
Polynomial Spectral Decomposition
of Conditional Expectation Operators

Anuran Makur and Lizhong Zheng

EECS Department, Massachusetts Institute of Technology

Allerton Conference 2016

A. Makur & L. Zheng (MIT) Polynomial Spectral Decomposition Allerton Conference 2016 1 / 25



Outline

1 Introduction
Motivation: Regression and Maximal Correlation
Preliminaries
Spectral Characterization of Maximal Correlation

2 Polynomial Decompositions of Compact Operators

3 Illustrations of Polynomial SVDs

A. Makur & L. Zheng (MIT) Polynomial Spectral Decomposition Allerton Conference 2016 2 / 25



Motivation: Regression and Maximal Correlation

Fix a joint distribution PX ,Y on X × Y.

Regression: [Breiman and Friedman, 1985]
Find f ? ∈ F and g? ∈ G that minimize the mean squared error:

inf
f ∈F , g∈G

E
[
(f (X )− g(Y ))2

]
where we minimize over:

F ,
{
f : X → R |E [f (X )] = 0, E

[
f 2(X )

]
= 1
}

G ,
{
g : Y → R |E [g(Y )] = 0, E

[
g2(Y )

]
= 1
}

Maximal Correlation: [Rényi, 1959]
Find f ? ∈ F and g? ∈ G that maximize the correlation:

ρ(X ;Y ) , sup
f ∈F , g∈G

E [f (X )g(Y )]

Equivalence: E[(f (X )− g(Y ))2] = 2− 2E [f (X )g(Y )]

Maximal correlation is a singular value of an operator!
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Preliminaries

Source random variable X ∈ X ⊆ R
with probability density PX

on the measure space (X ,B(X ), λ)

Output random variable Y ∈ Y ⊆ R

Channel conditional probability densities
{
PY |X=x : x ∈ X

}
on the measure space (Y,B(Y), µ).

Marginal probability laws: PX and PY
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Preliminaries

Hilbert spaces:

L2 (X ,PX ) ,
{
f : X → R |E

[
f 2(X )

]
< +∞

}
L2 (Y,PY ) ,

{
g : Y → R |E

[
g2(Y )

]
< +∞

}

𝑓1𝑓2

0
𝑔1 𝑔2

0

ℒ2 𝒳,ℙ𝑋

ℒ2 𝒴,ℙ𝑌

〈f1, f2〉PX
, E [f1(X )f2(X )] 〈g1, g2〉PY

, E [g1(Y )g2(Y )]

Correlation as inner products
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Preliminaries

Hilbert spaces:

L2 (X ,PX ) ,
{
f : X → R |E

[
f 2(X )

]
< +∞

}
L2 (Y,PY ) ,

{
g : Y → R |E

[
g2(Y )

]
< +∞

}

𝑓

0 𝑔

0

ℒ2 𝒳,ℙ𝑋

ℒ2 𝒴,ℙ𝑌𝐶

𝐶∗

Conditional Expectation Operators:

C : L2 (X ,PX )→ L2 (Y,PY ): (C (f ))(y) , E [f (X )|Y = y ]

C ∗ : L2 (Y,PY )→ L2 (X ,PX ): (C ∗(g))(x) , E [g(Y )|X = x ]
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Preliminaries

Proposition (Conditional Expectation Operators)

C and C ∗ are bounded linear operators with operator norms
‖C‖op = ‖C ∗‖op = 1. Moreover, C ∗ is the adjoint operator of C .

Operator Norm: ‖C‖op , sup
f ∈L2(X ,PX )

‖C (f )‖PY

‖f ‖PX

‖C‖op ≤ 1 by Jensen’s inequality:

‖C (f )‖2PY
= E

[
E [f (X )|Y ]2

]
≤ E

[
E
[
f 2(X )|Y

]]
= ‖f ‖2PX

.

𝑓

0

𝐶(𝑓)

0

ℒ2 𝒳,ℙ𝑋 ℒ2 𝒴,ℙ𝑌

𝐶

1𝒳 1𝒴
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Spectral Characterization of Maximal Correlation

Prop (Spectral Characterization of Maximal Correlation) [Rényi, 1959]

For random variables X and Y as defined earlier:

ρ(X ;Y ) = sup
f ∈L2(X ,PX ):
E[f (X )]=0

‖C (f )‖PY

‖f ‖PX

where the supremum is achieved by some f ? ∈ L2 (X ,PX ) if C is compact.

𝑓⋆

0

𝐶(𝑓⋆)

0

ℒ2 𝒳,ℙ𝑋 ℒ2 𝒴,ℙ𝑌

1𝒳 1𝒴𝐶

𝐶∗/𝜌2

C has largest singular value ‖C‖op = 1: C (1X ) = 1Y , C ∗ (1Y) = 1X .
ρ (X ;Y ) = second largest singular value of C with singular vectors
f ? ⊥ 1X and g? = C (f ?) /ρ (X ;Y ) ⊥ 1Y that maximize correlation.
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For random variables X and Y as defined earlier:

ρ(X ;Y ) = sup
f ∈L2(X ,PX ):
E[f (X )]=0

‖C (f )‖PY

‖f ‖PX

where the supremum is achieved by some f ? ∈ L2 (X ,PX ) if C is compact.

𝑓⋆

0

𝐶(𝑓⋆)

0

ℒ2 𝒳,ℙ𝑋 ℒ2 𝒴,ℙ𝑌

1𝒳 1𝒴𝐶

𝐶∗/𝜌2

C has largest singular value ‖C‖op = 1: C (1X ) = 1Y , C ∗ (1Y) = 1X .

ρ (X ;Y ) = second largest singular value of C with singular vectors
f ? ⊥ 1X and g? = C (f ?) /ρ (X ;Y ) ⊥ 1Y that maximize correlation.

A. Makur & L. Zheng (MIT) Polynomial Spectral Decomposition Allerton Conference 2016 9 / 25



Spectral Characterization of Maximal Correlation

Prop (Spectral Characterization of Maximal Correlation) [Rényi, 1959]
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The Hermite SVD

Gaussian Channel: PY |X=x = N (x , ν) with expectation parameter x ∈ R
and fixed variance ν ∈ (0,∞)

∀x , y ∈ R, PY |X (y |x) =
1√
2πν

exp

(
−(y − x)2

2ν

)
Gaussian Source: PX = N (0, p) with fixed variance p ∈ (0,∞)

∀x ∈ R, PX (x) =
1√
2πp

exp

(
− x2

2p

)

Remark: (AWGN channel) Y = X + W with X ⊥⊥W ∼ N (0, ν)

Gaussian Output Marginal: PY = N (0, p + ν)

∀y ∈ R, PY (y) =
1√

2π(p + ν)
exp

(
− y2

2(p + ν)

)
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The Hermite SVD

Prop (Hermite SVD) [Abbe & Zheng, 2012], [Makur & Zheng, 2016]

For the Gaussian channel PY |X and Gaussian source PX , the conditional
expectation operator C : L2 (R,PX )→ L2 (R,PY ) has SVD:

∀k ∈ N, C
(
H

(p)
k

)
= σkH

(p+ν)
k

with singular values: {σk ∈ (0, 1] : k ∈ N} where σ0 = 1 and lim
k→∞

σk = 0,

and singular vectors:

{H(p)
k with degree k : k ∈ N} - Hermite polynomials that are

orthonormal with respect to PX ,

{H(p+ν)
k with degree k : k ∈ N} - Hermite polynomials that are

orthonormal with respect to PY .

For which joint distributions PX ,Y are the singular vectors of C
orthonormal polynomials?
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Assumptions and Definitions

L2 (X ,PX ) and L2 (Y,PY ) are infinite-dimensional.

L2 (X ,PX ) admits a unique countable orthonormal basis of
polynomials, {pk : k ∈ N} ⊆ L2 (X ,PX ), where pk : X → R is an
orthonormal polynomial with degree k.

L2 (Y,PY ) admits a unique countable orthonormal basis of
polynomials, {qk : k ∈ N} ⊆ L2 (Y,PY ), where qk : Y → R is an
orthonormal polynomial with degree k.
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Assumptions and Definitions

Definition (Closure over Polynomials and Degree Preservation)

An operator T : L2 (X ,PX )→ L2 (Y,PY ) is closed over polynomials if
for any polynomial p ∈ L2 (X ,PX ), T (p) is also a polynomial.
Furthermore, T is degree preserving if:

deg (T (p)) ≤ deg (p) ,

and T is strictly degree preserving if:

deg (T (p)) = deg (p) .

Gaussian Channel Example: Y = X + W with X ⊥⊥W ∼ N (0, ν)

E [g(Y )|X = x ] =
1√
2πν

∫
R
g(y) exp

(
−(y − x)2

2ν

)
dµ(y)

Convolution preserves polynomials!
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Polynomial EVD of Compact Self-Adjoint Operators

Theorem (Condition for Orthonormal Polynomial Eigenbasis)
[Makur and Zheng, 2016]

Let T : L2 (X ,PX )→ L2 (X ,PX ) be a compact self-adjoint operator.
T is closed over polynomials and degree preserving if and only if:

∀k ∈ N, T (pk) = αkpk

where {αk ∈ R : k ∈ N} are eigenvalues satisfying lim
k→∞

αk = 0.
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Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors)
[Makur and Zheng, 2016]

Suppose C : L2 (X ,PX )→ L2 (Y,PY ) is compact and
C ∗ : L2 (Y,PY )→ L2 (X ,PX ) is its adjoint operator.
C and C ∗ are closed over polynomials and strictly degree preserving
if and only if:

∀k ∈ N, C (pk) = βkqk

where {βk ∈ (0,∞) : k ∈ N} are the singular values such that
lim
k→∞

βk = 0.
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Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors)
[Makur and Zheng, 2016]

Suppose C , E [·|Y ] : L2 (X ,PX )→ L2 (Y,PY ) is compact and
C ∗ = E [·|X ] : L2 (Y,PY )→ L2 (X ,PX ) is its adjoint operator.
For every n ∈ N, E [X n|Y ] is a polynomial in Y with degree n and
E [Y n|X ] is polynomial in X with degree n if and only if:

∀k ∈ N, C (pk) = βkqk

where {βk ∈ (0, 1] : k ∈ N} are the singular values such that β0 = 1 and
lim
k→∞

βk = 0.

Gaussian Example Proof Sketch:

Y = X + W with X ∼ N (0, p) ⊥⊥W ∼ N (0, ν).

C ,C ∗ are defined by convolution kernels which preserve polynomials.

By above theorem, C has Hermite polynomial singular vectors.
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Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors)
[Makur and Zheng, 2016]

Suppose C , E [·|Y ] : L2 (X ,PX )→ L2 (Y,PY ) is compact and
C ∗ = E [·|X ] : L2 (Y,PY )→ L2 (X ,PX ) is its adjoint operator.
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E [Y n|X ] is polynomial in X with degree n if and only if:
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The Laguerre SVD

Poisson Channel: PY |X=x = Poisson(x) with rate parameter x ∈ (0,∞)

∀x ∈ (0,∞),∀y ∈ N, PY |X (y |x) =
xye−x

y !

Gamma Source: PX = gamma(α, β) with shape parameter α ∈ (0,∞)
and rate parameter β ∈ (0,∞)

∀x ∈ (0,∞), PX (x) =
βαxα−1e−βx

Γ(α)

Negative Binomial Output Marginal:

PY = negative-binomial
(
p = 1

β+1 , α
)

with success probability parameter

p ∈ (0, 1) and number of failures parameter α ∈ (0,∞)

∀y ∈ N, PY (y) =
Γ(α + y)

Γ(α)y !

(
1

β + 1

)y ( β

β + 1

)α
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The Laguerre SVD

Proposition (Laguerre SVD) [Makur and Zheng, 2016]

For the Poisson channel PY |X and gamma source PX , the conditional
expectation operator C : L2 ((0,∞),PX )→ L2 (N,PY ) has SVD:

∀k ∈ N, C
(
L
(α,β)
k

)
= σkM

(
α, 1

β+1

)
k

with singular values: {σk ∈ (0, 1] : k ∈ N} where σ0 = 1 and lim
k→∞

σk = 0,

and singular vectors:

{L(α,β)k with degree k : k ∈ N} - generalized Laguerre polynomials that
are orthonormal with respect to PX ,

{M
(
α, 1

β+1

)
k with degree k : k ∈ N} - Meixner polynomials that are

orthonormal with respect to PY .
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The Jacobi SVD

Binomial Channel: PY |X=x = binomial(n, x) with number of trials
parameter n ∈ N\{0} and success probability parameter x ∈ (0, 1)

∀x ∈ (0, 1), ∀y ∈ [n] , {0, . . . , n} , PY |X (y |x) =

(
n

y

)
xy (1− x)n−y

Beta Source: PX = beta(α, β) with shape parameters α ∈ (0,∞) and
β ∈ (0,∞)

∀x ∈ (0, 1), PX (x) =
xα−1(1− x)β−1

B(α, β)

Beta-Binomial Output Marginal: PY = beta-binomial(n, α, β)

∀y ∈ [n], PY (y) =

(
n

y

)
B(α + y , β + n − y)

B(α, β)
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The Jacobi SVD

Proposition (Jacobi SVD) [Makur and Zheng, 2016]

For the binomial channel PY |X and beta source PX , the conditional
expectation operator C : L2 ((0, 1),PX )→ L2 ([n],PY ) has SVD:

∀k ∈ [n], C
(
J
(α,β)
k

)
= σkQ

(α,β)
k

∀k ∈ N\[n], C
(
J
(α,β)
k

)
= 0

with singular values: {σk ∈ (0, 1] : k ∈ [n]} where σ0 = 1,
and singular vectors:

{J(α,β)k with degree k : k ∈ N} - Jacobi polynomials that are
orthonormal with respect to PX ,

{Q(α,β)
k with degree k : k ∈ [n]} - Hahn polynomials that are

orthonormal with respect to PY .
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Why are these joint distributions special?

PY |X is a natural exponential family with quadratic variance function
(introduced in [Morris, 1982]):

∀x ∈ X ,∀y ∈ Y, PY |X (y |x) = exp (xy − α(x) + β(y))

where PY |X (y |0) = exp (β(y)) is the base distribution, α(x) is the
log-partition function with α(0) = 0, and VAR(Y |X = x) is a
quadratic function of E [Y |X = x ].

PX belongs to the corresponding conjugate prior family:

∀x ∈ X , PX (x ; y ′, n) = exp
(
y ′x − nα(x)− τ(y ′, n)

)
All moments exist and are finite:

Gaussian likelihood with Gaussian prior,
Poisson likelihood with gamma prior,
binomial likelihood with beta prior.
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Conclusion

Summary:

1 Regression and maximal correlation
⇒ conditional expectation operators

2 Closure over polynomials and degree preservation
⇔ orthogonal polynomial eigenvectors or singular vectors

3 Check conditional moments are polynomials
⇒ Gaussian-Gaussian, Gamma-Poisson, Beta-Binomial examples

4 Examples have natural exponential family/conjugate prior structure
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