Structured-Light Based
Acquisition (Part 2)

CS635
Daniel G. Aliaga
Department of Computer Science
Purdue University

Acquiring Dynamic Scenes @

* Scene: object (or camera) is moving and/or object is deforming

* Acquisition: capture as much information as possible in one to a
few frames
— By exploiting coherence
— By exploiting several “channels” of information (e.g., color, infrared, etc...)

Capturing 22D Depth and Texture of Time&
Varying Scenes Using Structured Infrared Light

Digital camcorder ~Reference
with IR-filter object for H-line

Sync .—~
electronic —~

VIS-light camera 2
rotating 1y

Halogen lamp with IR-filter

V-lines @

How do you know which line is which”? |deas?

Line defined
at “middle” of
IR strip

H-lines

Figure 6: Reconstructing the depth along V-lines. (a) IR
frame; (b) V-lines from intra-frame tracking only; (c)
V-lines with additional forward inter-frame tracking,
(d) final result after V-lines with both forward and
backward inter-frame tracking, and line counting.

H-line sweeps up/down at
2Hz and enables an ordering
of (a subset of) the V-lines
and thus permits their
correspondence

Foreground
segmentation, and
dense depth
interpolation

Put it all together...

IR camera at 30Hz, color camera at 10Hz
(probably faster today...)

Rapid Shape Acquisition Using Color Structuc

Light and Multi-pass Dynamic Programming 4

 Use color transitions to define features

e Define lines at the transitions from color A
to color B

Rapid Shape Acquisition Using Color Structuc
Light and Multi-pass Dynamic Programming

7

 What is a notable problem?
* Resolution. Why?

Rapid Shape Acquisition Using Color Structuc
Light and Multi-pass Dynamic Programming

7

* Only have three color channels (R,G,B) and can
only robustly differentiate “strong” color changes

* This reduces the number of colors to use, and
e Often results in ambiguity in the color coding

Rapid Shape Acquisition Using Color Structur€

Light and Multi-pass Dynamic Programming v

* Challenges

— Given a color code, how to do “best”
correspond the stripes?

— With the above in mind, how do we design a
good color code?

Rapid Shape Acquisition Using Color Structuce
Light and Multi-pass Dynamic Programming

* Challenges

— Given a color code, how to do “best”
correspond the stripes?

— With the above in mind, how do we design a
good color code?

How to “best” correspond the stripes

e Solution

— Dynamic Programming

&

How to “best” correspond the stripes?

Surface

(rectified images)

&

How to “best” correspond the stripes?

Surface
4 (01-01-07) M
/ (0.6 0.10.1)
7
/ (-0.8 -0.10.1)
q;/ 9 2
f,r/ i1/ ’” = (0107-0.) i+
0 P
/ \\ 21 010106 j : s
/’/ =] (01-09-0.1) :
f S| (020402)
O ‘“ﬁ (-0.10.60.1)
Camera
lllllll’l"il'lt {019 01 0‘]} o
R G B
neEo i
[5)00) o) (2] o) 2) (o))()())
B o/ \ 1

k-
»>

Projector Scanline

How to “best” correspond the stripes?@

(7 J
Multiple match hypotheses ¢ = 3 .1) ,2 geees .H
NVANS 'y

Similarity score (of color) between
edge e; and transition g; is S(qj . el.)

N -
—

H
Score of the entire match sequence f (@) = Z S(qjk €)
k=1

Dynamic programming objective is: arg max(f(¢))

@

h'd

How to “best” correspond the stripes?

Dynamic programming objective is: arg max(f(¢))

¢

However, the space all possible ¢ is very large: O(MN)

Solution?

Assume monotonicity (of the depth ordering):

[, <1, X1,
Great! But this monotonicity does not hold in what situation?
Occlusions! Oh well...

But it holds for individual fragments, which we can combine

How to “best” correspond the stripes?

Dynamic programming objective is: arg max(f(¢))

¢

Let optimal @ be called ¢*

"0 if =0 or i=0

@ i)+ s(g e
max (g1

R PAESY

f found through a recursive search and some optimizations to
further reduce the search space (e.g., assume at most small
depth changes from one column to another)

f(¢i)=<

Rapid Shape Acquisition Using Color Structuc
Light and Multi-pass Dynamic Programming

* Challenges

— Given a color code, how to do “best”
correspond the stripes?

— With the above in mind, how do we design a
good color code?

PUH““\

How do we design a good color code?

* De Bruijn sequence B(k,n)
— (Dutch mathematician: Nicolaas Govert de Bruijn)

— is a cyclic sequence of a given alphabet 4 with size & for which every
possible subsequence of length n in 4 appears as a sequence of
consecutive characters exactly once

— thus it is optimally short as well
* B(k, n) has length £”

* Example: A={0,1}
— B(2,2) =01100
All possible strings of length 2 (00, 01, 10, 11) appear exactly once as sub-strings in A
— B(2,3)=00010111 (or 11101000)

All possible strings of length 3 (000, 001, 010, 011, 100, 101, 110 and 111) appear
exactly once as sub-strings in A

De Bruijn sequence B(k,n) @

e (Can also be constructed by a (0;)

Hamiltonian cycle of an n-
dimensional De Bruijn graph over 100/ \ 00

1

k symbols; e.g.,

(Hamiltonian cycle means each 1

vertex is visited once)

\
/

111

-

1

110

/\ /

¢

Colors = {000,100,110,...,111} total of 8-1=7 because
000 is useless

Color sequence is created by p,.,;=p; XOR d,
— XOR'ing effectively “flips bits” using d;

— p,is a chosen initial color (e.g., 100)

Want 3 letters sequences d] to be unique

In practice about 125 stripes is sufficient

Thus, a B(3,3) is adequate

FICT VA M T TP

R
G
B

IR o

Real-Time 3D Model Acquisition@

(slides and videos of this section by Syzmon Rusinkiewicz @ Princeton

Real-Time 3D Model Acquisition a8, |
Pipeline ~

m{l

Real-Time 3D Model Acquisition _/
Pipeline

Challenge: — i
Reall‘l“lme —

Real-Time 3D Model Acquisition
Pipeline ~

Part I:
Structured-Light
Triangulation

Recall Triangulation...

Camera

* Depth from ray-plane triangulation

Recall Triangulation... @

* Faster acquisition: project multiple stripes

* Correspondence problem: which stripe
is which?

Codes for Moving Scenes

e Assign time codes -
to stripe boundaries

* Perform frame-to-frame -
tracking of corresponding

boundaries -

— Propagate illumination history \

lllumination history = (WB),(BW),(WB)

[Hall-Holt & Rusinkiewicz, ICCV 2001] \

 Want many “features” to track:
lots of black/white edges at each frame

* Try to minimize ghosts — WW or BB
“boundaries” that can’t be seen directly

0000 1101

— o
1010 0111

//:’Sg

1110 0011

1001

[Hall-Holt & Rusinkiewicz, ICCV 2001

Space-Time Boundary Code

R
I —
RN AR

Illg
RN I N RN
iﬁf.ﬁf.ﬁ.ll

I RN - SRR
R0 M 00

SRRV NI WA W
00
RN I RO RN
I R R
[N —
AR M AR R

I RN R -
RN I R
N S RO
I 0 -
RN I
I SR R RO
AN N I -
RN I 00
I R R
RN RO I —
I — ...,rf/.,rfa.r b

1.,?1.,?-! l RN AR
- R
RN I R
0
I O .
RN RO R R
SN - R

I AR . SR
RN I R -
1 1 1 |
A0 .
I R R
TN RN I
AR I 2R -
I
RO RN
I 0
TR RN ¥

RN RN I R
1 b

RN RN I SRR
R I
1P
I
SR R -
NN O . A
(I . —
U S RN

I NN R
RARAT I . SR
I R
RN RN O
RN I
R R
RN I S RN
1 i 1 |
| i Z_rﬁ_rﬁ_.

R I ﬁf/ﬂf/

R I I I
I aﬂrvﬂrd. I ﬁ_rﬁ_r/.
RS I
I 0T SRR
I R
RN R -
IO ROTIN WO R0

Implementation

* Pipeline:

Project Capture Find Match Decode Compute

Code Images Boundaries Boundaries Range

* DLP projector illuminates scene @ 60 Hz.
* Synchronized NTSC camera captures video
* Pipeline returns range images @ 60 Hz.

Real-Time 3D Model Acquisition /2,
Pipeline

I_/\T
Part Il:

Aligning 3D Data @

* |CP (Iterative Closest Points): for each point on
onhe scan, minimize distance to closest point
on other scan...

— 7\

Aligning 3D Data @

e ...and iterate to find alignment
— |terated Closest Points (ICP) [Besl & McKay 92]

20 Vol NV g

ICP in the Real-Time Pipeline

* Potential problem with ICP: local minima
— In this pipeline, scans close together
— Very likely to converge to correct (global)
minimum
e Basic ICP algorithm too slow (~ seconds)
— Point-to-plane minimization
— Projection-based matching
— With these tweaks, running time ~ milliseconds

[Rusinkiewicz & Levoy, 3DIM 2001]

Real-Time 3D Model Acquisition 2
Pipeline '

Part Ill:
Voxel Grid

=
e

Merging and Rendering

* Goal: visualize the model well enough
to be able to see holes

* Cannot display all the scanned data —
accumulates linearly with time

e Standard high-quality merging methods:
processing time ~ 1 minute per scan

Merging and Rendering

NS

Merging and Rendering @

‘-

Merging and Rendering @

.

Merging and Rendering @

‘Hﬁ)

Merging and Rendering @

* Point rendering, using accumulated normals for lighting

18 crr.

Postprocessing

* Real-time display
— Quality/speed tradeoff
— Goal: let user evaluate coverage, fill holes
* Offline postprocessing for high-quality models

— Global registration
— High-quality merging (e.g., using VRIP [Curless 96])

Fast 3D Scanning with Automatic %
Motion Compensation v

Figure 1. 3D reconstructions of a static (left) and a moving (right)
hand. Motion compensation (bottom right) removes the ripples
from the reconstructed surface (top right).

* Higher resolution/quality than previous
method

* Uses phase-shifting and motion-compensation

Figure 7. Reconstruction of a complex scene containing several
objects (phone, teapot, figure, fruit): a) texture image, b) recon-
structed phase, ¢) geometry, d) textured geometry, e)+f) close-ups

Figure 10. Reconstruction of moving hands in front of the torso.
On the right with motion compensation.

Figure 8. Reconstruction of a waving cloth. Motion correction

)) ioure 11. Online reconstruction of hand sestures.
correctly removes the ripples (right). Figure 11. Online reconstruction of hand gestures

Motion Compensation

* Since phase shifting assumes a static scene,
correlation-based stereo is used to
compensate for motion

* An additional modification is proposed to
handle discontinuities (which also plague
standard phase shifting)

Motion Compensation

- (moving) object

5

projector Ccamera

RGBD Cameras

* Capture RGB+ D

* For example:
— TOF (Time of Flight Cameras)

>\~ ambient

";) f" |ig|"'|t

== e
L g

— =
_——=
ol T S

TOF Cameras

e Older (initial?) versions:
— Swiss Ranger

— /cam
* From 3DV, then bought by Microsoft
— Kinect

e Version 1: used infra-red structured light
e Version 2: used TOF (from Zcam?)

TOF Pulsed Concept

Integration Time

Light Source

Reflection

C1

c2

d = - cAt((f) (per pixel)

L 4‘ Light Source
__| Reflection
i B o
m W -
7o] . e
I | ca
¢ = arctan (Q3 Q"’) (per pixel)
1—Q2
cAt
=—-—=¢

Time Resolution @

* Single light pulse for 100m -> 660ns
* Typically 1ms for a full round trip acquisition

SPAD

* Single Photon Avalanche Diodes

— Detect and count photons
 What is a photon?

— “Photons are massless particles that can move no
faster than the speed of light measured in
vacuum. The photon belongs to the class of boson
particles”

* https://www.dgp.toronto.edu/projects/ultra-
wideband/

https://www.dgp.toronto.edu/projects/ultra-wideband/
https://www.dgp.toronto.edu/projects/ultra-wideband/

Niessner et al. 2013 (TOG)

Real-time 3D Reconstruction at Scal
using Voxel Hashing v

Real-time 3D Reconstruction at Scalefi,
using Voxel Hashing

https://www.youtube.com/watch?v=XD UnuWS
aoU

https://www.youtube.com/watch?v=XD_UnuWSaoU
https://www.youtube.com/watch?v=XD_UnuWSaoU

Real-time Non-Rigid Reconstructio
using an RGB-D Camera v

LA
Tl ¢

[Zollhoefer et al. 2015]

Real-time Non-Rigid Reconstructiop
using an RGB-D Camera

Online Template Acquisition (~1 min)

Real-time Non-rigid Reconstruction (30Hz)

RGB-Infrared
depth sensor

Fused
3D model

L

RGBD
Estimation

Multi-resolution
template hierarchy

AN

RGB-D
Estimation

Rigid
Registration

Coarse-Level Medium-Level Fine-Level

Prolongation &
Mon-rigid Fitting Non-rigid Fitting Prolongation Integratmn

Figure 2: Main system pipeline. Left: the initial template acquisition is an online process. Multiple views are volumetrically fused, and a

multi-resolution mesh hierarchy is precomputed for the tracking phase. Right: in the tracking phase, each new frame is rigidly registered to
the template, and a sequence of calls to the GPU-based Gauss-Newton optimizer is issued from coarse to fine mesh resolution. At the finest
resolution, detail is integrated using a thin-plate spline regularizer on the finest mesh.

Real-time Non-Rigid ReconstructionZih
using an RGB-D Camera

https://www.youtube.com/watch?v=gNiPirnviM
Hc

https://www.youtube.com/watch?v=qNiPirnvMHc
https://www.youtube.com/watch?v=qNiPirnvMHc

	Structured-Light Based Acquisition (Part 2)
	Acquiring Dynamic Scenes
	Capturing 2½D Depth and Texture of Time-Varying Scenes Using Structured Infrared Light
	V-lines
	H-lines
	Additional Steps
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	How to “best” correspond the stripes
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	How to “best” correspond the stripes?
	Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming
	How do we design a good color code?
	De Bruijn sequence B(k,n)
	Color Sequence
	Examples
	Real-Time 3D Model Acquisition
	Real-Time 3D Model Acquisition Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Recall Triangulation…
	Recall Triangulation…
	Codes for Moving Scenes
	Designing a Code
	Designing a Code
	Space-Time Boundary Code
	Implementation
	Real-Time 3D Model Acquisition Pipeline
	Aligning 3D Data
	Aligning 3D Data
	ICP in the Real-Time Pipeline
	Real-Time 3D Model Acquisition Pipeline
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Merging and Rendering
	Example: Photograph
	Result
	Postprocessing
	Postprocessed Model
	Fast 3D Scanning with Automatic Motion Compensation
	Fast 3D Scanning with Automatic Motion Compensation
	Motion Compensation
	Motion Compensation
	RGBD Cameras
	TOF Cameras
	TOF Pulsed Concept
	TOF Continuous Wave Concept
	Time Resolution
	SPAD
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time 3D Reconstruction at Scale using Voxel Hashing
	Real-time Non-Rigid Reconstruction using an RGB-D Camera
	Real-time Non-Rigid Reconstruction using an RGB-D Camera
	Real-time Non-Rigid Reconstruction using an RGB-D Camera

