
e NG

Q‘ :; T PG

Blurring

* Basic notion:
— Blur is basically a PSF (Point Spread Function)

e Basic technique:

— Apply a spatial blurring using a kernel and
convolution

Note: Bilateral Filtering/Blurring

It is a non-linear, edge-preserving, and noise-reducing
smoothing filter

It replaces the intensity of each pixel with a weighted average
of intensity values from nearby pixels but not across edges

Bilateral Filter

e What is the formulation to account for value
difference and spatial difference?

\ rw

-~

Bilateral Filter

Given image |

Value difference is f (x;, x)
—E.g., 1 (x;) — I(x)l
Spatial difference is g(x;, x)

—E.g., |[x; — x||
Altogether:
1t (@) = = 3™ @) £ (1) — 1@))gs (e — o])

p x; L)

Deblurring

* One option is to perform a deconvolution:

— Non-blind deconvolution
e The PSF is known

Deblurring

Another option is to perform a deconvolution:

— Blind deconvolution

Several variations of blind deconvolution

Human Computation

e https://www.youtube.com/watch?v=tx082gDwGc
M

— Start at 6:45

e Relates to:

— Citizen science is sometimes described as "public
participation in scientific research

— Crowdsourcing is a less-specific, more public group, to
help with the work

— whereas outsourcing is commissioned from a specific,
named group, and includes a mix of bottom-up and
top-down processes

https://www.youtube.com/watch?v=tx082gDwGcM
https://www.youtube.com/watch?v=tx082gDwGcM
https://www.youtube.com/watch?v=tx082gDwGcM

Function Solving vs Optimization

* Finding “solutions”:
f(xXn)
fr(xn)
— Gradient descent: x,,.1 = x,, — a,,VF(x,,)
— If have no derivatives, use Powell’s (conjugate
direction) method:
* Searches in a variety of directions and picks best
— Linear system of equations: Ax = b
* What is A is not square?
e ..thenitis over/under determined

— Newton’s method: x,,,1 = x,, —

Optimization

* Linear least squares (LLS):

— LLS is the problem of approximately solving
an overdetermined system of linear equations, where
the best approximation is defined as that which
minimizes the sum of squared differences between
the data values and their corresponding modeled
values.

—x = (ATA)"*AM"y where y are dependent
observations and A are independent observations
(note: (AT A)~1AT is the Moore-Penrose inverse
which is needed because A is not square — else would
justbex = A1y

https://en.wikipedia.org/wiki/Overdetermined_system

Optimization

* Non-linear least squares (NLLS):
— Requires successive approximations to solve

2
S=) Wilvi—) Xijp;
e.g. Levenbu Z (y ; ‘?ﬁj) vMar) uses the
Jacobiananc __..._ __.

Fxop +6) ~ fp) + 6

PROBLEM: NLLS very sensitive to the presence of

outliers (i.e., x;, y; pairs that behavior weird, maybe
noise)

Optimization

 Random Sample Consensus (RANSAC)

— Assumes that inliers exist and focuses on
determining and using those

— Randomly select data points and if they fit
sufficiently well, use in the iterative optimization

 Rule of thumb:

* If lots of inliers, use NLLS
 If lots of outliers, use RANSAC

Optimization

* Convexity: typical assumption which means
that objective function is convex

* Fancier optimization methods:

— ADMM (Alternating Direction Method of
Multipliers): optimize by dividing into
subproblems

— and many more...

Randomization-based Algorithms

* Pro: does not need convexity, can handle
many dimensions even with lots of local

minima
* Con: no guarantees

— Exception: if PDF of parameters is known and is
Gaussian, then it is a maximum likelihood
estimation which can essentially be = NLLS

Randomization-based Algorithms

* Simulated Annealing
— Inject noise while during optimization and hope for
the best...

* Sequential Monte Carlo (or particle filters)

— A set of Monte Carlo algorithms, that given some
knowledge as to the expected parameter variance,
can chose number and range of perturbations, that
with some guarantees can field the optimum

— Fun fact: developed in 1940s by Ulam and von
Neumann who used the code name Monte Carlo since
the work was secret — think WW!II

Randomization-based Algorithms

 Markov Chain Monte Carlo (MCMC):

— An ensemble of chains is created and walked
along
e Start with a set of points

* Propose changes to the chains at different
temperatures

» Use acceptance probability to accept some chains (e.g.,
Metropolis-Hastings method)

* Keep best chains and repeat
* Terminate at max iterations or at little change

— Used often in high-complexity (not-necessarily
convex) problems in graphics/vision

Deep Learning

* Has lots of parameters to optimize (100M!)
— SGD: Stochastic Gradient Descent
— AdaGrad: Adaptive Gradient Descent
— ADAM: Adaptive Moment Estimation

192

58 2048 \/ Z04s \dense
\ 13

13 dense | |densel

192

128 Max

pooling 2048 2048

1000

	Slide 1: Toolbox
	Slide 2: Image Tools
	Slide 3: (Image) Convolution
	Slide 4: (Image) Convolution
	Slide 5: (Image) Convolution
	Slide 6: (Image) Convolution
	Slide 7: (Image) Convolution
	Slide 8: (Image) Convolution
	Slide 9: (Image) Convolution
	Slide 10: (Image) Correlation
	Slide 11: Edge Detection
	Slide 12: Edge Detection: First Order Operator
	Slide 13: Edge Detection
	Slide 14: Edge Detection
	Slide 15: Edge Detection
	Slide 16: Edge Detection: Second-Order Operator
	Slide 17: Discrete Laplacian
	Slide 18: Discrete Laplacian
	Slide 19: Edge Detection: Second-Order Operator
	Slide 20: Hough Transformation
	Slide 21: Edge Detection
	Slide 22: Corner Detection
	Slide 23: Corner Detection
	Slide 24: Corner Detection
	Slide 25: Corner Detection
	Slide 26: Feature Detection
	Slide 27: SIFT
	Slide 28: SIFT
	Slide 29: SIFT
	Slide 30: SIFT
	Slide 31: SIFT
	Slide 32: SIFT
	Slide 33: Deep Learning Edge Detection
	Slide 34: Image Similarity Metrics
	Slide 35: Image Similarity Metrics
	Slide 36: SSIM
	Slide 37: Blurring
	Slide 38: Blurring
	Slide 39: Blurring
	Slide 40: Blurring
	Slide 41: Blurring
	Slide 42: Note: Bilateral Filtering/Blurring
	Slide 43: Bilateral Filter
	Slide 44: Bilateral Filter
	Slide 45: Deblurring
	Slide 46: Deblurring
	Slide 47: Human Computation
	Slide 48: Function Solving vs Optimization
	Slide 49: Optimization
	Slide 50: Optimization
	Slide 51: Optimization
	Slide 52: Optimization
	Slide 53: Randomization-based Algorithms
	Slide 54: Randomization-based Algorithms
	Slide 55: Randomization-based Algorithms
	Slide 56: Deep Learning

