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Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X" given some data
Yi,...,Ym €Y about the person that is conditionally independent given U.

Y1

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015



Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X" given some data
Yi,...,Ym €Y about the person that is conditionally independent given U

Y1
7
U
pY
Ym
Assume U is binary with P(U = —1) =P(U = 1) = 3.
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Problem: Infer a hidden variable U about a “person X" given some data

Yi,...,Ym €Y about the person that is conditionally independent given U.
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Assume U is binary with P(U = —1) =P(U = 1) = 3.
Example: U € {conservative, liberal} and ) = movies watched on Netflix
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Motivation: Inference Problem

Problem: Infer a hidden variable U about a “person X" given some data
Yi,...,Ym €Y about the person that is conditionally independent given U.

Y1
/‘

U

N\
Yom

Assume U is binary with P(U=—-1)=P(U=1) = 35
Example: U € {conservative, liberal} and ) = movies watched on Netflix
Log-likelihood Ratio Test: Construct sufficient statistic Z

Pyiu(Yi
U—(Y1,o Ym) — Z 2 Z' (Py|YUUY|’1)1)>

Maximum Likelikood Estimate: U = sign(Z)
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Motivation: Unsupervised Model Selection

How do we learn Py ,?

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015



Motivation: Unsupervised Model Selection

How do we learn Py ,?
Given i.i.d. training data (X1, Y1),..., (X, Yy):

U1 — X1 — Yl
U2 — X2 — Yg
Un _> Xn _> Yn

where each X; € X = {1,2,...,|X|} and X indexes different people.
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How do we learn Py ,?
Given i.i.d. training data (X1, Y1),..., (X, Yy):

U1 — X1 — Yl

U2 — X2 — Yg

Un _> Xn _> Yn
where each X; € X = {1,2,...,|X|} and A indexes different people.
Training data gives us empirical distribution P} y:

V(x,y) € X x ), nyxy ZI i=x,Yi=y)
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Motivation: Unsupervised Model Selection

How do we learn Py ,?
Given i.i.d. training data (X1, Y1),..., (X, Yy):

U1 — X1 — Yl

U2 — X2 — Y2

Un _> Xn _> Yn
where each X; € X = {1,2,...,|X|} and X indexes different people.
Training data gives us empirical distribution P} y:

V(x,y) € X x ), nyxy ZI i=x,Yi=y)

We assume that the true distribution Px y = ﬁ)’gy (motivated by
concentration of measure results).
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Motivation: Unsupervised Model Selection

Model Selection Problem:
Given U ~ Bernoulli(%) and the joint pmf Px y for the Markov chain:

Pu Pxju Px Pyx Py
u — X — Y

Find the PX\U
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Motivation: Unsupervised Model Selection

Model Selection Problem:
Given U ~ Bernoulli(%) and the joint pmf Px y for the Markov chain:

Pu Pxju Px Pyx Py
u — X — Y

Find the Px|y that maximizes the proportion of information that passes
through the Markov chain,
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Motivation: Unsupervised Model Selection

Model Selection Problem:
Given U ~ Bernoulli(%) and the joint pmf Px y for the Markov chain:

Pu Pxju Px Pyx Py
u — X — Y

Find the Px|y that maximizes the proportion of information that passes
through the Markov chain,

i.e. find Pxy that maximizes (U7)

I(U;X)"
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© Motivation

@ Contraction Coefficients of Strong Data Processing Inequalities
@ Data Processing Inequalities
@ Contraction Coefficient for KL Divergence
@ Local Approximation of KL Divergence
@ Contraction Coefficient for y?-Divergence

© Bounds between Contraction Coefficients
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Given a source Px and a channel Pyx:

D(Ry|[Py) < D(Rx||Px)
where Ry is the output when Rx passes through Py |x.

Pyix

Y

Px./
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Given a source Px and a channel Pyx:

D(Ry|[Py) < D(Rx||Px)
where Ry is the output when Rx passes through Py |x.
Pyix

Y

Py -
X

Py./

Strong Data Processing Inequality for KL Divergence:
Fix Px and Py|x. Then, for any Rx:

D(Ry||Py) < ngio(Px, Py x)D(Rx||Px)
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Given a source Px and a channel Pyx:

D(Ry|[Py) < D(Rx||Px)
where Ry is the output when Rx passes through Py |x.

Strong Data Processing Inequality for KL Divergence:
Fix Px and Py|x. Then, for any Rx:

D(Ry||Py) < ngio(Px, Py x)D(Rx||Px)

Data Processing Inequality for Mutual Information:
Given a Markov chain U — X — Y-

I(U; Y) < I(U; X)
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Data Processing Inequalities

Data Processing Inequality for KL Divergence:
Given a source Px and a channel Pyx:

D(Ry||Py) < D(Rx||Px)

where Ry is the output when Rx passes through Py |x.
Strong Data Processing Inequality for KL Divergence:
Fix Px and Py|x. Then, for any Rx:

D(Ry||Py) < ngio(Px; Py x)D(Rx||Px)

Data Processing Inequality for Mutual Information:
Given a Markov chain U — X — Y-

I(U; Y) < I(U; X)

Strong Data Processing Inequality for Mutual Information:
For fixed Px and Py|x:

I(U, Y) < nglo(PX7PY|X)I(U;X)
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Contraction Coefficient for KL Divergence

Definition (Contraction Coefficient for KL Divergence)

For a fixed source distribution Px and channel Py|x, we can define the
contraction coefficient for KL divergence:

D(Ry||Py) I(U;Y)
Px, P £ sy ~—5 5= Su
U—=X—=Y

where the second equality is proven in [Anantharam et al., 2013] and
[Polyanskiy and Wu, 2015].
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contraction coefficient for KL divergence:

D(Ry||Py) I(U;Y)
Px, P £ sy ~—5 5= Su
U—=X—=Y

where the second equality is proven in [Anantharam et al., 2013] and
[Polyanskiy and Wu, 2015].

e This provides an optimization criterion which finds both Py and Px|y
for our model selection problem.
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@ The problem is not concave. So, it is difficult to solve.

A. Makur & L. Zheng (MIT) Bounds between Contraction Coefficients Allerton Conference 2015 9 /22



Contraction Coefficient for KL Divergence

Definition (Contraction Coefficient for KL Divergence)

For a fixed source distribution Px and channel Py|x, we can define the

contraction coefficient for KL divergence:

D(Ry||Py) I(U;Y)
Px, P £ sy ~—5 5= Su
U—=X—=Y

where the second equality is proven in [Anantharam et al., 2013] and
[Polyanskiy and Wu, 2015].

e This provides an optimization criterion which finds both Py and Px|y
for our model selection problem.

@ The problem is not concave. So, it is difficult to solve.

@ Observation: D(Ry||Py) < D(Rx||Px) is tight when Rx = Px, but
the sequence of pmfs Rx achieving the supremum do not tend to Px.
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Local Approximation of KL Divergence

. . . D(Ry||P
Idea: Find sequence of pmfs Rx — Px that maximizes %.
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Local Approximation of KL Divergence

. . . D(Ry||P
Idea: Find sequence of pmfs Rx — Px that maximizes %.

Consider the trajectory: Vx € X, R)(;)(x) = Px(x) + e/ Px(x)Kx(x),
where we can think of Kx and /Px as vectors, and K;\/PX =0.
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Local Approximation of KL Divergence

. . . D(Ry||P
Idea: Find sequence of pmfs Rx — Px that maximizes %.

Consider the trajectory: Vx € X, R)(;)(x) = Px(x) + e/ Px(x)Kx(x),
where we can think of Kx and /Px as vectors, and K;\/PX =0.
Then, using Taylor's theorem, we have:

¢ 1
D(RYIIPx) = 5 ClIKx3 +0(e)

. 1
D(RY||Py) = 5 € |BKx|2 + o (¢?)

where R§f) = Py|x - R)(f), and the matrix B is defined element-wise as
B(x,¥) £ Px,y(x,y)//Px()PY(¥) = |/ Pxiv (xIy)Py x(vIx). or

equivalently, B £ diag (v/P )_1 - Py|x - diag (v/Px), and it captures the
effect of the channel on K.




Local Approximation of KL Divergence

D(Ry||Py)
D(Rx||Px)"

Consider the trajectory: Vx € X, R)(;)(x) = Px(x) + e/ Px(x)Kx(x),
where we can think of Kx and /Px as vectors, and K;\/PX =0.
Then, using Taylor's theorem, we have:

Idea: Find sequence of pmfs Rx — Px that maximizes

e 1
D(REIIPx) = 5 lIKx3 + 0 (<)
=x%(Rx,Px)
e 1
D(RY||Py) = 5€ IBKx |3 + o (&)
:X2(RY7PY)

where R§f) = Py|x - R)(f), and the matrix B is defined element-wise as

B(x,¥) £ Px,y(x,y)//Px()PY(¥) = |/ Pxiv (xIy)Py x(vIx). or

equivalently, B £ diag (v/P )_1 - Py|x - diag (v/Px), and it captures the
effect of the channel on K.
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Contraction Coefficient for x?-Divergence

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf Px y, we have:

T i g | i 1BKxIl;
p =  max _ >
=0 Re:Re£Px  D(Rx|IPx)  kyekyx#0 ||Kx||3
D(Rx||Px)=3¢ Ky \/Px=0
where B = diag (\/P )_1 - Py|x - diag (\/ Px), and the RHS is maximized
by K%, which is the right singular vector of B corresponding to its
“largest” singular value.
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Contraction Coefficient for x?-Divergence

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf Px y, we have:

fir 0 w — ”BKXH%
p max
€0 Ry Rx;«éPx D(Rx|IPx)  kxikoxd IKx 3
D(Rx||Px)=3¢€ x VPx=0
where B = diag (\/Py)_l - Py|x - diag (\/ Px), and the RHS is maximized
by K%, which is the right singular vector of B corresponding to its
“largest” singular value.

@ The trajectory Vx € X, R§<€)( = Px(x) + ey/Px(x)Kx(x) achieves
the supremum in the LHS as ¢ — 0.
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Contraction Coefficient for x?-Divergence

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf Px y, we have:

i D(Ry|[Py) _ | BKxl3

im sup - max ————=

=0 Ry RX;APX (RXHPX) Kx K0 || Kx||3
D(Rx||Px)=3¢€ x VPx=0

where B = diag (\/Py)_l - Py|x - diag (\/ Px), and the RHS is maximized

by K%, which is the right singular vector of B corresponding to its

“largest” singular value.

@ The trajectory Vx € X, R§<€)( = Px(x) + ey/Px(x)Kx(x) achieves
the supremum in the LHS as ¢ — 0.

@ This formulation admits an easy solution using the SVD.
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Contraction Coefficient for x?-Divergence

Theorem (Local Contraction Coefficient) [Makur and Zheng, 2015]

For random variables X and Y with joint pmf Px y, we have:

D(Ry||P BKx||2
. sup (RyllPy) _ ma |BKx 5

=0 Ry RX;APX D(Rx||Px) Kx Kx#0 HKXH2
D(Rx||Px)=5€>

T /Px=0

where B = diag (\/Py)_l - Py|x - diag (\/ Px), and the RHS is maximized
by K%, which is the right singular vector of B corresponding to its
“largest” singular value.

@ The trajectory Vx € &, R§<€)( = Px(x) + ey/Px(x)Kx(x) achieves
the supremum in the LHS as ¢ — 0.

@ This formulation admits an easy solution using the SVD.

e Model Selection: Vx € X, PX‘U(xll) = Px(x) + ey/Px(x)Kx(x) &
Vx € X, Pxjy(x| = 1) — €/ Px(x)Kx(x), for fixed small e.
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Contraction Coefficient for x?-Divergence

Definition (Contraction Coefficient for y?-Divergence)

For a fixed source distribution Px and channel Py x, we can define the
contraction coefficient for y2-divergence:

IBK 3

max 2
KiK£0 | K]l
KT/Px=0

Moc (PX7 PY|X) =

where B = diag (\/Py)_l - Py|x - diag (v/Px). It is also known as the
squared Hirschfeld-Gebelein-Rényi maximal correlation.

Recall that x?(Q, P) = ||K||2 where Q(x) = P(x) + \/P(x)K(x) and
KTvVP=0.
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Contraction Coefficient for x?-Divergence

Definition (Contraction Coefficient for y?-Divergence)

For a fixed source distribution Px and channel Py x, we can define the
contraction coefficient for y2-divergence:

IBK 3

max 2
KiK£0 | K]l
KT/Px=0

Moc ('DX7 PY|X) =

where B = diag (\/Py)_l - Py|x - diag (v/Px). It is also known as the
squared Hirschfeld-Gebelein-Rényi maximal correlation.

Recall that x?(Q, P) = ||K||2 where Q(x) = P(x) + \/P(x)K(x) and
KTVP=0.

Learning models using maximal correlation was covered in Lizhong's talk
[Makur et al., 2015].
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Contraction Coefficient for x?-Divergence

Definition (Contraction Coefficient for y?-Divergence)

For a fixed source distribution Px and channel Py x, we can define the
contraction coefficient for y2-divergence:

IBK 3

max 2
KiK£0 | K]l
KT/Px=0

Moc ('DX7 PY|X) =

where B = diag (\/Py)_l - Py|x - diag (v/Px). It is also known as the
squared Hirschfeld-Gebelein-Rényi maximal correlation.

Recall that x?(Q, P) = ||K||2 where Q(x) = P(x) + \/P(x)K(x) and
KTVP=0.

Learning models using maximal correlation was covered in Lizhong's talk
[Makur et al., 2015].

Compare nioc (Px, Py|x) and ngi (Px, Py|x)
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© Motivation
@ Contraction Coefficients of Strong Data Processing Inequalities

© Bounds between Contraction Coefficients
@ Contraction Coefficient Bound
@ Upper Bound on Contraction Coefficient of KL Divergence
@ Bounding KL Divergence with y?-Divergence
@ Binary Symmetric Channel Example
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Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Moc (PX7 PY|X)

Moc (Px, Py|x) < ngio (Px; Py|x) < mi; Px(x)
XE
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Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]
For a fixed source distribution Px and channel Py x, we have:

Px, P
Moe (Px; Py|x) < ngio (Px, Py|x) < M
g P

Remark: Our local model selection method cannot perform “too poorly.”
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Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Moc (Px, PY|X)

Moc (Px, Py|x) < ngio (Px; Py|x) < mi; Px(x)
XE

Remark: Our local model selection method cannot perform “too poorly.”
Lower Bound:

D(Rvy||P D(Rv||P
m sup (Ry||Py) (Ry||Py)

>0 Rery2Py  D(Rx|IPx) ™ Rye:retpx D(Rx||Px)

D(Rx||Px)=3%¢?

h ~ Tglo(Px Py x)
Moc(Px Py x)
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Contraction Coefficient Bound

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Moc (Px, PY|X)

Moc (Px, Py|x) < ngio (Px; Py|x) < mi; Px(x)
XE

Remark: Our local model selection method cannot perform “too poorly.”
Lower Bound:

D(Rvy||P D(Rv||P
m sup (Ry||Py) (Ry||Py)

>0 Rery2Py  D(Rx|IPx) ™ Rye:retpx D(Rx||Px)

D(Rx||Px)=3%¢?

h ~ Tglo(Px Py x)
Moc(Px Py x)

Result is known in the literature, and inequality can be strict, as
demonstrated in [Anantharam et al., 2013].
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Upper Bound on Contraction Coefficient of KL Divergence

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Px. P
oe (P Pyix) < g (P Pyp) < et Prixd)

min Px(x)

Upper Bound Proof Sketch:
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Upper Bound on Contraction Coefficient of KL Divergence

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

MNoc (PX7 'DY|X)

min Px(x)

Moc (Px: Pyix) < Ngio (Px; Py|x) <

Upper Bound Proof Sketch:
Suppose we have:

o D(Ry||Py) < a ||BKx||2, for some a
e D(Rx||Px) > 8 HKX”; for some 3
where Vx € X, Rx( —{—\/Px(X KX
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Upper Bound on Contraction Coefficient of KL Divergence

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

MNoc (PX7 'DY|X)

min Px(x)

Moc (Px: Pyix) < Ngio (Px; Py|x) <

Upper Bound Proof Sketch:
Suppose we have:

o D(Ry||Py) < a ||BKx||2, for some a
e D(Rx||Px) > 8 HKX”; for some 3

where VXEX Rx( +\/Px(X KX
Then, we can prove an upper bound because:

D(Ry||Py) _ o [|BKxl5
D(Rx|IPx) = B |IKx|3
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:

convex function
F(x)

tangent “plane”

F(xo) + VF(x0) (x — x0)
Bregman divergence:
F(xy) — F(xo) — VF(x0) (xg — xo)

convex set P
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:

convex function
F(x)

tangent “plane”

F(xo) + VF(x0) (x — x0)
Bregman divergence:
F(xy) — F(xo) — VF(x0) (xg — xo)

convex set P

Let Py be the probability simplex of pmfs on X', and H,, : Py — R be the

A

negative Shannon entropy function: H,(Q) = > .1 Q(x) log (Q(x)).
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:

The KL divergence is the Bregman divergence corresponding to H,
[Banerjee et al., 2005]:

D(Rx||Px) = Ha(Rx) — Ha(Px) — VHn(Px)T (Rx — Px)

where H,, : Py — R is the negative Shannon entropy function:

H(Q) = Xsex Q(x) log (Q(x)).
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:
The KL divergence is the Bregman divergence corresponding to H,
[Banerjee et al., 2005]:

D(Rx||Px) = Ha(Rx) — Ha(Px) — VHn(Px)T (Rx — Px)

where H,, : Py — R is the negative Shannon entropy function:
Hn(Q) £ Yosen Q(x)log (Q(x))-

H, : Px — R is strongly convex because V?H,(Q) = diag(Q)f1 =1,
where | denotes the identity matrix.
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:
The KL divergence is the Bregman divergence corresponding to H,
[Banerjee et al., 2005]:

D(Rx||Px) = Ha(Rx) — Hn(Px) — VHs(Px)" (Rx — Px)

where H,, : Py — R is the negative Shannon entropy function:

H(Q) = Xsex Q(x) log (Q(x)).
H, : Px — R is strongly convex because V2H,(Q) = diag (Q)™* = I,
where | denotes the identity matrix. Hence, we have:

1
Ha(Rx) > Ha(Px) + VHa(Px)" (Rx — Px) + 3 IRx — Px|3
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:
The KL divergence is the Bregman divergence corresponding to H,
[Banerjee et al., 2005]:

D(Rx||Px) = Ha(Rx) — Ha(Px) — VHn(Px)T (Rx — Px)

where H,, : Py — R is the negative Shannon entropy function:

H(Q) = Xsex Q(x) log (Q(x)).
H, : Px — R is strongly convex because V2H,(Q) = diag (Q)™* = I,
where | denotes the identity matrix. Hence, we have:

1
Ha(Rx) > Ha(Px) + VHa(Px)" (Rx — Px) + 3 IRx — Px|3

1
D(Rx||Px) > 5 IRx — Px|i3
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Bounding KL Divergence with y?-Divergence

KL Divergence Lower Bound:

The KL divergence is the Bregman divergence corresponding to H,
[Banerjee et al., 2005]:

D(Rx||Px) = Ha(Rx) — Ha(Px) — VHn(Px)T (Rx — Px)

where H,, : Py — R is the negative Shannon entropy function:

H(Q) = Xsex Q(x) log (Q(x)).
H, : Px — R is strongly convex because V2H,(Q) = diag (Q)™* = I,
where | denotes the identity matrix. Hence, we have:

1
Ha(Rx) > Ha(Px) + VHa(Px)" (Rx — Px) + 3 IRx — Px|3

1
D(Rx||Px) > = HRX - Px||§

Using Vx € X, Rx(x) )+ \/PX ) Kx(x), we see that:
minyex Px(x
D(RxlIPx) > 3 [IRx — Px|3 > ’;X” IKx13.
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Bounding KL Divergence with y?-Divergence

Lemma (KL Divergence Lower Bound)

Given pmfs Px and Rx, we have:

min Px(x)

D(Rx||Px) = % K3

where Vx € X, Rx(x) ) + v/ Px(x) Kx(x
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Bounding KL Divergence with y?-Divergence

Lemma (KL Divergence Lower Bound)

Given pmfs Px and Rx, we have:

min Px(x)

D(Rx||Px) > %

where Vx € X, Rx(x) ) + v/ Px(x) Kx(x

2
| Kxll5

N

Lemma (KL Divergence Upper Bound)

Furthermore, for a fixed channel Py x we have:

D(Ry||Py) < | BKx|I3

where Ry is the output when Rx passes through Py x, and

B = diag (\/P_y)_l - Py|x - diag (v/Px).

N
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Contraction Coefficient Bound

Using a tighter lower bound on KL divergence, we can show that:

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Moc (Px, PY|X)

inP
g P

Moc (Px; Pyix) < ngio (Px, Pyix) <
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Example of Contraction Coefficient Bound

Binary Symmetric Channel Bounds:

1 ocC P «P
Thoc (PX7PY|X) S nglo (PX, PY‘X) S M

min Px(x)
xeX

BSC(p)
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Conclusion

Theorem (Contraction Coefficient Bound) [Makur and Zheng, 2015]

For a fixed source distribution Px and channel Py x, we have:

Moc (Px, PY|X)

Moc (Px, Py|x) < ngio (Px; Py|x) < mi)r} Px(x)
xX€

Summary:

@ Global contraction coefficient can perform model selection, but no
simple algorithm to solve it.

@ Local contraction coefficient performs (sub-optimal) model selection
using the SVD.

@ Bounds exist between these contraction coefficients.
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