
Structured-Light Based
Acquisition (Part 2)

CS635
Daniel G. Aliaga

Department of Computer Science
Purdue University

Acquiring Dynamic Scenes

• Scene: object (or camera) is moving and/or object is deforming

• Acquisition: capture as much information as possible in one to a
few frames
– By exploiting coherence
– By exploiting several “channels” of information (e.g., color, infrared, etc…)

Capturing 2½D Depth and Texture of Time-
Varying Scenes Using Structured Infrared Light

V-lines

How do you know which line is which? Ideas?

Line defined
at “middle” of
IR strip

H-lines

H-line sweeps up/down at
2Hz and enables an ordering
of (a subset of) the V-lines
and thus permits their
correspondence

Additional Steps

Grab color image

Foreground
segmentation, and
dense depth
interpolation

IR camera at 30Hz, color camera at 10Hz
(probably faster today…)

Put it all together…

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• Use color transitions to define features
• Define lines at the transitions from color A

to color B

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• What is a notable problem?
• Resolution. Why?

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• Only have three color channels (R,G,B) and can
only robustly differentiate “strong” color changes

• This reduces the number of colors to use, and
• Often results in ambiguity in the color coding

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• Challenges
– Given a color code, how to do “best”

correspond the stripes?

– With the above in mind, how do we design a
good color code?

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• Challenges
– Given a color code, how to do “best”

correspond the stripes?

– With the above in mind, how do we design a
good color code?

How to “best” correspond the stripes

• Solution
– Dynamic Programming

How to “best” correspond the stripes?

(rectified images)

How to “best” correspond the stripes?

How to “best” correspond the stripes?

=

H

H

i
j

i
j

i
j

,...,,
2

2

1

1φMultiple match hypotheses

),(ij eqs
Similarity score (of color) between

edge ei and transition qj is

∑
=

=
H

k
ij kk

eqsf
1

),()(φScore of the entire match sequence

Dynamic programming objective is:))(max(arg φf
φ

How to “best” correspond the stripes?

Dynamic programming objective is:))(max(arg φf
φ

However, the space all possible is very large: O(MN)φ

Solution?

Assume monotonicity (of the depth ordering):

Hiii ≤≤≤ ...21

Great! But this monotonicity does not hold in what situation?

Occlusions! Oh well…

But it holds for individual fragments, which we can combine

How to “best” correspond the stripes?

Dynamic programming objective is:))(max(arg φf
φ

=)(*
jif φ

Let optimal be called φ *φ

),()(1,1
*

ijij eqsf +−−φ

)(1,
*

−ijf φ
)(,1

*
ijf −φ

0 if j=0 or i=0

max

f found through a recursive search and some optimizations to
further reduce the search space (e.g., assume at most small
depth changes from one column to another)

Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming

• Challenges
– Given a color code, how to do “best”

correspond the stripes?

– With the above in mind, how do we design a
good color code?

How do we design a good color code?

• De Bruijn sequence B(k,n)
– (Dutch mathematician: Nicolaas Govert de Bruijn)
– is a cyclic sequence of a given alphabet A with size k for which every

possible subsequence of length n in A appears as a sequence of
consecutive characters exactly once

– thus it is optimally short as well

• B(k, n) has length kn

• Example: A={0,1}
– B(2,2) = 01100

All possible strings of length 2 (00, 01, 10, 11) appear exactly once as sub-strings in A

– B(2,3)= 00010111 (or 11101000)
All possible strings of length 3 (000, 001, 010, 011, 100, 101, 110 and 111) appear
exactly once as sub-strings in A

De Bruijn sequence B(k,n)
• Can also be constructed by a

Hamiltonian cycle of an n-
dimensional De Bruijn graph over
k symbols; e.g.,

 (Hamiltonian cycle means each
vertex is visited once)

Color Sequence

• Colors = {000,100,110,…,111} total of 8-1=7 because
000 is useless

• Color sequence is created by pj+1=pj XOR dj
– XOR’ing effectively “flips bits” using dj

– p0 is a chosen initial color (e.g., 100)

• Want 3 letters sequences dj to be unique
• In practice about 125 stripes is sufficient
• Thus, a B(5,3) is adequate

Examples

Real-Time 3D Model Acquisition
(slides and videos of this section by Syzmon Rusinkiewicz @ Princeton

Real-Time 3D Model Acquisition
Pipeline

3D Scanner

Alignment

MergingDone?

View Planning

Display

Human

Real-Time 3D Model Acquisition
Pipeline

3D Scanner

Alignment

MergingDone?

View Planning

Display

Challenge:
Real Time

Real-Time 3D Model Acquisition
Pipeline

3D Scanner

Alignment

MergingDone?

View Planning

Display

Part I:
Structured-Light
Triangulation

Camera

Recall Triangulation…

• Depth from ray-plane triangulation

Laser

(x,y)

Object

Recall Triangulation…

• Faster acquisition: project multiple stripes
• Correspondence problem: which stripe

is which?

Illumination history = (WB),(BW),(WB)

Code

Codes for Moving Scenes

• Assign time codes
to stripe boundaries

• Perform frame-to-frame
tracking of corresponding
boundaries
– Propagate illumination history

 [Hall-Holt & Rusinkiewicz, ICCV 2001]

Designing a Code

• Want many “features” to track:
lots of black/white edges at each frame

• Try to minimize ghosts – WW or BB
“boundaries” that can’t be seen directly

Designing a Code

00111110

1011 0110

0100 1001

0001 1100

0000 1101

1010 0111

10000101
1111 0010

[Hall-Holt & Rusinkiewicz, ICCV 2001]

Space-Time Boundary Code

Implementation

• Pipeline:

• DLP projector illuminates scene @ 60 Hz.
• Synchronized NTSC camera captures video
• Pipeline returns range images @ 60 Hz.

Project
Code

Capture
Images

Find
Boundaries

Match
Boundaries Decode Compute

Range

Real-Time 3D Model Acquisition
Pipeline

3D Scanner

Alignment

MergingDone?

View Planning

Display

Part II:
Fast ICP

Aligning 3D Data

• ICP (Iterative Closest Points): for each point on
one scan, minimize distance to closest point
on other scan…

Aligning 3D Data

• … and iterate to find alignment
– Iterated Closest Points (ICP) [Besl & McKay 92]

ICP in the Real-Time Pipeline

• Potential problem with ICP: local minima
– In this pipeline, scans close together
– Very likely to converge to correct (global)

minimum

• Basic ICP algorithm too slow (~ seconds)
– Point-to-plane minimization
– Projection-based matching
– With these tweaks, running time ~ milliseconds

[Rusinkiewicz & Levoy, 3DIM 2001]

Real-Time 3D Model Acquisition
Pipeline

3D Scanner

Alignment

MergingDone?

View Planning

Display

Part III:
Voxel Grid

Merging and Rendering

• Goal: visualize the model well enough
to be able to see holes

• Cannot display all the scanned data –
accumulates linearly with time

• Standard high-quality merging methods:
processing time ~ 1 minute per scan

Merging and Rendering

Merging and Rendering

Merging and Rendering

Merging and Rendering

+

Merging and Rendering

• Point rendering, using accumulated normals for lighting

Example: Photograph

18 cm.

Result

Postprocessing

• Real-time display
– Quality/speed tradeoff
– Goal: let user evaluate coverage, fill holes

• Offline postprocessing for high-quality models
– Global registration
– High-quality merging (e.g., using VRIP [Curless 96])

Postprocessed Model

Fast 3D Scanning with Automatic
Motion Compensation

• Higher resolution/quality than previous
method

• Uses phase-shifting and motion-compensation

Fast 3D Scanning with Automatic
Motion Compensation

Motion Compensation

• Since phase shifting assumes a static scene,
correlation-based stereo is used to
compensate for motion

• An additional modification is proposed to
handle discontinuities (which also plague
standard phase shifting)

Motion Compensation

projector camera

(moving) object

RGBD Cameras

• Capture RGB + D
• For example:

– TOF (Time of Flight Cameras)

TOF Cameras

• Older (initial?) versions:
– Swiss Ranger
– Zcam

• From 3DV, then bought by Microsoft

– Kinect
• Version 1: used infra-red structured light
• Version 2: used TOF (from Zcam?)

TOF Pulsed Concept

𝑑𝑑 = 1
2
𝑐𝑐Δ𝑡𝑡(𝑄𝑄2

𝑄𝑄1+𝑄𝑄2
) (per pixel)

TOF Continuous Wave Concept

𝜙𝜙 = arctan 𝑄𝑄3−𝑄𝑄4
𝑄𝑄1−𝑄𝑄2

 (per pixel)

𝑑𝑑 =
𝑐𝑐Δ𝑡𝑡
2𝜋𝜋

𝜙𝜙

Time Resolution

• Single light pulse for 100m -> 660ns
• Typically 1ms for a full round trip acquisition

SPAD

• Single Photon Avalanche Diodes
– Detect and count photons

• What is a photon?
– “Photons are massless particles that can move no

faster than the speed of light measured in
vacuum. The photon belongs to the class of boson
particles”

• https://www.dgp.toronto.edu/projects/ultra-
wideband/

https://www.dgp.toronto.edu/projects/ultra-wideband/
https://www.dgp.toronto.edu/projects/ultra-wideband/

Real-time 3D Reconstruction at Scale
using Voxel Hashing

Niessner et al. 2013 (TOG)

Real-time 3D Reconstruction at Scale
using Voxel Hashing

Real-time 3D Reconstruction at Scale
using Voxel Hashing

https://www.youtube.com/watch?v=XD_UnuWS
aoU

https://www.youtube.com/watch?v=XD_UnuWSaoU
https://www.youtube.com/watch?v=XD_UnuWSaoU

Real-time Non-Rigid Reconstruction
using an RGB-D Camera

[Zollhoefer et al. 2015]

Real-time Non-Rigid Reconstruction
using an RGB-D Camera

Real-time Non-Rigid Reconstruction
using an RGB-D Camera

https://www.youtube.com/watch?v=qNiPirnvM
Hc

https://www.youtube.com/watch?v=qNiPirnvMHc
https://www.youtube.com/watch?v=qNiPirnvMHc

	Structured-Light Based Acquisition (Part 2)
	Acquiring Dynamic Scenes
	Capturing 2½D Depth and Texture of Time-Varying Scenes Using Structured Infrared Light
	V-lines
	H-lines
	Additional Steps
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	How to “best” correspond the stripes
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	How do we design a good color code?
	De Bruijn sequence B(k,n)
	Color Sequence
	Examples
	Real-Time 3D Model Acquisition
	Real-Time 3D Model Acquisition Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Recall Triangulation…
	Recall Triangulation…
	Codes for Moving Scenes
	Designing a Code
	Designing a Code
	Space-Time Boundary Code
	Implementation
	Real-Time 3D Model Acquisition Pipeline
	Aligning 3D Data
	Aligning 3D Data
	ICP in the Real-Time Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Example: Photograph
	Result
	Postprocessing
	Postprocessed Model
	Fast 3D Scanning with Automatic Motion Compensation
	Fast 3D Scanning with Automatic Motion Compensation
	Motion Compensation
	Motion Compensation
	RGBD Cameras
	TOF Cameras
	TOF Pulsed Concept
	TOF Continuous Wave Concept
	Time Resolution
	SPAD
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time Non-Rigid Reconstruction using an RGB-D Camera
	Real-time Non-Rigid Reconstruction using an RGB-D Camera
	Real-time Non-Rigid Reconstruction using an RGB-D Camera

