

CS635

Hough and Radon Transform

Daniel G. Aliaga Spring 2025

Hough and Radon Transform

- Hough is more well known for shape detection
- Radon is more well known in medical tomography
- However, the two are very related and can help with 2D to 3D inference

Mappings

 Forward/Writing paradigm: a data point in the source space maps onto data points in the destination space

-> Hough Transform although in a discrete setting;
-> initialize function P(p) to zero. For each point x in the input image determine its contribution, weighted by K(x; p), to each of the points in P(p) and update P(p)"
-> if the input data is sparse, the Hough transform is compact in computation time

• Reverse/Reading paradigm: a data point in the destination space is obtained from the data in the source space

-> Radon Transform but in a continuous setting;

- -> for each p, collect all the values of I(x), apply the template weights K(x; p), and sum everything
- -> if we have only a viewpoints in parameter space, then the Radon paradigm is preferred

Hough Transform

- Patented in 1962 by Paul V.C. Hough
 - Compact 5 page patent
 - BTW, Hough was awarded another patent in 2006 (44 years later!)

Hough Transform

• A line in source image I becomes a (discrete) point in destination space

(bad for vertical lines)

Hough Transform

• A line in source image I becomes a (discrete) point in destination space

Radon Transform

- Johann Karl August Radon
- Born in Děčín (Austrian monarchy, now North Bohemia, CZ) in 1887
- Austrian mathematician living in Vienna
- Discovered the transform and its inversion in 1917 as pure theoretical result
- No practical applications during his life
- Died in 1956 in Vienna

gril Roman

Radon Transform

- Input space coordinates x, y
- Input function f(*x*, *y*)
- Output space coordinates α , s
- Output function $F(\alpha, s)$

[Images: J. Kukal, 2009]

RT and IRT

Radon Transform

$$F(\alpha, s) = \int_{-\infty}^{+\infty} f(t \sin \alpha + s \cos \alpha, -t \cos \alpha + s \sin \alpha) dt$$

• Inverse Radon Transform

$$f(x, y) = \int_{0}^{2\pi} F(\alpha, x \cos \alpha + y \sin \alpha) d\alpha$$

Full circle in RT

Full circle in RT

Shifted full circle in RT

Shifted full circle in RT

Empty circle in RT

Empty circle in RT

Shifted empty circle in RT

Shifted empty circle in RT

Thin stick in RT

Thin stick in RT

Shifted thin stick in RT

Shifted thin stick in RT

2D Gaussian in RT

2D Gaussian in RT

Shifted 2D Gaussian in RT

Shifted 2D Gaussian in RT

Six 2D Gaussians in RT

Full triangle in RT

Shifted full triangle in RT

Full square in RT

Shifted full square in RT

Empty square in RT

Shifted empty square in RT

$|x|^{2/3} + |y|^{2/3} \le 1$ in RT

$|x| + |y| \le 1 \text{ in RT}$

$|x|^{3/2} + |y|^{3/2} \le 1$ in RT

$|x|^2 + |y|^2 \le 1$ in RT

$|x|^{6} + |y|^{6} \le 1$ in RT

$|x|^n + |y|^n \le 1$ for $n \to \infty$ in RT

Smooth elliptic object in RT

Radon Transform Properties

- \bullet Image of any f+g is F+G
- Image of cf is cF for any real c
- \bullet Rotation of f causes translation of F in \langle
- Scaling of f in (x,y) causes scaling of F in s
- Image of a point (2D Dirac function) is sine wave line
- Image of *n* points is a set of *n* sine wave lines
- Image of a line is a point (2D Dirac function)
- Image of polygon contour is a point set

Radon Transform

- Often used to reconstruct a 3D volume from 2D slices (in medical applications)
- Why? How?
- Lets jump down to 2D from 1D slices...

Radon Transform Based Reconstruction

Radon Transform Based Reconstruction

Radon Transform Based Reconstruction

Reconstruction from 32 angles

Reconstruction from 64 angles

Reconstruction from 96 angles

Reconstruction from 128 angles

Reconstruction from 180 angles

Reconstruction from 256 angles

Reconstruction from 360 angles

Reconstruction from 512 angles

Medical Tomography

• Upgrade to 3D reconstruction from 2D images...

DL and Radon Transform

- <u>https://ieeexplore.ieee.org/document/8950464</u>
- <u>https://ieeexplore.ieee.org/document/9507793</u>
- chrome-

extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iopscience.io p.org/article/10.1088/1361-6420/aba415/pdf