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Figure 1. Example results of object compositing with (a) copy-and-paste scheme, (b) traditional compositing pipeline and (c) ours (Object-
Stitch). Traditional compositing pipeline is done with best possible off-the-shelf models including foreground/background color harmo-
nization [19,47], poisson blending [34], and shadow synthesis [42]. ObjectStitch achieves more realistic results, and can address geometry
correction, harmonization, shadow generation, and view synthesis all-in-one while preserving similar appearance to the reference object.

Abstract

Object compositing based on 2D images is a challeng-
ing problem since it typically involves multiple processing
stages such as color harmonization, geometry correction
and shadow generation to generate realistic results. Fur-
thermore, annotating training data pairs for compositing
requires substantial manual effort from professionals, and
is hardly scalable. Thus, with the recent advances in gen-
erative models, in this work, we propose a self-supervised
framework for object compositing by leveraging the power
of conditional diffusion models. Our framework can hol-
listically address the object compositing task in a unified
model, transforming the viewpoint, geometry, color and
shadow of the generated object while requiring no manual
labeling. To preserve the input object’s characteristics, we
introduce a content adaptor that helps to maintain categori-
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cal semantics and object appearance. A data augmentation
method is further adopted to improve the fidelity of the gen-
erator. Our method outperforms relevant baselines in both
realism and faithfulness of the synthesized result images in
a user study on various real-world images.

1. Introduction

Image compositing is an essential task in image editing
that aims to insert an object from a given image into another
image in a realistic way. Conventionally, many sub-tasks
are involved in compositing an object to a new scene, in-
cluding color harmonization [6, 7, 19, 51], relighting [52],
and shadow generation [16, 29, 43] in order to naturally
blend the object into the new image. As shown in Tab. 1,
most previous methods [6, 7, 16, 19, 28, 43] focus on a sin-
gle sub-task required for image compositing. Consequently,
they must be appropriately combined to obtain a composite
image where the input object is re-synthesized to have the



Method Geometry Light Shadow View

ST-GAN [28] ✓ ✗ ✗ ✗

SSH [19] ✗ ✓ ✗ ✗

DCCF [51] ✗ ✓ ✗ ✗

SSN [43] ✗ ✗ ✓ ✗

SGRNet [16] ✗ ✗ ✓ ✗

GCC-GAN [5] ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓

Table 1. Prior works only focus on one or two aspects of object
compositing, and they cannot synthesize novel views. In contrast,
our model can address all perspectives as listed.

color, lighting and shadow that is consistent with the back-
ground scene. As shown in Fig. 1, results produced in this
way still look unnatural, partly due to the viewpoint of the
inserted object being different from the overall background.

Harmonizing the geometry and synthesizing novel views
have often been overlooked in 2D image compositing,
which require an accurate understanding of both the geome-
try of the object and the background scene from 2D images.
Previous works [15, 21, 22] handle 3D object compositing
with explicit background information such as lighting posi-
tions and depth. More recently, [28] utilize GANs to esti-
mate the homography of the object. However, this method
is limited to placing furniture in indoor scenes. In this pa-
per, we propose a generic image compositing method that
is able to harmonize the geometry of the input object along
with color, lighting and shadow with the background image
using a diffusion-based generative model.

In recent years, generative models such as GANs [4,
10, 17, 20] and diffusion models [1, 14, 30, 32, 33, 38, 39]
have shown great potential in synthesizing realistic images.
In particular, diffusion model-based frameworks are versa-
tile and outperform various prior methods in image edit-
ing [1, 23, 32] and other applications [11, 31, 35]. How-
ever, most image editing diffusion models focus on using
text inputs to manipulate images [1,3,9,23,33], which is in-
sufficient for image compositing as verbal representations
cannot fully capture the details or preserve the identity and
appearance of a given object image. There have been re-
cent works [23, 39] focusing on generating diverse contexts
while preserving the key features of the object; however,
these models are designed for a different task than object
compositing. Furthermore, [23] requires fine-tuning the
model for each input object and [39] also needs to be fine-
tuned on multiple images of the same object. Therefore they
are limited for general object compositing.

In this work, we leverage diffusion models to simulta-
neously handle multiple aspects of image compositing such
as color harmonization, relighting, geometry correction and
shadow generation. With image guidance rather than text
guidance, we aim to preserve the identity and appearance of

the original object in the generated composite image.
Specifically, our model synthesizes a composite image

given (i) a source object, (ii) a target background image,
and (iii) a bounding box specifying the location to insert
the object. The proposed framework consists of a con-
tent adaptor and a generator module: the content adaptor
is designed to extract a representation from the input object
containing both high-level semantics and low-level details
such as color and shape; the generator module preserves the
background scene while improving the generation quality
and versatility. Our framework is trained in a fully self-
supervised manner and no task-specific labeling is required
at any point during training. Moreover, various data aug-
mentation techniques are applied to further improve the fi-
delity and realism of the output. We evaluate our proposed
method on a real-world dataset closely simulating real use
cases for image compositing.

Our contributions are summarized as follows:

• We present the first diffusion model-based framework
for generative object compositing that can handle mul-
tiple aspects of compositing such as viewpoint, geom-
etry, lighting and shadow.

• We propose a content adaptor module which learns a
descriptive multi-modal embedding from images, en-
abling image guidance for diffusion models.

• Our framework is trained in a self-supervised man-
ner without any task-specific annotations, employing
data augmentation techniques to improve the fidelity
of generation.

• We collect a high-resolution real-world dataset for ob-
ject compositing with diverse images, containing man-
ually annotated object scales and locations.

2. Related Work
2.1. Image Compositing

Image compositing is a challenging task in reference-
guided image editing, where the object in a given fore-
ground image is to be inserted into a background image.
The generated composite image is expected to look realis-
tic, with the appearance of the original object being pre-
served. Prior works often focus on an individual aspect of
this problem, such as geometric correction [2, 28], image
harmonization [6, 7, 51], image matting [50] and shadow
generation [29].

Lin et al. [28] propose an iterative GAN-based frame-
work to correct geometric inconsistencies between object
and background images. In their model, STNs [18] are inte-
grated into the generator network to predict a series of warp
updates. Although their work can improve the realism of
the scene geometry in the composite image, it is limited to
inserting furniture into indoor scenes. Azadi et al. [2] focus
on binary composition, using a composition-decomposition



network to capture interactions between a pair of objects.
Image harmonization aims at minimizing the inconsis-

tency between the input object and the background image.
Traditional methods [24, 46] usually concentrate on obtain-
ing color statistics and then transfer this information be-
tween foreground and background. Recent works seek to
solve this problem via deep neural networks. [6,7] reformu-
late image harmonization as a domain adaptation problem,
while [19] converts it to a representation fusing problem and
utilizes self-supervised training.

Shadow synthesis is an effect that is often overlooked in
previous image compositing methods although it is essen-
tial for generating realistic composite images. SGRNet [16]
divides this task into a shadow mask generation stage and
a shadow filling stage. SSN [43], focusing on soft shad-
ows, predicts an ambient occlusion map as cue for shadow
generation.

There are also works simultaneously addressing multi-
ple sub-problems of image compositing. Chen et al. [5] de-
velop a system including multiple network modules to pro-
duce plausible images with geometric, color and boundary
consistency. However, the pose of the generated object is
constrained by the mask input and the model cannot gen-
eralize to non-rigid objects such as animals. Our proposed
model also handles the image composition problem in a uni-
fied manner, generating foreground objects which are har-
monious and geometrically consistent with the background
while synthesizing novel views and shadows.

2.2. Guided Image Synthesis

Recent years have witnessed great advances in diffusion
models. Diffusion models are a family of deep generative
models based on several predominant works [14, 44, 45],
defined with two Markov chains. In the forward process,
they gradually add noise to the data, and in the reverse pro-
cess, they learn to recover the data from noise. Follow-
ing the growth of research in this area, diffusion models
have shown their potential in a great number of applica-
tions, such as text-to-image generation [9, 33, 38], image
editing [1, 23, 32] and guided image synthesis [30].

Text-to-image synthesis has been a popular research
topic over the past few years. Stable Diffusion [38] made a
significant contribution to this task and it reduces the com-
putational cost by applying the diffusion model in the latent
space. Other works explore ways of more flexible and con-
trollable text-driven image editing. Avrahami et al. [1] de-
sign an algorithm in their Blended Diffusion framework to
fuse noised versions of the input with the local text-guided
diffusion latent, generating smooth transition. Similarly,
GLIDE [33] is also capable of handling text-guided inpaint-
ing after fine-tuning on this specific task. Some methods
give users more straightforward control on images. SDEdit
[32] allows stroke painting in images, blending user input

into the image by adding noise to the input and denoising
through a stochastic differential equation. SDG [30] injects
Semantic Diffusion Guidance at each iteration of the gener-
ation and can provide multi-modal guidance.

While the versatility and generation quality of diffusion
models have been repeatedly demonstrated, preserving ob-
ject appearance remains a very challenging problem in im-
age editing. Ruiz et al. [39] address this problem by opti-
mizing their model using a reconstruction loss and a class-
specific prior preservation loss. Though their approach can
preserve the details of the object, multiple images of the
same object are required to fine-tune their model on this
target object. Kawar et al. [23] handle this issue by in-
terpolating the initial text embedding and the optimized
embedding for reconstruction, but their method is mainly
designed for applying edits on objects, not for generating
the same object in different contexts. In this paper, we
propose the first generative object compositing framework
based on diffusion models, which generates the harmonized
and geometrically-corrected subject with a novel view and
shadow. Furthermore, the characteristics of the original ob-
ject is preserved in the synthesized composite image.

3. Proposed Method
We define the generative object compositing problem

as: Given an input triplet (Io, Ibg,M) that consists of
an object image Io ∈ RHs×Ws×3, a background image
Ibg ∈ RHt×Wt×3, and its associated binary mask M ∈
RHt×Wt×1 with the desired object location set to 0 and the
rest to 1, the goal is to composite the input object into the
masked area Ibg

⊗
M . M is considered as a soft constraint

of the location and scale of the composited object. The out-
put generated image should look realistic, while the appear-
ance of the object is preserved. Our problem setting is dif-
ferent from text-guided image generation and inpainting in
that the condition input is a reference object image rather
than a text prompt. Inspired by the success of text-guided
diffusion models [37,38,40], which inject text conditioning
into the diffusion architecture, we design our method for
generative compositing to leverage such pretrained models.

An overview of our framework is shown in Fig. 2. It
consists of an object image encoder extracting semantic fea-
tures from the object and a conditional diffusion generator.
To leverage the power of pretrained text-to-image diffusion
models, we introduce a content adaptor that can bridge the
gap between the object encoder and conditional generator
by transforming a sequence of visual tokens to a sequence
of text tokens to overcome the domain gap between image
and text. This design further helps to preserve the object
appearance. We propose a two-stage training process: in
the first stage, the content adaptor is trained on large im-
age/text pairs to maintain high-level semantics of the object;
in the second stage, it is trained in the context of diffusion



Figure 2. System pipeline. Our framework consists of a content adaptor and a generator (a pretrained text-to-image diffusion model). The
input image Io is fed into a ViT and the adaptor which produces a descriptive embedding. At the same time the background image Ibg is
taken as input by the diffusion model. At each iteration during the denoising stage, we apply the mask M on the generated image Iout, so
that the generator only denoises the masked area Iout

⊗
M .

generator to encode key identity features of the object by
encouraging the visual reconstruction of the object in the
original image. Lastly, the generator module is fine-tuned
on the embedding produced by the adaptor through cross
attention blocks. All stages our trained in a self-supervised
manner to avoid expensive annotation for obtaining object
compositing training data.

3.1. Generator

As depicted in Fig. 2, we leverage a pretrained text-to-
image diffusion model architecture and modify it for the
compositing task by (i) introducing a mask in the input, and
(ii) adjusting the U-Net input to contain the original back-
ground image outside the hole and noise inside the hole with
mask blending. In order to condition the model on the guid-
ance embedding E, an attention mechanism is applied as:

Softmax
(
(WQEx)(WKE)T√

d

)
W V E = AV (1)

where Ex is an intermediate representation of the denois-
ing autoencoder and WQ ∈ Rd×dx , WK ∈ Rd×de and
W V ∈ Rd×de are embedding matrices. The background
outside the mask area should be perfectly preserved for gen-
erative object compositing. Thus, we use the input mask
M for blending the background image Ibg with the gener-
ated image Iout. As a result, the generator only denoises
the masked area Iout

⊗
M . To use this model on our task,

a straightforward way (a baseline) would be to apply im-
age captioning on the object image and feeding the result-
ing caption directly to the diffusion model as the condition.
However, text embedding cannot capture fine grained visual
details. Therefore, in order to directly leverage the given
object image, we introduce the content adaptor to transform
the visual features from a pretrained visual encoder to text
features (tokens) to use as conditioning for the generator.

Figure 3. Structure of the Content Adaptor. In the first stage, it
is trained on a large dataset of image-caption pairs to learn multi-
modal sequential embeddings containing high-level semantics. In
the second stage, it is fine-tuned under the diffusion framework to
learn to encode identity features in adaptive embedding.

3.2. Content Adaptor

To prevent the loss of key identity information, we use an
image encoder instead of a text encoder to produce the em-
bedding from the input object image. However, the image
embedding cannot be effectively utilized by the diffusion
model for two reasons:

• The image embedding Ẽ and the text embedding E are
from different domains. Since the diffusion model was
trained on E, it cannot generate meaningful contents
from image embedding sequence;

• A mismatch in the dimensions of Ẽ ∈ Rk×257×1024

and E ∈ Rk×77×768, where k is batch-size.

Therefore, based on the above observations, we develop
a sequence-to-sequence translator architecture as shown in
Fig. 3. Given an image-caption pair as an input tuple (I, t),
we employ two pretrained ViT-L/14 encoders Ct, Ci from
CLIP [36] to produce text embedding E = Ct(t) and im-
age embedding Ẽ = Ci(I), respectively. The adaptor T



Figure 4. Illustration of our synthetic data generation and data aug-
mentation scheme. The top row shows the data generation process
including perspective warping, random rotation, and random color
shifting. The original image is used as both the input background
and ground truth, while the perturbed object is fed into the adaptor.
The bottom row shows crop and shift augmentations, which help
to improve the generation quality and preserve object details.

consists of three components: a 1D convolutional layer, at-
tention blocks [48] and an MLP, where the 1D convolution
modifies the length of the embedding from 257 to 77, the
MLP maps the embedding dimension from 1024 to 768, and
the attention blocks bridge the gap between text domain and
image domain. We design a two-stage optimization method
to train this module, which is explained in Sec. 3.3.2.

3.3. Self-supervised Framework

There is no publicly available image compositing train-
ing dataset with annotations which is sufficient for training a
diffusion model, and it is extremely challenging to manually
annotate such data. Therefore, we propose a self-supervised
training scheme and a synthetic data generation approach
that simulate real-world scenarios. We also introduce a data
augmentation method to enrich the training data as well as
improve the robustness of our model.

3.3.1 Data Generation and Augmentation

Training data generation. We collect our synthetic train-
ing data from Pixabay and use an object instance segmenta-
tion model [26] to predict panoptic segmentation and clas-
sification labels. We first filter the dataset by removing ob-
jects with very small or large sizes. Then, we apply spatial
and color perturbations to simulate many real use-case sce-
narios where the input image and background image have
different scene geometry and lighting conditions.

The top row of Fig. 4 illustrates this process. Inspired
by [8], we randomly perturb the four points of the object
bounding box to apply projective transformation, followed
by a random rotation within the range [−θ, θ] (θ = 20◦)
and color perturbation. The segmentation mask (perturbed
in the same way as the image) is used to extract the object.

This data synthesis pipeline is fully controllable and can

also be employed as data augmentation during training. An-
other key advantage is that it is free of manual labeling,
since the original image is used as the ground truth. We
use the bounding box as the mask as it not only fully covers
the object, but also extends to its neighboring area (provid-
ing room for shadow generation). We find that it is flexible
enough for the model to apply spatial transformations, syn-
thesize novel views and generate shadows and reflection.

Real-world evaluation data. Given that there is no exist-
ing dataset specifically for our task, we manually collect a
new dataset, closely simulating real-world use cases, as an
evaluation benchmark for object compositing. The dataset
consists of 503 pairs of common objects (including both
rigid and non-rigid objects such as vehicles and wildlife)
and diverse background images (covering both indoor and
outdoor scenes). It also contains challenging cases where
there is a large mismatch of lighting conditions or view-
points between foreground and background. The dataset
images are collected from Pixabay. The labeling procedure
closely simulate the real scenarios where the input object
is placed at a target location in the background image and
then scaled at the user’s will. The compositing region is
determined as a loose bounding box around the object.

Data augmentation. Inspired by [25], we introduce ran-
dom shift and crop augmentations during training, while
ensuring that the foreground object is always contained in
the crop window. This process is illustrated in the bottom
row of Fig. 4. Applying this augmentation method for both
training and inference results in a notable improvement in
the realism of the generated results. Quantitative results are
provided in Sec. 4.4.

3.3.2 Training

Content adaptor pretraining. We first pretrain the con-
tent adaptor to keep the semantics of the object by map-
ping the image embedding to text embedding. At this first
stage, we optimize the content adaptor on a sequence-to-
sequence translation task, which learns to project the im-
age embedding into a multi-modal space. During training,
Ct, Ci are frozen, and the translator is trained on 3,203,338
image-caption pairs from a filtered LAION dataset [41].

Given the input image embedding Ẽ, we use the text em-
bedding E as target, the objective function of this transla-
tion task is defined as:

Ldist = ∥T (Ẽ)− E∥1, (2)

where T (·) is the content adaptor.
However, the multi-modal embedding obtained solely

from this first stage optimization mostly carry high-level
semantics of the input image without much of texture de-
tails. Hence, we further refine Ẽ to obtain Ê, the adaptive
embedding, for better appearance preservation.



Content adaptor fine-tuning. We further optimize the con-
tent adaptor to produce an adaptive embedding which main-
tains instance-level properties of the object. After pretrain-
ing, we insert the content adaptor to the pretrained diffusion
framework by feeding the adaptive embedding as context to
the attention blocks. Then, the diffusion model is frozen
and the adaptor is trained using:

Ladapt = ET,ϵ∼N (0,1)[∥ϵ− ϵθ(It ◦M, t, T (Ẽ))∥22], (3)

where the content adaptor T (·) is optimized. It is trained
on our synthetic dataset filtered from Pixabay, containing
467,280 foreground and background image pairs for train-
ing and 25,960 pairs for validation.
Generator fine-tuning. After the aforementioned two-
stage training of the content adaptor is completed, we freeze
the content adaptor and train the generator module after ini-
tializing the text-to-image diffusion model with pretrained
weights. Crop and shift augmentations are applied in this
process. Based on the Latent Diffusion model [38], the ob-
jective loss in our generator module is defined by:

Lgen = EÊ,ϵ∼N (0,1)[∥ϵ− ϵθ(It ◦M, t, Ê)∥22], (4)

where I is the input image, It is a noisy version of I at
timestep t, and ϵθ denotes the denoising model which is op-
timized. In order to adapt the text-guided generation task to
the setting of image compositing, we apply the input mask
on the image at every time-step.

4. Experiments
4.1. Training Details

The first training stage of the content adaptor takes 15
epochs with a learning rate of 10−4 and batch size of 2048.
The image size processed by ViT is 224 × 224. To set up
the pipeline, we employed the pretrained image encoder and
text encoder from CLIP [36]. The second training stage of
the content adaptor takes 13 epochs with the learning rate of
2×10−5 and batch size of 512. We resize the images to 512
× 512 and adapt the pretrained Stable Diffusion model [38]
to our task. After the above process, the generator is trained
for 20 epochs with the learning rate of 4 × 10−5 and batch
size of 576. The input image size is the same as that in the
second training stage. All training stages are conducted on
8 A100 GPUs with Adam optimizer.

4.2. Quantitative Evaluation

To obtain quantitative results on a real dataset that sim-
ulates real-world use cases, where users drag and drop an
object to a background image, we conduct a user study
to compare to three baselines, i.e., copy-and-paste, pre-
trained stable diffusion model fine-tuned on BLIP [27],
and a joint stable diffusion model integrating both BLIP

Figure 5. User study results. We conduct side-by-side compar-
isons between our method and one of baseline methods to quantify
the generation quality in terms of realism and appearance preser-
vation. The results show that our method outperforms baselines.

and SDEdit [32]. Given the fact that there is no existing
diffusion-based method addressing the same problem, we
train the baselines on the same pretrained diffusion model
using the same self-supervised training scheme and dataset
as ours. To the best of our knowledge, after adapting to
our setting, they are the closest baselines to our task. In
the BLIP baseline, the content adaptor is replaced by BLIP,
a state-of-the-art captioning model. The text embedding
obtained from the BLIP caption is fed into the generator
module. For the SDEdit baseline, we keep the BLIP model
which will significantly improve the generation fidelity of a
pretrained diffusion model. We set the noise strength to 0.65
in SDEdit, striking a balance between realism and faithful-
ness. Details are provided in the supplementary material.

We perform a user study using our real testing dataset,
which consists of 503 object-background pairs. For each
example, we set up a side-by-side comparison between the
results from one of the baselines and our method, respec-
tively. The subject will be asked two questions: 1) which is
more realistic and 2) which generated object is more close
to the given object? We collected 1,494 votes from more
than 170 users. As shown in Fig. 5, our method outper-
forms the other baselines for both questions. The higher
preference rates demonstrate the effectiveness of the con-
tent adaptor and data augmentation method in improving
generation fidelity. It also shows that our content adaptor
is capable of maintaining details and attributes of the input
objects, while not being constrained by the input when har-
monizing objects to the background. In contrast, although
SDEdit is better at preserving appearance than BLIP, it is
constrained by the original pose, shape, and other attributes
of the object, making the generated object less coherent
with the background.

4.3. Qualitative Evaluation

In Fig. 6, we compare our method to various baselines.
In the first two rows of Fig. 6, we place the same object



Figure 6. Qualitative comparison on the real-world evaluation dataset. Our method can appropriately correct the viewpoint and geometry
while harmonizing the object with the new background, generating realistic composite results. Moreover, lighting and shadows are naturally
adjusted in the composite image. Compared to baselines using text guidance, our method can better preserve the object appearance.



Adaptor Optimization Augmentation BLIP [27] FID ↓ CLIP text score ↑ CLIP image score ↑

✓ ✓ ✓ ✗ 15.4331 29.8594 97.0625
✗ ✓ ✓ ✗ 18.8254 29.8281 96.0000
✓ ✗ ✓ ✗ 16.1381 29.7969 96.8125
✓ ✓ ✗ ✗ 18.3698 29.7813 96.1875
✗ ✗ ✓ ✓ 17.9000 29.7188 95.8125

Table 2. Ablation study. We evaluate the effectiveness of the components listed in the first four columns: 1) whether the content adaptor
is used; 2) whether the adaptor is optimized for appearance preservation; 3) whether crop augmentation is utilized in training; 4) if the
adaptor module is replaced by BLIP to predict text embedding from an image. We use FID to assess the generation fidelity and modified
CLIP score (explained in Sec. 4.4) to measure similarity of the guidance and the predicted image.

in two scenes with notable differences in the geometry. Re-
sults show that our model is capable of correcting geometric
inconsistencies while preserving the characteristics of the
object. The limitations of the baselines are also shown in
Fig. 6: BLIP often fails to preserve the appearance; SDEdit
preserves texture and pose better than the first baseline, but
often cannot make appropriate geometry transformations.

4.4. Ablation Study

In Tab. 2, we demonstrate the effectiveness of each key
component in our ObjectStitch framework by ablating each
of them. We use FID [13] and a modified CLIP [12, 36]
score, which measure the fidelity and semantic matching
performance between given and generated objects. Instead
of directly adopting the CLIP score, which semantically
matches the prompt and the image, we modify it to CLIP
text score and CLIP image score that are defined as follows:

Ctxt = E [s · f(Ipred) · g (B(Igt))] , (5)
Cimg = E [s · f(Ipred) · f(Igt)] , (6)

where B(·) is pretrained BLIP [27], and s is a logit scale.
For the ablation models, we first remove the content

adaptor to evaluate its effect. In order to keep the embed-
ding dimension fed to the generator, we removed the at-
tention blocks from the content adaptor. We also drop the
bias and activation function of the last linear layer, such
that in the adaptation process, the model will only learn a
non-adaptive embedding dictionary. Without the attention
layers, the model has difficulty bridging the domain gap be-
tween text and image, resulting in the degradation of gener-
ation fidelity as shown in the second row of Tab. 2.

The third row in Tab. 2 ablates the second training stage
of the content adaptor by simply skipping it. Without this
process, the model fails to learn descriptive embedding,
which encodes instance-level features of the guidance ob-
ject, leading to a drop in appearance preservation.

Data augmentation is another key element for better per-
formance, i.e., cropping and shift augmentation increases
the mask area, thus improving the generation quality in de-
tail. The fourth row in Tab. 2 illustrates that with the ab-

sence of data augmentation, there is a notable drop in real-
ism, and the generation carries less accurate details.

To further assess the importance of the content adap-
tor module, we replace it with a pretrained BLIP model,
which transfers the reference image to a text embedding.
As shown in the last row in Tab. 2, this results in the low-
est CLIP image score, indicating that high-level semantics
represented by text are not sufficient for maintaining object
identity, highlighting the importance of our content adaptor.

5. Conclusion and Future Work

We propose the first diffusion-based approach to tackle
object compositing. Traditional methods require many
steps including harmonization, geometry/view adjustment,
and shadow generation. By contrast, our method directly
achieves realistic compositing. We construct our model
from a text-to-image generation network and introduce a
novel content adaptor module. Furthermore, we present
a fully self-supervised framework to train our model with
synthetic data generation and augmentation. We show our
superior performance over baseline methods through user
studies on real-world examples.

Since we give the first attempt to handle this challenging
task, our method has several limitations. It lacks control
over the appearance preservation of the synthesized object.
Potential solutions are training the visual encoder on pairs
of images with the same object, or training it jointly with the
UNet. Another limitation is caused by masking the output
image, which prohibits our model from generating global
effects, i.e., the shadow can only be synthesized within the
mask. To address this issue, we may need to synthesize
complete background images and pair them with objects,
and train with a conditional generation framework. We also
observed artifacts around the object in the background. This
can be improved by training the model to also predict an
instance mask [49]. We will improve this in our future work.

Acknowledgements

This work is partially supported by NSF grants 1835739
and 2106717. We also thank Zhiquan Wang for discussion.



References
[1] Omri Avrahami, Dani Lischinski, and Ohad Fried. Blended

diffusion for text-driven editing of natural images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 18208–18218, 2022. 2, 3

[2] Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, and
Trevor Darrell. Compositional gan: Learning image-
conditional binary composition. International Journal of
Computer Vision, 128(10):2570–2585, 2020. 2

[3] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image
diffusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 2

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 2

[5] Bor-Chun Chen and Andrew Kae. Toward realistic image
compositing with adversarial learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8415–8424, 2019. 2, 3

[6] Wenyan Cong, Li Niu, Jianfu Zhang, Jing Liang, and Liqing
Zhang. Bargainnet: Background-guided domain translation
for image harmonization. In 2021 IEEE International Con-
ference on Multimedia and Expo (ICME), pages 1–6. IEEE,
2021. 1, 2, 3

[7] Wenyan Cong, Jianfu Zhang, Li Niu, Liu Liu, Zhixin Ling,
Weiyuan Li, and Liqing Zhang. Dovenet: Deep image
harmonization via domain verification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8394–8403, 2020. 1, 2, 3

[8] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Deep image homography estimation. arXiv preprint
arXiv:1606.03798, 2016. 5

[9] Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang,
Lanxin Li, Xuyi Chen, Yuxiang Lu, Jiaxiang Liu, Weichong
Yin, Shikun Feng, et al. Ernie-vilg 2.0: Improving text-to-
image diffusion model with knowledge-enhanced mixture-
of-denoising-experts. arXiv preprint arXiv:2210.15257,
2022. 2, 3

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. Commu-
nications of the ACM, 63(11):139–144, 2020. 2

[11] Liu He, Yijuan Lu, John Corring, Dinei Florencio, and Cha
Zhang. Diffusion-based document layout generation. arXiv
preprint arXiv:2303.10787, 2023. 2

[12] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras,
and Yejin Choi. Clipscore: A reference-free evaluation met-
ric for image captioning. arXiv preprint arXiv:2104.08718,
2021. 8

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 8

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2, 3

[15] Yannick Hold-Geoffroy, Kalyan Sunkavalli, Sunil Hadap,
Emiliano Gambaretto, and Jean-François Lalonde. Deep
outdoor illumination estimation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7312–7321, 2017. 2

[16] Yan Hong, Li Niu, and Jianfu Zhang. Shadow generation
for composite image in real-world scenes. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 36,
pages 914–922, 2022. 1, 2, 3

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A
Efros. Image-to-image translation with conditional adver-
sarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–1134,
2017. 2

[18] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. Advances in neural informa-
tion processing systems, 28, 2015. 2

[19] Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe
Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi,
Sarah Kong, and Zhangyang Wang. Ssh: A self-supervised
framework for image harmonization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4832–4841, 2021. 1, 2, 3

[20] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 2

[21] Kevin Karsch, Varsha Hedau, David Forsyth, and Derek
Hoiem. Rendering synthetic objects into legacy photographs.
ACM Transactions on Graphics (TOG), 30(6):1–12, 2011. 2

[22] Kevin Karsch, Kalyan Sunkavalli, Sunil Hadap, Nathan Carr,
Hailin Jin, Rafael Fonte, Michael Sittig, and David Forsyth.
Automatic scene inference for 3d object compositing. ACM
Transactions on Graphics (TOG), 33(3):1–15, 2014. 2

[23] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen
Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic:
Text-based real image editing with diffusion models. arXiv
preprint arXiv:2210.09276, 2022. 2, 3

[24] Jean-Francois Lalonde and Alexei A Efros. Using color com-
patibility for assessing image realism. In 2007 IEEE 11th
International Conference on Computer Vision, pages 1–8.
IEEE, 2007. 3

[25] Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song.
Vision transformer for small-size datasets. arXiv preprint
arXiv:2112.13492, 2021. 5

[26] Youngwan Lee and Jongyoul Park. Centermask: Real-
time anchor-free instance segmentation. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 13906–13915, 2020. 5

[27] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. arXiv
preprint arXiv:2201.12086, 2022. 6, 8

[28] Chen-Hsuan Lin, Ersin Yumer, Oliver Wang, Eli Shechtman,
and Simon Lucey. St-gan: Spatial transformer generative



adversarial networks for image compositing. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9455–9464, 2018. 1, 2

[29] Daquan Liu, Chengjiang Long, Hongpan Zhang, Hanning
Yu, Xinzhi Dong, and Chunxia Xiao. Arshadowgan: Shadow
generative adversarial network for augmented reality in sin-
gle light scenes. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
8139–8148, 2020. 1, 2

[30] Xihui Liu, Dong Huk Park, Samaneh Azadi, Gong Zhang,
Arman Chopikyan, Yuxiao Hu, Humphrey Shi, Anna
Rohrbach, and Trevor Darrell. More control for free! image
synthesis with semantic diffusion guidance. arXiv preprint
arXiv:2112.05744, 2021. 2, 3

[31] Shitong Luo and Wei Hu. Diffusion probabilistic models for
3d point cloud generation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 2837–2845, 2021. 2

[32] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-
Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis and
editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021. 2, 3, 6

[33] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 2, 3
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