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Image Tools

e Convolution
* Features

— Point, edge, line, corner, SIFT
— Hough Transform



(Image) Convolution

e Convolution

— Define a kernel
— “Convolve the image”



(Image) Convolution

1 2 1
Kernel: (1/16) |2 4 2
1 2 1
What if kernel is not normalized?
P11 " Pma1]
Image:| ¢ ™ :
Pin " Pmn.

What if image is multi-channel?
What if kernel falls off the side of the image?



Image) Convolution




(Image) Convolution




(Image) Convolution




(Image) Convolution




(Image) Convolution

e Recall

— Convolution in spatial domain = multiplication in frequency
domain

— Thus, low/high frequency filter is a simple multiplication in
frequency space

— Phase component also exists in frequency space so that
makes things more complicated...




(Image) Correlation

e Convolution: result of a composition of two signals

* Correlation: measure of coincidence of two signals
— Subtle difference...
— Mathematically, the difference is only two signs
— https://www.youtube.com/watch?v=09-HN-yzsFQ

* Correlation = measure of similarity?
— Maybe: Pearson correlation measure

E[(X — px)(Y — py)]

Ox0y

PXY =

— Does this work?


https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
https://www.youtube.com/watch?v=O9-HN-yzsFQ
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Edge Detection

 What would you do?




Edge Detection:
First Order Operator
* Roberts operator (1963) on image A:

G, = [(1) _01]*A, G, = [_01 (1)]*A

G=\/G§+G§

=15y
6 = tan (Gx)

(pro: less ops than other methods)



Edge Detection

Sobel operator (1968) on image A:

—1 0 1
Gy =|-2 0 2

-1 0 1
G = Gx + Gy

6 = tan_l( )

*A, G, =

—1

0
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—2
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Edge Detection

Prewitt operator (1970) on image A (different
spectral response as compared to Sobel):

—1 0 1
G,=|-1 0 1

-1 0 1.
G = \J Gy + G

6 = tan_l( )

*A, G, =

—1
0

—1
0

*A



Edge Detection

 Canny Edges (1986)

— Multi-stage algorithm, uses Sobel/Prewitt (or other)
edge detector on a Gaussian filtered image and
then has a process of non-maximal suppression




Edge Detection:
Second-Order Operator

* Given an image:
— Gradient (vector)

Of o | Of ~
Viloy) =% +3,9

— Laplacian (scalar) (2"9 order)

0%f 0°%f
% =4
f&6y) 0x? T 0y?



Discrete Laplacian

s V2f(x,y) =
f(x_ 113’) !

-f(x+1,y) +

f(xry T 1) !
4f (x,y)

e Matrix form = 7?7

-f(x,y+1)—



Discrete Laplacian

s V2f(x,y) =
f(x_ 113’) !

-f(x+1,y) +

f(xry T 1) !
4f (x,y)

e Matrix form =

p—

-f(x,y+1)—




Edge Detection:
Second-Order Operator

* Laplacian: highlights regions
of rapid intensity change

0 -1 0
'LA:—l 4 —11*A
0 -1 0.

(positive Laplacian takes out
outward edges; negative Laplacian
is possible too)



Hough Transformation

* Maps “lines” to “points”

* E.g,
y=mx+c = (m,c)

X

XY space =) MC space



Edge Detection

 Hough Transform (1972)

— Associate with each line segment, a pair (, )

— Each line segment could be obtained by fitting to
results of edge detection

— Ex: find edges, find
strong clusters/points
in transform space,
then draw lines




Corner Detection

 What would you do?

10:31 AM

A: Original image B: Detected image



Corner Detection

Harris-Stephens Corner Detector
— Let the SSD between two patches be:

f£(Ax, Ay) = z (AG yi) — AQxy + Ax, vy, + Ay))?
(xk,yk)EW

— A(xy + Ax,y, + Ay) can be approximated by its Taylor Expansion:
= AQxy, yie) + Ax (i, Vi) Ax + Ay (X, yi ) Ay (Ay, Ay are partial derivatives)

2
— Thus, f(Ax, Ay) = Z(Ax(xk,yk)Ax + Ay(xk,yk)Ay)
— which can be rewritten as

f(&x, Ay) ~ [Ax Ay]M [2; ]

— Where M is the second- moment tensor (or structural tensor):

AL A
(XJ/)EW z(x,y)ew Y

AZ
Z(x J/)EW Z(x,y)ew Y



Corner Detection

* Harris-Stephens Corner Detector

— With a structural tensor, the eigenvectors summarize the distribution of
the gradient within the associated pixel window

— To define a strong corner, we want pixels were 1; and 4, of M are large,
and hence f is large

— A1 » A, or A, > A{ means an edge
— A4 = A, and large means corner

— One option, compute score:
R = det(M) — k - tr(M)?
k empirically determined, usually [0.04,0.06]
det(M) =14, tr(M)=1; + A,
R small = flat, R < 0 = edge, R >0 = corner




Corner Detection

 Shi-Tomasi Detector

— Similar to Harris but compute min(44, 4,) directly
(using characteristic equation)

(claimed to be better, perhaps)



Feature Detection

Corners

SIFT: Scale Invariant Feature Transform (1999)

SUR
Dee

-: Speeded Up Robust Features (2006)

0 Learning Based Feature Detection...



SIFT

* Properties:
— Invariant to spatial rotation, translation, scale

— Experimentally seen to be less sensitive to small
spatial affine or perspective changes

— Invariant to affine illumination changes



SIFT

 Computational Steps:

— Scale-space extrema detection

* local extrema detection using DoG (difference of
Gaussians)

* Compare difference of Gaussians center on a pixel to
lower and higher blurs

* Pick the scale/pixel with highest differences



SIFT

Computational Steps:
— Scale-space extrema detection

— Keypoint localization

e Similar to Harris Corner Detector, refine location of
corners; ignore relatively weak corners



SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization

— Compute orientation
e Use an orientation histogram with 36 bins (or so)



SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization
— Compute orientation

— Keypoint descriptor creation

* Use 16x16 pixel neighborhood to define 4x4 pixel
subblocks yields a 128 vector as a descriptor of
orientations and normalized to be illumination invariant



SIFT

 Computational Steps:
— Scale-space extrema detection
— Keypoint localization
— Compute orientation
— Keypoint descriptor creation




Deep Learning Edge Detection

e HED
— https://arxiv.org/pdf/1504.06375.pdf

e DexiNET
— https://arxiv.org/pdf/1909.01955.pdf



https://arxiv.org/pdf/1504.06375.pdf
https://arxiv.org/pdf/1504.06375.pdf
https://arxiv.org/pdf/1909.01955.pdf
https://arxiv.org/pdf/1909.01955.pdf

Image Similarity Metrics

Use SIFT/SURF

— Compute features and see how similar

L2-norm

— Per-pixel L2-norm

Cross correlation
— Kinda Pearson correlation

SSIM
Deep Learning...



Image Similarity Metrics

e SSIM: Structural Similarity Index
SSIM(x,y) — [l(x'.Y)a ) C(XJY)'B ) S(.X',y)y]

where
[(x,y) measures luminance similarity,
c(x,y) measures contrast similarity, and
s(x,y) measures structure similarity (by covariance)



MSE=0, SSIM=1

(@) (b) {c) (d)

MSE=309, SSIM=0.987

MSE=313. SSIM=0.730 MSE=309, SSIM=0.580 MSE=308, SSIM=0.641 MSE=694, SSIM=0.505
(e} (f @) (h)



Blurring

e Blur:

— Box Blur




Blurring

e Gaussian Blur




Blurring

e Blur:
— Radial Blur




Blurring

* Optical Blur:
— PSF composed of Zernike Polynomials
¢ =
%3* ‘
e NG

Q‘ :; T PG



Blurring

* Basic notion:
— Blur is basically a PSF (Point Spread Function)

e Basic technique:

— Apply a spatial blurring using a kernel and
convolution



Note: Bilateral Filtering/Blurring

It is a non-linear, edge-preserving, and noise-reducing
smoothing filter

It replaces the intensity of each pixel with a weighted average
of intensity values from nearby pixels but not across edges




Bilateral Filter

e What is the formulation to account for value
difference and spatial difference?

\ rw

-~




Bilateral Filter

Given image |

Value difference is f (x;, x)
—E.g., 1 (x;) — I(x)l
Spatial difference is g(x;, x)

—E.g., |[x; — x||
Altogether:
1t (@) = = 3™ @) £ (1) — 1@))gs (e — o])

p x; L)



Deblurring

* One option is to perform a deconvolution:

— Non-blind deconvolution
e The PSF is known




Deblurring

Another option is to perform a deconvolution:

— Blind deconvolution

Several variations of blind deconvolution



Human Computation

e https://www.youtube.com/watch?v=tx082gDwGc
M

— Start at 6:45

e Relates to:

— Citizen science is sometimes described as "public
participation in scientific research

— Crowdsourcing is a less-specific, more public group, to
help with the work

— whereas outsourcing is commissioned from a specific,
named group, and includes a mix of bottom-up and
top-down processes



https://www.youtube.com/watch?v=tx082gDwGcM
https://www.youtube.com/watch?v=tx082gDwGcM
https://www.youtube.com/watch?v=tx082gDwGcM

Function Solving vs Optimization

* Finding “solutions”:
f(xXn)
fr(xn)
— Gradient descent: x,,.1 = x,, — a,,VF(x,,)
— If have no derivatives, use Powell’s (conjugate
direction) method:
* Searches in a variety of directions and picks best
— Linear system of equations: Ax = b
* What is A is not square?
e ..thenitis over/under determined

— Newton’s method: x,,,1 = x,, —



Optimization

* Linear least squares (LLS):

— LLS is the problem of approximately solving
an overdetermined system of linear equations, where
the best approximation is defined as that which
minimizes the sum of squared differences between
the data values and their corresponding modeled
values.

—x = (ATA)"*AM"y where y are dependent
observations and A are independent observations
(note: (AT A)~1AT is the Moore-Penrose inverse
which is needed because A is not square — else would
justbex = A1y



https://en.wikipedia.org/wiki/Overdetermined_system

Optimization

* Non-linear least squares (NLLS):
— Requires successive approximations to solve

2
S=) Wilvi— ) Xijp;
e.g. Levenbu Z (y ; ‘?ﬁj) vMar) uses the
Jacobiananc __..._ __.

Fxop +6) ~ fp) + 6

PROBLEM: NLLS very sensitive to the presence of

outliers (i.e., x;, y; pairs that behavior weird, maybe
noise)



Optimization

 Random Sample Consensus (RANSAC)

— Assumes that inliers exist and focuses on
determining and using those

— Randomly select data points and if they fit
sufficiently well, use in the iterative optimization

 Rule of thumb:

* If lots of inliers, use NLLS
 If lots of outliers, use RANSAC



Optimization

* Convexity: typical assumption which means
that objective function is convex

* Fancier optimization methods:

— ADMM (Alternating Direction Method of
Multipliers): optimize by dividing into
subproblems

— and many more...



Randomization-based Algorithms

* Pro: does not need convexity, can handle
many dimensions even with lots of local

minima
* Con: no guarantees

— Exception: if PDF of parameters is known and is
Gaussian, then it is a maximum likelihood
estimation which can essentially be = NLLS



Randomization-based Algorithms

* Simulated Annealing
— Inject noise while during optimization and hope for
the best...

* Sequential Monte Carlo (or particle filters)

— A set of Monte Carlo algorithms, that given some
knowledge as to the expected parameter variance,
can chose number and range of perturbations, that
with some guarantees can field the optimum

— Fun fact: developed in 1940s by Ulam and von
Neumann who used the code name Monte Carlo since
the work was secret — think WW!II



Randomization-based Algorithms

 Markov Chain Monte Carlo (MCMC):

— An ensemble of chains is created and walked
along
e Start with a set of points

* Propose changes to the chains at different
temperatures

» Use acceptance probability to accept some chains (e.g.,
Metropolis-Hastings method)

* Keep best chains and repeat
* Terminate at max iterations or at little change

— Used often in high-complexity (not-necessarily
convex) problems in graphics/vision



Deep Learning

* Has lots of parameters to optimize (100M!)
— SGD: Stochastic Gradient Descent
— AdaGrad: Adaptive Gradient Descent
— ADAM: Adaptive Moment Estimation

192

58 2048 \/ Z04s \dense
\ 13

13 dense | |densel
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128 Max
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