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Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X” given some data
Y1, . . . ,Ym∈Y about the person that is conditionally independent given U.

Y1

↗

U
...

↘
Ym

Assume U is binary with P(U = −1) = P(U = 1) = 1
2 .

Example: U ∈ {conservative, liberal} and Y = movies watched on Netflix
Log-likelihood Ratio Test: Construct sufficient statistic Z

U −→ (Y1, . . . ,Ym) −→ Z ,
m∑
i=1

log

(
PY |U(Yi |1)

PY |U(Yi | − 1)

)

Maximum Likelikood Estimate: Û = sign(Z )
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Motivation: Unsupervised Model Selection

How do we learn PY |U?

Given i.i.d. training data (X1,Y1), . . . , (Xn,Yn):

U1 −→ X1 −→ Y1

U2 −→ X2 −→ Y2
...

...
...

Un −→ Xn −→ Yn

where each Xi ∈ X = {1, 2, . . . , |X |} and X indexes different people.
Training data gives us empirical distribution P̂n

X ,Y :

∀(x , y) ∈ X × Y, P̂n
X ,Y (x , y) ,

1

n

n∑
i=1

I(Xi = x ,Yi = y)

We assume that the true distribution PX ,Y = P̂n
X ,Y (motivated by

concentration of measure results).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 4 / 22



Motivation: Unsupervised Model Selection

How do we learn PY |U?
Given i.i.d. training data (X1,Y1), . . . , (Xn,Yn):

U1 −→ X1 −→ Y1

U2 −→ X2 −→ Y2
...

...
...

Un −→ Xn −→ Yn

where each Xi ∈ X = {1, 2, . . . , |X |} and X indexes different people.

Training data gives us empirical distribution P̂n
X ,Y :

∀(x , y) ∈ X × Y, P̂n
X ,Y (x , y) ,

1

n

n∑
i=1

I(Xi = x ,Yi = y)

We assume that the true distribution PX ,Y = P̂n
X ,Y (motivated by

concentration of measure results).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 4 / 22



Motivation: Unsupervised Model Selection

How do we learn PY |U?
Given i.i.d. training data (X1,Y1), . . . , (Xn,Yn):

U1 −→ X1 −→ Y1

U2 −→ X2 −→ Y2
...

...
...

Un −→ Xn −→ Yn

where each Xi ∈ X = {1, 2, . . . , |X |} and X indexes different people.
Training data gives us empirical distribution P̂n

X ,Y :

∀(x , y) ∈ X × Y, P̂n
X ,Y (x , y) ,

1

n

n∑
i=1

I(Xi = x ,Yi = y)

We assume that the true distribution PX ,Y = P̂n
X ,Y (motivated by

concentration of measure results).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 4 / 22



Motivation: Unsupervised Model Selection

How do we learn PY |U?
Given i.i.d. training data (X1,Y1), . . . , (Xn,Yn):

U1 −→ X1 −→ Y1

U2 −→ X2 −→ Y2
...

...
...

Un −→ Xn −→ Yn

where each Xi ∈ X = {1, 2, . . . , |X |} and X indexes different people.
Training data gives us empirical distribution P̂n

X ,Y :

∀(x , y) ∈ X × Y, P̂n
X ,Y (x , y) ,

1

n

n∑
i=1

I(Xi = x ,Yi = y)

We assume that the true distribution PX ,Y = P̂n
X ,Y (motivated by

concentration of measure results).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 4 / 22



Motivation: Unsupervised Model Selection

Model Selection Problem:
Given U ∼ Bernoulli

(
1
2

)
and the joint pmf PX ,Y for the Markov chain:

PU PX |U PX PY |X PY

U −→ X −→ Y

Find the PX |U

that maximizes the proportion of information that passes
through the Markov chain,
i.e. find PX |U that maximizes I (U;Y )

I (U;X ) .
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Given a source PX and a channel PY |X :

D(RY ||PY ) ≤ D(RX ||PX )

where RY is the output when RX passes through PY |X .

𝑃𝑌|𝑋

𝑃𝑋
𝑅𝑋 𝑅𝑌𝑃𝑌

Strong Data Processing Inequality for KL Divergence:
Fix PX and PY |X . Then, for any RX :

D(RY ||PY ) ≤ ηglo(PX ,PY |X )D(RX ||PX )
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Contraction Coefficient for KL Divergence

Definition (Contraction Coefficient for KL Divergence)

For a fixed source distribution PX and channel PY |X , we can define the
contraction coefficient for KL divergence:

ηglo

(
PX ,PY |X

)
, sup

RX :RX 6=PX

D(RY ||PY )

D(RX ||PX )
= sup

PU ,PX |U :
U→X→Y

I (U;Y )

I (U;X )

where the second equality is proven in [Anantharam et al., 2013] and
[Polyanskiy and Wu, 2015].

This provides an optimization criterion which finds both PU and PX |U
for our model selection problem.

The problem is not concave. So, it is difficult to solve.

Observation: D(RY ||PY ) ≤ D(RX ||PX ) is tight when RX = PX , but
the sequence of pmfs RX achieving the supremum do not tend to PX .
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Local Approximation of KL Divergence

Idea: Find sequence of pmfs RX → PX that maximizes D(RY ||PY )
D(RX ||PX ) .

Consider the trajectory: ∀x ∈ X , R(ε)
X (x) = PX (x) + ε

√
PX (x)KX (x),

where we can think of KX and
√
PX as vectors, and KT

X

√
PX = 0.

Then, using Taylor’s theorem, we have:

D(R
(ε)
X ||PX ) =

1

2
ε2 ‖KX‖2

2︸ ︷︷ ︸
=χ2(RX ,PX )

+ o
(
ε2
)

D(R
(ε)
Y ||PY ) =

1

2
ε2 ‖BKX‖2

2︸ ︷︷ ︸
=χ2(RY ,PY )

+ o
(
ε2
)

where R
(ε)
Y = PY |X · R

(ε)
X , and the matrix B is defined element-wise as

B(x , y) , PX ,Y (x , y)/
√

PX (x)PY (y) =
√
PX |Y (x |y)PY |X (y |x), or

equivalently, B , diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
, and it captures the

effect of the channel on KX .
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Contraction Coefficient for χ2-Divergence

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf PX ,Y , we have:

lim
ε→0

sup
RX :RX 6=PX

D(RX ||PX )= 1
2
ε2

D(RY ||PY )

D(RX ||PX )
= max

KX :KX 6=~0
KT
X

√
PX =0

‖BKX‖2
2

‖KX‖2
2

where B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
, and the RHS is maximized

by K ∗X , which is the right singular vector of B corresponding to its
“largest” singular value.

The trajectory ∀x ∈ X , R(ε)
X (x) = PX (x) + ε

√
PX (x)K ∗X (x) achieves

the supremum in the LHS as ε→ 0.
This formulation admits an easy solution using the SVD.
Model Selection: ∀x ∈ X , PX |U(x |1) = PX (x) + ε

√
PX (x)K ∗X (x) &

∀x ∈ X , PX |U(x | − 1) = PX (x)− ε
√

PX (x)K ∗X (x), for fixed small ε.
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Contraction Coefficient for χ2-Divergence

Definition (Contraction Coefficient for χ2-Divergence)

For a fixed source distribution PX and channel PY |X , we can define the
contraction coefficient for χ2-divergence:

ηloc

(
PX ,PY |X

)
, max

K :K 6=0
KT
√
PX =0

‖BK‖2
2

‖K‖2
2

where B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
. It is also known as the

squared Hirschfeld-Gebelein-Rényi maximal correlation.

Recall that χ2(Q,P) = ‖K‖2
2, where Q(x) = P(x) +

√
P(x)K (x) and

KT
√
P = 0.

Learning models using maximal correlation was covered in Lizhong’s talk
[Makur et al., 2015].

Compare ηloc
(
PX ,PY |X

)
and ηglo

(
PX ,PY |X

)
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Recall that χ2(Q,P) = ‖K‖2
2, where Q(x) = P(x) +

√
P(x)K (x) and

KT
√
P = 0.

Learning models using maximal correlation was covered in Lizhong’s talk
[Makur et al., 2015].

Compare ηloc
(
PX ,PY |X

)
and ηglo

(
PX ,PY |X

)
A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 12 / 22



Outline

1 Motivation

2 Contraction Coefficients of Strong Data Processing Inequalities

3 Bounds between Contraction Coefficients
Contraction Coefficient Bound
Upper Bound on Contraction Coefficient of KL Divergence
Bounding KL Divergence with χ2-Divergence
Binary Symmetric Channel Example

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 13 / 22



Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηloc

(
PX ,PY |X

)
≤ ηglo

(
PX ,PY |X

)
≤
ηloc

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Remark: Our local model selection method cannot perform “too poorly.”
Lower Bound:

lim
ε→0

sup
RX :RX 6=PX

D(RX ||PX )= 1
2
ε2

D(RY ||PY )

D(RX ||PX )︸ ︷︷ ︸
ηloc(PX ,PY |X )

≤ sup
RX :RX 6=PX

D(RY ||PY )

D(RX ||PX )︸ ︷︷ ︸
ηglo(PX ,PY |X )

Result is known in the literature, and inequality can be strict, as
demonstrated in [Anantharam et al., 2013].
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Upper Bound on Contraction Coefficient of KL Divergence

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηloc

(
PX ,PY |X

)
≤ ηglo

(
PX ,PY |X

)
≤
ηloc

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Upper Bound Proof Sketch:

Suppose we have:

D(RY ||PY ) ≤ α ‖BKX‖2
2, for some α

D(RX ||PX ) ≥ β ‖KX‖2
2, for some β

where ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x).

Then, we can prove an upper bound because:

D(RY ||PY )

D(RX ||PX )
≤ α

β

‖BKX‖2
2

‖KX‖2
2

.
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Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:

convex set 𝑃

convex function 
𝐹(𝑥)

𝑥

𝑥0

tangent “plane”
𝐹 𝑥0 + 𝛻𝐹 𝑥0 𝑥 − 𝑥0

𝑥1

Bregman divergence:
𝐹 𝑥1 − 𝐹 𝑥0 − 𝛻𝐹 𝑥0 𝑥1 − 𝑥0

Let PX be the probability simplex of pmfs on X , and Hn : PX → R be the
negative Shannon entropy function: Hn(Q) ,

∑
x∈X Q(x) log (Q(x)).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 16 / 22



Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:

convex set 𝑃

convex function 
𝐹(𝑥)

𝑥

𝑥0

tangent “plane”
𝐹 𝑥0 + 𝛻𝐹 𝑥0 𝑥 − 𝑥0

𝑥1

Bregman divergence:
𝐹 𝑥1 − 𝐹 𝑥0 − 𝛻𝐹 𝑥0 𝑥1 − 𝑥0

Let PX be the probability simplex of pmfs on X , and Hn : PX → R be the
negative Shannon entropy function: Hn(Q) ,

∑
x∈X Q(x) log (Q(x)).

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 16 / 22



Bounding KL Divergence with χ2-Divergence

KL Divergence Lower Bound:
The KL divergence is the Bregman divergence corresponding to Hn

[Banerjee et al., 2005]:

D(RX ||PX ) = Hn(RX )− Hn(PX )−∇Hn(PX )T (RX − PX )

where Hn : PX → R is the negative Shannon entropy function:
Hn(Q) ,

∑
x∈X Q(x) log (Q(x)).

Hn : PX → R is strongly convex because ∇2Hn(Q) = diag (Q)−1 � I ,
where I denotes the identity matrix. Hence, we have:

Hn(RX ) ≥ Hn(PX ) +∇Hn(PX )T (RX − PX ) +
1

2
‖RX − PX‖2

2

D(RX ||PX ) ≥ 1

2
‖RX − PX‖2

2

Using ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x), we see that:

D(RX ||PX ) ≥ 1

2
‖RX − PX‖2

2 ≥
minx∈X PX (x)

2
‖KX‖2

2 .
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Bounding KL Divergence with χ2-Divergence

Lemma (KL Divergence Lower Bound)

Given pmfs PX and RX , we have:

D(RX ||PX ) ≥
min
x∈X

PX (x)

2
‖KX‖2

2

where ∀x ∈ X , RX (x) = PX (x) +
√
PX (x)KX (x).

Lemma (KL Divergence Upper Bound)

Furthermore, for a fixed channel PY |X we have:

D(RY ||PY ) ≤ ‖BKX‖2
2

where RY is the output when RX passes through PY |X , and

B = diag
(√

PY

)−1 · PY |X · diag
(√

PX

)
.
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Contraction Coefficient Bound

Using a tighter lower bound on KL divergence, we can show that:

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηloc

(
PX ,PY |X

)
≤ ηglo

(
PX ,PY |X

)
≤
ηloc

(
PX ,PY |X

)
min
x∈X

PX (x)
.
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Example of Contraction Coefficient Bound

Binary Symmetric Channel Bounds:

ηloc

(
PX ,PY |X

)
≤ ηglo

(
PX ,PY |X

)
≤
ηloc

(
PX ,PY |X

)
min
x∈X

PX (x)
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Conclusion

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution PX and channel PY |X , we have:

ηloc

(
PX ,PY |X

)
≤ ηglo

(
PX ,PY |X

)
≤
ηloc

(
PX ,PY |X

)
min
x∈X

PX (x)
.

Summary:

Global contraction coefficient can perform model selection, but no
simple algorithm to solve it.

Local contraction coefficient performs (sub-optimal) model selection
using the SVD.

Bounds exist between these contraction coefficients.
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