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Figure 1. Top: Comparison with three prior works, i.e., Paint-by-Example [58], ObjectStitch [53], and TF-ICON [35]. Our method IM-
PRINT outperforms others in terms of identity preservation and color/geometry harmonization. Bottom: Given a coarse mask, IMPRINT
can change the pose of the object to follow the shape of the mask.

Abstract

Generative object compositing emerges as a promising
new avenue for compositional image editing. However, the
requirement of object identity preservation poses a signif-

icant challenge, limiting practical usage of most existing
methods. In response, this paper introduces IMPRINT, a
novel diffusion-based generative model trained with a two-
stage learning framework that decouples learning of iden-
tity preservation from that of compositing. The first stage is



targeted for context-agnostic, identity-preserving pretrain-
ing of the object encoder, enabling the encoder to learn an
embedding that is both view-invariant and conducive to en-
hanced detail preservation. The subsequent stage lever-
ages this representation to learn seamless harmonization
of the object composited to the background. In addition,
IMPRINT incorporates a shape-guidance mechanism of-
fering user-directed control over the compositing process.
Extensive experiments demonstrate that IMPRINT signifi-
cantly outperforms existing methods and various baselines
on identity preservation and composition quality. Project
page: https://song630.github.io/IMPRINT-Project-Page/

1. Introduction
Image compositing, the art of merging a reference object
with a background to create a cohesive and realistic im-
age, has witnessed transformative advancements with the
advent of diffusion models (DM) [17, 40, 43, 46]. These
models have catalyzed the emergence of generative object
compositing, a novel task that hinges on two critical aspects:
identity (ID) preservation and background harmonization.
The goal is to ensure that the object in the composite im-
age retains its identity while adapting its color and geom-
etry for seamless integration with the background. Exist-
ing methods [35, 53, 58] demonstrate impressive capabili-
ties in generative compositing; however, they often fail in
ID-preservation or context consistency.

Recent works [53, 58], typically struggle with balanc-
ing ID preservation and background harmony. While these
methods have made strides in spatial adjustments, they pre-
dominantly capture categorical rather than detailed infor-
mation. TF-ICON [35] and two concurrent works [6, 60]
have advanced subject fidelity but at the expense of limiting
pose and view variations for background integration, thus
curtailing their applicability in real-world settings.

To address the trade-off between identity preservation
with pose adjustment for background alignment, we intro-
duce IMPRINT, a novel two-stage compositing framework
that excels in ID preservation. Diverging from previous
works, IMPRINT decouples the compositing process into
ID preservation and background alignment stages. The first
stage involves a novel context-agnostic ID-preserving train-
ing, wherein an image encoder is trained to learn view-
invariant features, crucial for detail engraving. The sec-
ond stage focuses on harmonizing the object with the back-
ground, utilizing the robust ID-preserving representation
from the first stage. This bifurcation allows for unprece-
dented fidelity in object detail while facilitating adaptable
color and geometry harmonization.

Our contributions can be summarized as follows:
• We introduce a novel context-agnostic ID-preserving

training, demonstrating superior appearance preservation

through comprehensive experiments.
• Our two-stage framework distinctively separates the tasks

of ID preservation and background alignment, enabling
realistic compositing effects.

• We incorporate mask control into our model, enhancing
shape guidance and generation flexibility.

• We conduct an extensive study on appearance retention,
offering insights into various factors influencing identity
preservation, e.g., image encoders, multi-view datasets,
training strategies, etc.

2. Related Work
2.1. Image Compositing

Image compositing, a pivotal task in image editing applica-
tions, aims to insert a foreground object into a background
image seamlessly, striving for realism and high fidelity.

Traditionally, image harmonization [11, 21, 24, 57] and
image blending [38, 54, 61, 62] focus on color and lighting
consistency between the object and the background. How-
ever, these approaches fall short in addressing geometric
adjustments. The emergence of GANs [13, 22, 65] has
inspired numerous studies [3, 5, 30] that employ GANs
to address issues of geometric inconsistency, yet are of-
ten domain-specific (e.g., indoor scene) and limited in han-
dling complex transformations (e.g., out-of-plane rotation).
Shadow synthesis methods [18, 47–49] mainly focus on re-
alistic lighting effects.

With the advent of diffusion models [1, 2, 12, 17, 41–
43, 51, 52], recent research has shifted towards unified
frameworks encompassing all aspects of image composit-
ing. Methods like [53, 58] employ CLIP-based adapters for
leveraging pretrained models, but they struggle in preserv-
ing the object’s identity due to their focus on high-level se-
mantic representations. While TF-ICON [35] improves fi-
delity by incorporating noise modeling and composite self-
attention injection, it faces limitations in object pose adapt-
ability.

Recent research is increasingly centering on appearance
preservation in generative object compositing. Two concur-
rent works, AnyDoor [6] and ControlCom [60], have made
strides in this area. AnyDoor combines DINOv2 [37] and
high-frequency filter, and ControlCom introduces a local
enhancement module. However, these models have lim-
ited spatial correction capabilities. In contrast, our model
designs a novel approach that substantially enhances vi-
sual consistency of the object while maintaining geome-
try and color harmonization, representing a significant ad-
vancement in the field.

2.2. Subject-Driven Image Generation

Subject-driven image generation, the task of creating a
subject within a novel context, often involves customizing
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subject attributes based on text prompts. Based on dif-
fusion models, [9, 23] have led to techniques like using
placeholder words for object representation, enabling high-
fidelity customizations. Subsequent works [25, 34, 44, 45]
extend this by fine-tuning pretrained text-to-image models
for new concept learning. These advancements have facil-
itated diverse applications, such as subject swapping [10],
open-world generation [28], instruction-based editing [19]
using Large Language Models [31, 32, 64] and non-rigid
image editing [4]. However, these methods usually require
inference-time fine-tuning or multiple subject images, lim-
iting their practicality. In contrast, our framework offers
a fast-forward and background-preserving approach that is
versatile for a broad spectrum of real-world data.

3. Approach
The proposed object compositing framework, IMPRINT,
is summarized in Fig. 2. Formally, given input images of
object Iobj ∈ RH×W×3, background Ibg ∈ RH×W×3,
and mask M ∈ RH×W that indicates the location and
scale for object compositing to the background, we aim to
learn a compositing model C to achieve a composite image
Iout = C(Iobj , Ibg,M) ∈ RH×W×3. The ideal outcome
is an Iout that appears visually coherent and natural, i.e., C
should ensure that the composited object retains the identity
of Iobj , aligns to the geometry of Ibg , and blends seamlessly
into the background.

In this section, we expand upon our approach. To lever-
age pretrained text-to-image diffusion models, we design a
novel image encoder to replace the text-encoding branch,
thus retaining much richer information from the reference
object (see Sec. 3.1). Distinct from existing works, our
pipeline bifurcates the task into two specialized sub-tasks
to concurrently ensure object fidelity and allow for geomet-
ric variations. The first stage defines a context-agnostic ID-
preserving task, where the image encoder is trained to learn
a unified representation of generic objects (Sec. 3.1). The
second stage mainly trains the generator for an image com-
positing task (Sec. 3.2). In addition, we delve into various
aspects contributing to the detail retention capability of our
framework: Sec. 3.3 discusses the process of paired data
collection, and Sec. 3.4 details our training strategy.

3.1. Context-Agnostic ID-preserving Stage

Distinct from prior methods, we introduce a supervised ob-
ject view reconstruction task as the first stage of the training
that help identity preservation. The motivation behind this
task is based on the following key observations:
• Existing efforts [6, 35, 60], which successfully improve

detail preservation, are limited in geometry harmoniza-
tion and tend to demonstrate copy-and-paste behavior.

• There is a fundamental trade-off between identity preser-
vation and image compositing: the object is expected to

be altered, in terms of color, lighting, and geometry, to
better align with the background, while simultaneously,
the object’s original pose, color tone, and illumination ef-
fects are memorized by the model and define its appear-
ance.

• Multi-view data plays a significant role in keeping iden-
tity, yet acquiring such datasets is costly. Most large-scale
multi-view datasets ([7, 59]) lack sufficient contextual in-
formation for compositing; they either lack a background
entirely or have a background area that is too limited.
Based on the above insights, we give a formal defini-

tion of the task (as depicted in Fig. 2a): given an object of
two views Iv1, Iv2 and their associated masks Mv1,Mv2,
the background is removed and the segmented object pairs
are denoted as Îv1 = Iv1

⊗
Mv1, Îv2 = Iv2

⊗
Mv2. We

build a view synthesis model S = {Eu,Gθ} conditioned on
Îv1 to generate the target view Îv2, where Eu is the image
encoder and Gθ is the UNet backbone parameterized by θ.

Image Encoder Eu consists of a pretrained DINOv2
[37] and a content adapter following [53]. DINOv2 is a
SOTA ViT model outperforming its predecessors [20, 39,
50] which extracts highly expressive visual features for
reference-based generation. The content adapter allows the
utilization of pretrained T2I models by bridging the domain
gap between image and text embedding spaces.

Image Decoder Gθ takes the conditional denoising au-
toencoder Gθ from Stable Diffusion [43] and fine-tune its
decoder during training. The objective function is defined
as (based on [43]):

Lid = EÎv1,Îv2,t,ϵ

[∥∥∥ϵ− Gθ

(
Îv2, t, Eu

(
Îv1

))∥∥∥2
2

]
, (1)

where Lid is the ID-preserving loss and ϵ ∼ N (0, 1). The
image encoder Eu and the decoder blocks of Gθ are op-
timized in this process. Intuitively, the encoder trained
for this task will always extract representations that are
view-invariant while keeping identity-related details that are
shared across different views. The qualitative results of this
stage are shown in Sec. 4.7. Unlike previous view-synthesis
works [33], our context-agnostic ID-preserving stage does
not require any 3D information (e.g., camera parameters)
as conditions, and we mainly focus on ID-preservation in-
stead of geometrical consistency to background (which will
be handled in the second stage). Therefore, only the image
encoder will be taken to the next stage.

3.2. Compositing Stage

Fig. 2b illustrates the pipeline of the second stage which is
trained for the compositing task, comprising the finetuned
image encoder Eu and a generator Gϕ (parameterized by ϕ)
conditioned on the ID-preserving representations.

A simple approach is to ignore the view synthesis stage,
training the encoder and generator jointly in a single-stage



(a) Stage of context-agnostic ID-preserving: we design a novel image en-
coder (with pre-trained DINOv2 as backbone) trained on multi-view object
pairs to learn view-invariant ID-preserving representation.

(b) Stage of object compositing: taking the learned image encoder from the
first stage and freezing its backbone, the whole model is trained for composit-
ing the object to the masked region (see Fig. 9 for the blending process).

Figure 2. The two-stage training pipeline of the proposed IMPRINT.

framework. Unfortunately, we found quality degradation
from two aspects in this naive endeavor (see Sec. 4.7):
• When DINOv2 is trained in this stage, the model exhibits

more frequent copy-paste-like behavior that composites
the object in a very similar view as its original view.

• When object-centric multi-view datasets, e.g.,
MVImgNet [59], are enabled in the training set, the
model tends to produce more artifacts and exhibit poorer
blending results due to the absence of background
information in such datasets.

To overcome the issues above, we freeze the backbone of
the image encoder (i.e., DINOv2) in the second stage and
carefully collect a training set (see Sec. 3.3 for details).

In this stage, we also leverage a pretrained T2I model as
the backbone of the generator, which uses the background
Ibg , a coarse mask M as inputs, and is conditioned on a
ID-preserving object tokens Êu = Eu(Iobj), where Iobj in-
dicates a masked object image. The generation is guided by
injecting object tokens into the cross attention layers of Gϕ.
The coarse mask also allows the synthesis of shadows, and
interactions of the object and the nearby objects.

As Êu already encompasses structured view-invariant
details of the object, color and geometric adjustments are
no longer limited by identity preservation efforts. This free-
dom allows for greater variation in compositing.

We define the objective function of this stage as:

Lcomp = EIobj ,I
∗
bg

,M,t,ϵ

[
M

∥∥∥ϵ− Gϕ

(
I∗bg, t, Êu

)∥∥∥2

2

]
(2)

where Lcomp is the compositing loss, I∗bg is the target image.
Gϕ and the adapter are optimized.

The Background-blending Process To ensure that the
transition area between the object and the background is
smooth, we adopt a background-blending strategy. Refer
to the Appendix for details.

Figure 3. Illustration of the data augmentation pipeline.

Shape-guided Controllable Compositing could enable
more practical guidance of the pose and view of the gen-
erated object by drawing a rough mask. However, most
prior works [6, 35, 53] have no such control. In our pro-
posed model, following [55], masks are defined at four lev-
els of precision (see the Appendix), where the most coarse
mask is a bounding box. Incorporating multiple levels of
masks replicates real-world scenarios, where users often
prefer more precise masks. Results are shown in Fig. 1.any

3.3. Paired Data Generation

The dataset quality is another key to better identity preser-
vation and pose variation. As proved by [6], multi-view
datasets can significantly improve the generation fidelity. In
practice, we use a combination of image datasets (Pixabay),
panoptic video segmentation datasets (YoutubeVOS [56],
VIPSeg [36] and PPR10K [29]) and object-centric datasets
(MVImgNet [59] and Objaverse [7]). They are incorporated
in different training stages and associated with various pro-
cessing procedures in our self-supervised training.

The image datasets we collected have high resolution
and rich background information, so they are only utilized
in the second stage for better compositing. Inspired by



[53, 58], to simulate the lighting and geometry changes
in object compositing, we design an augmentation pipeline
Îobj = P(T (Iobj)), where T are the affine transformations,
and P is color and light perturbation, supported by the look-
up table in [21]. The perturbed object Îobj is used as the in-
put and the natural image I∗bg containing the original object
is used as the target.

Video segmentation datasets usually suffer from low res-
olution and motion blur, which harm the generation quality.
Nevertheless, they provide object pairs which naturally dif-
fer in lighting, geometry, view and even provide non-rigid
pose variations. As a result, they are also used in the second
stage. Illustrated by Fig. 3, each training pair comes from
one video with instance-level segmentation labels. Two dis-
tinct frames are randomly sampled; one serves as the target
image, while the object is extracted from the other frame as
the augmented input.

Object-centric datasets offer a significantly larger scale
than video segmentation datasets and provide more intri-
cate object details. However, they are only used in the first
stage due to the limited background information available in
these datasets. During training, each pair Iv1, Iv2 are also
randomly sampled from the same video with |v1−v2| ≤ n,
where n is the temporal sampling window. Empirically, we
observe a loss in the generation quality as n increases, and
n = 7 strikes a balance between fidelity and quality.

3.4. Training Strategies

All previous (or concurrent) training-free methods [6, 53,
58, 60] use a frozen transformer-based image encoder, ei-
ther using DINOv2 or CLIP. However, freezing the encoder
will limit their capability in extracting the object details: i)
CLIP only encodes the semantic features of the object; ii)
DINOv2 is trained on a dataset that is constructed based on
image retrieval, allowing objects that are not entirely iden-
tical to be treated as the same instance. To overcome this
challenge, we fine-tune the encoder specifically for com-
positing, ensuring the extraction of instance-level features.

Due to the extensive scale of the aforementioned en-
coders, they are prone to overfitting. The implementation of
appropriate training strategies can effectively stabilize the
training process and improve identity preservation. To this
end, we design a novel training scheme: Sequential Collab-
orative Training.

More specifically, the object compositing stage is further
divided into two phases: 1) in the first n epochs, we assign
the adapter a larger learning rate of 4×10−5, and assign the
UNet a smaller learning rate of 4 × 10−6; 2) in the next n
epochs, we swap the learning rate of these two components
(and the training finishes). This strategy focuses on training
one component at each phase, with the other component si-
multaneously trained at a lower rate to adapt to the changed
domain; the generator is trained in the end to ensure the

Datasets Pixabay VIPSeg YoutubeVOS PPR10K
Training 116,820 51,743 42,868 6,020
Validation 6,490 5,487 3,690 102

Table 1. Statistics of the datasets used in the second stage.

synthesis quality.

4. Experiments

4.1. Training Details

The first stage is trained on 1,409,545 pairs and validated
on 11,175 pairs from MVImgNet, which takes 5 epochs to
finish. The learning rate associated with DINOv2 (ViT-g/14
with registers) is 4 × 10−6, and the batch size is 256. The
image embedding is dropped at a rate of 0.05.

The second stage is fine-tuned on a mixture of image
datasets and video datasets, including a training set of
217,451 pairs and a validation set of 15,769 pairs (listed
in Tab. 1), where we apply [26] to obtain the segmentation
masks as labels. It is trained for 15 epochs with a batch size
of 256. The embedding is dropped at a rate of 0.1.

In both stages, the images are resized to 512×512. Dur-
ing inference, the DDIM sampler generates the composite
image after 50 denoising steps using a CFG [16] scale of
3.0. The model is trained on 8 NVIDIA A100 GPUs. The
model is built on Stable Diffusion v1.4 ([43]).

4.2. Evaluation Benchmark

Datasets are collected from Pixabay and DreamBooth [44]
for testing. More specifically, Pixabay testing set has 1,000
high-resolution images and has no overlap with the train-
ing set. A foreground object is selected from each image
and perturbed through the data augmentation pipeline as in
Sec. 3.3. The DreamBooth testing set consists of 25 unique
objects with various views. Combined with 59 background
images that are manually chosen, 113 pairs are generated
for this test set. This dataset is challenging since most ob-
jects are of complex texture or structure. We also conduct a
user study on this dataset.

Metrics measuring fidelity and realism are adopted to
evaluate the effectiveness of different models in terms of
identity preservation and background harmonization. We
utilize CLIP-score [14], DINO-score, and DreamSim [8] as
the measurements of generation fidelity. To obtain more
precise comparison results, we always crop the output im-
ages so that the generated object is located in the center of
the image. FID [15] is employed to measure the realism
which indicates the compositing quality.

4.3. Quantitative Evaluation

To demonstrate the effectiveness of our model, we test our
model and three baseline methods (Paint-by-Example [58],



Method FID ↓ CLIP-score↑ DINO-score↑ DreamSim ↓
PbE - 71.5000 31.3765 0.4954

OS - 73.6250 32.9739 0.4297

T-I - 75.1250 39.2863 0.3661

Ours - 77.0625 43.4463 0.2898

PbE 23.2663 93.6250 85.2260 0.1907

OS 22.4934 94.9375 90.3853 0.1422

T-I 63.9730 88.3125 73.2155 0.3219

Ours 16.4487 96.1875 94.705 0.0831

Table 2. Quantitative comparison with prior works. IMPRINT
and the baselines are tested on two datasets for realism and ID-
preserving measurement: DreamBooth (top) and the Pixabay test
set (bottom). The results on both datasets demonstrate the advance
of our model in both ID-preserving and realistic harmonization
with the background.

Ours OS Ours PbE Ours T-I
Realism 50.68 49.32 62.84 37.16 53.38 46.62
Fidelity 80.41 19.59 86.49 13.51 73.65 26.35

Table 3. User study results. We design two questions to mea-
sure the realism and fidelity of the generation. In both questions,
the user is presented side-by-side comparisons of our generated
image and another image randomly chosen from one of the base-
lines. The results in the table show user preference percentage.
Our model not only achieves better realism, but also outperforms
the baselines in ID-preserving by a large margin.

ObjectStitch [53], and TF-ICON [35]) on the two aforemen-
tioned test sets. The same inputs (a mask and a reference
object) are used in all models. For fair comparison, we fur-
ther fine-tune Paint-by-Example (PbE) on our second-stage
training set.

When testing on TF-ICON, we employ the parameter set
in ”same domain” mode, as suggested by the official imple-
mentation. It also requires a text prompt as an additional
input, so we apply BLIP2 [27], a state-of-the-art vision-
language model to generate captions for the images. More-
over, the captions for the DreamBooth test set are manually
refined to improve the performance. As shown in Tab. 2,
IMPRINT achieves the best performance in both realism
and fidelity. See the Appendix for quantitative comparisons
with AnyDoor.

4.4. Qualitative Evaluation

Qualitative comparisons are shown in Fig. 4, comparing our
model against prior methods. Although PbE and Object-
Stitch show natural compositing effects, they often fail to
capture the finer details of the objects. When the object
has complex texture or structure, their generated object be-
comes less recognizable and even suffers from artifacts. In
contrast, TF-ICON shows better consistency between the
input and output, especially in keeping surface textures and
captions. However, the background adaptation ability is

also strictly restricted. As can be observed, TF-ICON has
less variation in color and geometry changes, which results
in a degradation in compositing effects. We further compare
to AnyDoor with both qualitative and quantitative assess-
ments (see the Appendix). The results show that IMPRINT
achieves better ID-preservation and shows the flexibility in
adapting to the background in terms of color and geometry.

We also show the synthesis results of the first stage in
Fig. 5. Using the ID-preserving representation, our model is
able to generate high-fidelity objects with large view varia-
tions. This process requires no extra condition such as cam-
era parameters.

4.5. User Study

We also conduct a user study using Amazon Mechanical
Turk, comparing our method against the three baselines on
the challenging DreamBooth dataset. The user study con-
sists of side-by-side comparisons of our result and a ran-
domly chosen result from the baselines. We design two
questions: 1) Which image is more realistic? (the input
objects are hidden from the users) 2) Which image is more
similar to the reference object? Each question has 111 com-
parisons. We received more than 880 votes from over 130
users. The results are shown in Tab. 3. In terms of realism,
our model outperforms PbE and TF-ICON, while compara-
ble with ObjectStitch. We also evaluate the visual similar-
ity. The preference rate in the table demonstrates that our
method has a significant advantage over the baselines.

4.6. Additional Visual Results of Shape-control

Shape-guided generation introduces a lot more flexibility
for image editing, as the user now gains control over the
shape, view and pose of the objects, and the transformation
can be either rigid or non-rigid. Fig. 6 illustrates the diverse
usage of image editing given a mask as guidance.

4.7. Ablation Study

When pursuing better identity preservation and background
harmonization in the field of generative object compositing,
we gain valuable experience in a wide range of techniques
that contribute to this task. In Tab. 4, we provide a complete
analysis and insights of all the factors, as well as demon-
strate the effectiveness of our proposed method. The same
metrics are utilized as explained in Sec. 4.2.
Training strategies. In setting 2, we also optimize CLIP
encoder. The results of settings 1 and 2 show that the op-
timized CLIP can capture better object identity. However,
this improvement comes at the cost of variation. Setting 5
and 6 also demonstrate improved identity and less variation.
For this reason, the encoder backbone is frozen in our sec-
ond stage.
Dataset. Dataset is another component that significantly
affects the performance. After adding the video datasets,



Figure 4. Qualitative comparison on the DreamBooth test set. Paint-by-Example and ObjectStitch lose most object details and only
maintain categorical information. TF-ICON tends to copy the pose of the input subject. The comparison highlights the advantage of
IMPRINT in keeping identity and making geometric changes.

No. (PRE) Encoder Adapter (PRE) Tune encoder (PRE) Tune UNet Tune encoder Video data MVImgNet FID ↓ DINO score ↑
1 ✗ CLIP ✓ - - ✗ ✗ ✗ 22.493 90.385
2 ✗ CLIP ✓ - - ✓ ✗ ✗ 19.538 92.695
3 ✗ CLIP ✓ - - ✓ ✓ ✗ 17.847 94.216
4 ✗ DINOv2 ✗ - - ✗ ✓ ✗ 20.748 92.512
5 ✗ DINOv2 ✓ - - ✗ ✓ ✗ 20.131 92.846
6 ✗ DINOv2 ✓ - - ✓ ✓ ✗ 17.477 94.164
7 ✗ DINOv2 ✓ - - ✓ ✓ ✓ 17.947 94.023
8 ✓ DINOv2 ✓ ✓ ✗ ✗ ✓ ✗ 17.847 93.908
9 ✓ DINOv2 ✓ ✗ ✓ ✗ ✓ ✗ 19.286 93.273

10 ✓ DINOv2 ✓ ✓ ✓ ✗ ✓ ✗ 16.449 94.705

Table 4. Ablation study on our methodologies and other common components. PRE means whether the setting has our pretraining stage;
MVImgNet and video data mean whether they are used in the compositing stage.

the model develops a stronger capability in engraving the
details (setting 2 and 3). Nevertheless, if there are too many
training pairs from object-centric datasets (MVImgNet), the
generation quality will degrade (setting 6 and 7) since the
background information is insufficient.
Architecture. Inspired by [53], we also use an adapter to
connect the encoder with the generator. Setting 4 and 5 in-
dicates that using the adapter will boost the overall perfor-
mance in both realism and fidelity. We also observed the
model converges faster when using the adapter.

Pretraining. In our framework, the first stage pretraining is
a key component in improving ID-preservation and harmo-
nization effects. To demonstrate the effectiveness, we test
the original DINOv2 and our finetuned DINOv2 on a Obja-
verse test set. In this evaluation, the encoders generate em-
beddings for diverse views of 20 objects from various cate-
gories. The embeddings are then clustered and visualized in
t-SNE figures (Fig. 8). This figure shows that the finetuned
encoder produces better clustering results, demonstrating
that our ID-preserving representation effectively encodes



Figure 5. Top: Results of context-agnostic ID-preserving pretrain-
ing (after the first stage); IMPRINT generates view pose changes
while memorizing the details of the object. Bottom: Diverse poses
of the object after the second stage.

Figure 6. More shape-control results. IMPRINT introduces more
user control by using a user-provided mask as input. Inspired by
[55], we define four types of mask (including bounding box). In
addition to compositing, our model also performs edits on the in-
put object. Depending on the shape of the coarse mask, IMPRINT
can operate different types of editing, including changing the view
of an object, and applying non-rigid transformation on the object.

Figure 7. Ablation study on our two-stage training scheme. In (b)
MVImgNet is added to the training set and simply trains the whole
network in one stage. Compared with two-stage training, single-
stage has a notable degradation in quality and loses more details.

the key details of the objects. We further ablate on the first
stage training using setting 7 (where there is only the com-

(a) Clustering results using the
original DINOv2.

(b) Clustering results using our
finetuned DINOv2.

Figure 8. Ablation study on our first stage training. We use DI-
NOv2 (before and after the first stage) to predict embeddings of
different views of 20 Objaverse objects. The embeddings are then
clustered using the same algorithm and visualized using t-SNE fig-
ures. The improved clustering results demonstrate that the embed-
dings produced by finetuned DINOv2 have higher quality.

positing stage) and 10 (two-stage). Without the first stage,
there is a notable drop in the compositing quality (Fig. 7).
Additionally, we assess the effect of freezing some compo-
nents (i.e., UNet or DINOv2) during the pretraining. Com-
pared with Setting 10, setting 8 and 9 exhibit a drop in both
harmonization and ID-preservation, validating the effective-
ness of our training scheme.

5. Conclusion, Limitation and Future Work
In this paper, we propose IMPRINT, a novel two-stage
framework that achieves state-of-the-art performance in
identity preservation and background harmonization for
generative object compositing. We design a new pretraining
scheme where the model learns a view-invariant identity-
preserving representation that efficiently captures the de-
tails of the object. By decoupling the task into an identity-
preserving stage and a harmonization stage, IMPRINT can
generate large color and geometry variations to better align
with the background. Through visual and numerical com-
parison results, we show that IMPRINT significantly out-
performs the previous methods in this task. Furthermore,
we add shape guidance as an additional user control. Al-
though IMPRINT effectively addresses both identity preser-
vation and background alignment, it has several limitations.
When the required view change is too large, there could
be a notable drop in identity preservation, which can be im-
proved by exploring and incorporating a 3D model or NERF
representation into our model. Another limitation is that the
model may degrade consistency of small texts or logos. Po-
tential ideas to improve this are to employ more accurate
latent auto-encoder to avoid loss of information in the la-
tent space and learn object encoders at higher resolution to
encode small local details more accurately.
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Figure 9. Illustration of the background-blending process.

1. Overview
The following sections will be discussed to further support
our paper:
• The background-blending process;
• Mask types (used for shape-guided generation);
• Ablation study on two alternative architectures;
• Additional results of shape-guided generation;
• Additional qualitative comparison results.
• Additional comparisons with AnyDoor [6];
• Failure cases;

2. Background Blending
This process is illustrated in Fig. 9. At each denoising step,
the background area of the denoised latent is masked and
blended with unmasked area from the clean background (in-
tuitively, the model is only denoising the foreground).

3. Mask Types
As discussed in Sec. 3.2, to enable more user control, we
define four levels of coarse masks, including the bounding
box mask. Fig. 10 shows all the mask types. As the coarse
level increases (from mask 1 to mask 4), the model has more
freedom to generate the object.

4. Ablation Study on Alternative Architectures
When making efforts for better identity preservation, we
also explore two alternative architectures (Fig. 11) that are
more intuitive to inject object features (due to the page lim-
itation, they are removed from the main paper): 1) concate-
nation and 2) ControlNet [63]. To provide extra features in
this two pipelines, a naive idea is to use the same segmented
object Iobj as the additional input. However, both the struc-
tures of concatenation and ControlNet will result in a spatial
correspondence between the output and the additional input
(i.e., the generated object tends to have the same size and

position as the input), and using Iobj which is much larger
than the mask M destroys such correspondence. For this
reason, we use I∗obj , the inserted object image as the addi-
tional hint to provide extra features, where the cropped and
resized object Iobj is fitted in the mask area of the back-
ground image Ibg . To replace the text encoder branch, we
use a combination of a CLIP encoder (ViT-L/14) and an
adapter as the image encoder, fine-tuned together with the
UNet backbone following the sequential collaborative train-
ing strategy discussed in Sec. 3.4. Furthermore, the two
pipelines are trained on the same datasets (Pixabay and the
video datasets) as our proposed model in the second stage.

4.1. Concatenation

The first architecture is illustrated in Fig. 11a. An addi-
tional feature injection branch is added for the purpose of
better identity preservation: I∗obj is concatenated with the
background image Ibg . After this modification, the UNet
encoder has 8 channels, where the extra 4 channels are ini-
tialized as 0.0 at the start of the training.

4.2. ControlNet

The second architecture is illustrated in Fig. 11b. Control-
Net is another structure to enhance spatial conditioning con-
trol, such as depth maps, Canny edges, sketches and human
poses. In this pipeline, the extra inputs are fed into a train-
able copy of the original UNet encoder to learn the con-
dition. In our task of generative object compositing, we
use the concatenation of the inserted object I∗obj and a mask
1−M indicating the area to generate the object.

4.3. Quantitative Comparison

To quantize the effects of these two architectures, an eval-
uation is conducted on the DreamBooth dataset, just as in
Sec. 4.3. Tab. 5 shows the results, where ”Baseline” is set-
ting 3 in the ablation study of the main paper (Sec. 4.7).
Our model outperforms the rest pipelines in all three met-
rics that measure identity preservation, demonstrating the
effectiveness of IMPRINT in memorizing object details.

To further assess the compositing effects, we perform an-
other user study with the same configuration as in the main
paper (Sec. 4.5), comparing the realism and fidelity of our
results against the concatenation pipeline and ControlNet
pipeline. Tab. 6 displays the user preferences for different
frameworks in the two questions. The results validates the
superiority of our model in both ID-preserving and com-
positing.



Figure 10. The four types of mask used in the second compositing stage. The generation is constrained in the masked area so the user-
provided mask is able to modify the pose, view and shape of the subject.

(a) The concatenation-based pipeline. Aside from the embedding branch, an
additional input (the inserted object I∗obj ) is concatenated with Ibg . Note that
the UNet backbone encoder has 8 input channels, where the extra 4 channels
are initialized as 0.0.

(b) The ControlNet-based pipeline. In the new ControlNet branch, the con-
catenation of I∗obj and a mask is given as the additional input.

Figure 11. The pipelines of the two alternative architectures for
feature injection: Concatenation and ControlNet.

4.4. Qualitative Comparison

Fig. 12 provides a qualitative comparison between our
model and the other two pipelines. Although the nature of

Method CLIP-score↑ DINO-score↑ DreamSim ↓
Baseline 76.6250 39.7837 0.3073

Concat 76.8125 40.3884 0.2945

ControlNet 76.8750 40.1471 0.2984

Ours 77.0625 43.4463 0.2898

Table 5. Quantitative comparison on the DreamBooth test set.
Baseline refers to setting 3 in the ablation study section of the main
paper. Detail preservation is measured and displayed in this table,
comparing our proposed model with three different architectures.

Ours Concat Ours ControlNet
Realism 50.68 49.32 53.38 46.62
Fidelity 55.41 44.59 54.73 45.27

Table 6. User study results (in percentage). In the two questions
that evaluates reality and similarity, the workers are presented with
side-by-side results from different models and are asked to make
comparison.

structural correspondence in these two pipelines enhances
ID preservation, it also constrains their ability to make spa-
tial adjustments. Thus, in the figure their compositing ef-
fects are worse than our model (in the first three examples,
our outputs have larger pose changes). Moreover, owing
to the pretraining stage, our model achieves better perfor-
mance in keeping details.

5. Additional Results of Shape-Guided Gener-
ation

5.1. Ablation Study

Shape-guidance is an important feature supported by our
model that enables more user control. This feature is not in-
dependent of our efforts in identity preservation. Instead,
the overall performance (realism and fidelity) of shape-
guided generation is improved by our pretraining stage, as
demonstrated by Tab. 7.

This ablation study is conducted on the video datasets



Figure 12. Qualitative comparisons with concatenation-based pipeline and ControlNet-based pipeline. Our model shows stronger ability
in geometric adjustments (especially in the first three examples) as well as better performance in identity preservation.

(the test sets). We follow the same data generation pipeline
in Sec. 3.3: the target image and the input object are taken
from frames In1, In2 respectively, with n1 ̸= n2. The guid-
ance mask M is a coarse mask of the object segmentation in
the target frame n1. We compare our proposed model with
another model that is only trained on the second composit-
ing stage. The quantitative results show the improvement of
the pretraining stage.

6. Additional Qualitative Results

To further show the advantages of our model against the
baseline methods (Paint-by-Example or PbE [58], Object-
Stitch or OS [53] and TF-ICON [35]), we include more
qualitative results in Fig. 13 and Fig. 14.

Method FID ↓ CLIP-score↑ DINO-score↑ DreamSim ↓
No PRE 70.0528 91.5625 83.8687 0.1723

PRE 59.6255 91.9375 84.7372 0.1589

Table 7. Ablation study on the pretraining stage in shape-guided
generation. PRE means the pretraining. When the pretraining is
finished, the model shows stronger capabilities in ID-preserving
and realism, highlighting the fact that our pretraining boosts the
performance of shape-guided generation.

7. Additional Comparisons with AnyDoor

We provide additional comparisons below using the official
implementation of AnyDoor. We observe that IMPRINT



Figure 13. More qualitative comparisons. We compare our proposed model with Paint-by-Example (PbE), ObjectStitch (OS) and TF-
ICON. IMPRINT better preserves object identity and the generated object is more consistent with the background.



Figure 14. More qualitative comparisons. We compare our proposed model with Paint-by-Example (PbE), ObjectStitch (OS) and TF-
ICON. IMPRINT better preserves object identity and the generated object is more consistent with the background.



Figure 15. Additional qualitative comparisons with AnyDoor.

Method CLIP↑ DINO↑
AnyDoor 83.563 83.598

Ours 85.813 86.589

Method Realism Fidelity
AnyDoor 40.71 35.18

Ours 59.29 64.82

Table 8. Left: Quantitative comparison on the DreamBooth test
set. Right: User study results (in percentage).

significantly outperforms AnyDoor in the following experi-
ments:

• We calculate CLIP score and DINO score on the Dream-
Booth test set to measure the identity preservation (as
shown in the left of Tab. 8). Note that to get more accurate
results, we masked the background of all generated im-
ages when performing the evaluation on the DreamBooth
set.

• We conduct a new user study under the same setting as
the user study in the main paper (shown in the right of
Tab. 8). The users have higher preference rate in our re-
sults in both realism and detail preservation.

• In the additional visual comparisons in Fig. 15, our model
demonstrates greater adaptability in adjusting the object’s
pose to match the background, while preserving the de-
tails.

8. Failure Cases
Fig. 16 shows the limitations of IMPRINT, as discussed in
Sec. 5. In the first example, Though the vehicle is well
aligned with the background, its structure is deformed and
partially lose its identity due to the large spatial transforma-
tion. In the second example, the small logos and texts on the
item cannot be fully maintained and exhibits small artifacts,
mainly caused by the decoder in Stable Diffusion [43].



Figure 16. Limitations. 1) The first example shows identity loss when making large geometric corrections. The structure of the vehicle
changes after generation. 2) The second example shows the degradation of small logos and texts after decoding from the latent space.
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