Polynomial Spectral Decomposition of Conditional Expectation Operators

Anuran Makur and Lizhong Zheng
EECS Department, Massachusetts Institute of Technology

Allerton Conference 2016

Outline

(1) Introduction

- Motivation: Regression and Maximal Correlation
- Preliminaries
- Spectral Characterization of Maximal Correlation
(2) Polynomial Decompositions of Compact Operators
(3) Illustrations of Polynomial SVDs

Motivation: Regression and Maximal Correlation

Fix a joint distribution $P_{X, Y}$ on $\mathcal{X} \times \mathcal{Y}$.

Motivation: Regression and Maximal Correlation

Fix a joint distribution $P_{X, Y}$ on $\mathcal{X} \times \mathcal{Y}$.
Regression: [Breiman and Friedman, 1985]
Find $f^{\star} \in \mathcal{F}$ and $g^{\star} \in \mathcal{G}$ that minimize the mean squared error:

$$
\inf _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}\left[(f(X)-g(Y))^{2}\right]
$$

where we minimize over:

$$
\begin{aligned}
& \mathcal{F} \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}[f(X)]=0, \mathbb{E}\left[f^{2}(X)\right]=1\right\} \\
& \mathcal{G} \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}[g(Y)]=0, \mathbb{E}\left[g^{2}(Y)\right]=1\right\}
\end{aligned}
$$

Motivation: Regression and Maximal Correlation

Fix a joint distribution $P_{X, Y}$ on $\mathcal{X} \times \mathcal{Y}$.
Regression: [Breiman and Friedman, 1985]
Find $f^{\star} \in \mathcal{F}$ and $g^{\star} \in \mathcal{G}$ that minimize the mean squared error:

$$
\inf _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}\left[(f(X)-g(Y))^{2}\right]
$$

where we minimize over:

$$
\begin{aligned}
& \mathcal{F} \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}[f(X)]=0, \mathbb{E}\left[f^{2}(X)\right]=1\right\} \\
& \mathcal{G} \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}[g(Y)]=0, \mathbb{E}\left[g^{2}(Y)\right]=1\right\}
\end{aligned}
$$

Maximal Correlation: [Rényi, 1959]
Find $f^{\star} \in \mathcal{F}$ and $g^{\star} \in \mathcal{G}$ that maximize the correlation:

$$
\rho(X ; Y) \triangleq \sup _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}[f(X) g(Y)]
$$

Equivalence: $\mathbb{E}\left[(f(X)-g(Y))^{2}\right]=2-2 \mathbb{E}[f(X) g(Y)]$

Motivation: Regression and Maximal Correlation

Fix a joint distribution $P_{X, Y}$ on $\mathcal{X} \times \mathcal{Y}$.
Regression: [Breiman and Friedman, 1985]
Find $f^{\star} \in \mathcal{F}$ and $g^{\star} \in \mathcal{G}$ that minimize the mean squared error:

$$
\inf _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}\left[(f(X)-g(Y))^{2}\right]
$$

where we minimize over:

$$
\begin{aligned}
& \mathcal{F} \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}[f(X)]=0, \mathbb{E}\left[f^{2}(X)\right]=1\right\} \\
& \mathcal{G} \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}[g(Y)]=0, \mathbb{E}\left[g^{2}(Y)\right]=1\right\}
\end{aligned}
$$

Maximal Correlation: [Rényi, 1959]
Find $f^{\star} \in \mathcal{F}$ and $g^{\star} \in \mathcal{G}$ that maximize the correlation:

$$
\rho(X ; Y) \triangleq \sup _{f \in \mathcal{F}, g \in \mathcal{G}} \mathbb{E}[f(X) g(Y)]
$$

Equivalence: $\mathbb{E}\left[(f(X)-g(Y))^{2}\right]=2-2 \mathbb{E}[f(X) g(Y)]$
Maximal correlation is a singular value of an operator!

Preliminaries

- Source random variable $X \in \mathcal{X} \subseteq \mathbb{R}$ with probability density P_{X} on the measure space $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \lambda)$

Preliminaries

- Source random variable $X \in \mathcal{X} \subseteq \mathbb{R}$ with probability density P_{X} on the measure space $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \lambda)$
- Output random variable $Y \in \mathcal{Y} \subseteq \mathbb{R}$

Preliminaries

- Source random variable $X \in \mathcal{X} \subseteq \mathbb{R}$ with probability density P_{X} on the measure space $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \lambda)$
- Output random variable $Y \in \mathcal{Y} \subseteq \mathbb{R}$
- Channel conditional probability densities $\left\{P_{Y \mid X=x}: x \in \mathcal{X}\right\}$ on the measure space $(\mathcal{Y}, \mathcal{B}(\mathcal{Y}), \mu)$.

Preliminaries

- Source random variable $X \in \mathcal{X} \subseteq \mathbb{R}$ with probability density P_{X} on the measure space $(\mathcal{X}, \mathcal{B}(\mathcal{X}), \lambda)$
- Output random variable $Y \in \mathcal{Y} \subseteq \mathbb{R}$
- Channel conditional probability densities $\left\{P_{Y \mid X=x}: x \in \mathcal{X}\right\}$ on the measure space $(\mathcal{Y}, \mathcal{B}(\mathcal{Y}), \mu)$.
- Marginal probability laws: \mathbb{P}_{X} and \mathbb{P}_{Y}

Preliminaries

- Hilbert spaces:

$$
\begin{aligned}
& \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f^{2}(X)\right]<+\infty\right\} \\
& \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}\left[g^{2}(Y)\right]<+\infty\right\}
\end{aligned}
$$

Preliminaries

- Hilbert spaces:

$$
\begin{aligned}
& \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f^{2}(X)\right]<+\infty\right\} \\
& \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}\left[g^{2}(Y)\right]<+\infty\right\}
\end{aligned}
$$

$\left\langle f_{1}, f_{2}\right\rangle_{\mathbb{P}_{X}} \triangleq \mathbb{E}\left[f_{1}(X) f_{2}(X)\right]$
$\left\langle g_{1}, g_{2}\right\rangle_{\mathbb{P}_{Y}} \triangleq \mathbb{E}\left[g_{1}(Y) g_{2}(Y)\right]$
Correlation as inner products

Preliminaries

- Hilbert spaces:

$$
\begin{aligned}
& \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f^{2}(X)\right]<+\infty\right\} \\
& \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}\left[g^{2}(Y)\right]<+\infty\right\}
\end{aligned}
$$

- Conditional Expectation Operators:

$$
\begin{aligned}
& C: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right):(C(f))(y) \triangleq \mathbb{E}[f(X) \mid Y=y] \\
& C^{*}: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right):\left(C^{*}(g)\right)(x) \triangleq \mathbb{E}[g(Y) \mid X=x]
\end{aligned}
$$

Preliminaries

Proposition (Conditional Expectation Operators)

C and C^{*} are bounded linear operators with operator norms $\|C\|_{\text {op }}=\left\|C^{*}\right\|_{\text {op }}=1$. Moreover, C^{*} is the adjoint operator of C.

Preliminaries

Proposition (Conditional Expectation Operators)

C and C^{*} are bounded linear operators with operator norms
$\|C\|_{\text {op }}=\left\|C^{*}\right\|_{\text {op }}=1$. Moreover, C^{*} is the adjoint operator of C.

- Operator Norm: $\|C\|_{\text {op }} \triangleq \sup _{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$

Preliminaries

Proposition (Conditional Expectation Operators)

C and C^{*} are bounded linear operators with operator norms $\|C\|_{\text {op }}=\left\|C^{*}\right\|_{\text {op }}=1$. Moreover, C^{*} is the adjoint operator of C.

- Operator Norm: $\|C\|_{\text {op }} \triangleq \sup _{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$
- $\|C\|_{\text {op }} \leq 1$ by Jensen's inequality:

$$
\|C(f)\|_{\mathbb{P}_{Y}}^{2}=\mathbb{E}\left[\mathbb{E}[f(X) \mid Y]^{2}\right] \leq \mathbb{E}\left[\mathbb{E}\left[f^{2}(X) \mid Y\right]\right]=\|f\|_{\mathbb{P}_{X}}^{2}
$$

Preliminaries

Proposition (Conditional Expectation Operators)

C and C^{*} are bounded linear operators with operator norms $\|C\|_{\text {op }}=\left\|C^{*}\right\|_{\text {op }}=1$. Moreover, C^{*} is the adjoint operator of C.

- Operator Norm: $\|C\|_{\text {op }} \triangleq \sup _{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}$
- $\|C\|_{\text {op }} \leq 1$ by Jensen's inequality.
- Let $\mathbf{1}_{S}: S \rightarrow \mathbb{R}$ denote the everywhere unity function: $\mathbf{1}_{S}(x)=1$. $C\left(\mathbf{1}_{\mathcal{X}}\right)=\mathbf{1}_{\mathcal{Y}}$ and $\left\|\mathbf{1}_{\mathcal{X}}\right\|_{\mathbb{P}_{X}}^{2}=\left\|\mathbf{1}_{\mathcal{Y}}\right\|_{\mathbb{P}_{Y}}^{2}=1 \Rightarrow\|C\|_{\mathrm{op}}=1$.

Spectral Characterization of Maximal Correlation

Prop (Spectral Characterization of Maximal Correlation) [Rényi, 1959]

For random variables X and Y as defined earlier:

$$
\rho(X ; Y)=\sup _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right): \\ \mathbb{E}[f(X)]=0}} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}
$$

where the supremum is achieved by some $f^{\star} \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ if C is compact.

Spectral Characterization of Maximal Correlation

Prop (Spectral Characterization of Maximal Correlation) [Rényi, 1959]

For random variables X and Y as defined earlier:

$$
\rho(X ; Y)=\sup _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right): \\ \mathbb{E}[f(X)]=0}} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}
$$

where the supremum is achieved by some $f^{\star} \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ if C is compact.

- C has largest singular value $\|C\|_{\text {op }}=1: C\left(\mathbf{1}_{\mathcal{X}}\right)=\mathbf{1}_{\mathcal{Y}}, C^{*}\left(\mathbf{1}_{\mathcal{Y}}\right)=\mathbf{1}_{\mathcal{X}}$.

Spectral Characterization of Maximal Correlation

Prop (Spectral Characterization of Maximal Correlation) [Rényi, 1959]

For random variables X and Y as defined earlier:

$$
\rho(X ; Y)=\sup _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right): \\ \mathbb{E}[f(X)]=0}} \frac{\|C(f)\|_{\mathbb{P}_{Y}}}{\|f\|_{\mathbb{P}_{X}}}
$$

where the supremum is achieved by some $f^{\star} \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ if C is compact.

- C has largest singular value $\|C\|_{\text {op }}=1: C\left(\mathbf{1}_{\mathcal{X}}\right)=\mathbf{1}_{\mathcal{Y}}, C^{*}\left(\mathbf{1}_{\mathcal{Y}}\right)=\mathbf{1}_{\mathcal{X}}$.
- $\rho(X ; Y)=$ second largest singular value of C with singular vectors $f^{\star} \perp \mathbf{1}_{\mathcal{X}}$ and $g^{\star}=C\left(f^{\star}\right) / \rho(X ; Y) \perp \mathbf{1}_{\mathcal{Y}}$ that maximize correlation.

Outline

(1) Introduction
(2) Polynomial Decompositions of Compact Operators

- The Hermite SVD
- Assumptions and Definitions
- Polynomial EVD of Compact Self-Adjoint Operators
- Polynomial SVD of Conditional Expectation Operators
(3) Illustrations of Polynomial SVDs

The Hermite SVD

Gaussian Channel: $P_{Y \mid X=x}=\mathcal{N}(x, \nu)$ with expectation parameter $x \in \mathbb{R}$ and fixed variance $\nu \in(0, \infty)$

$$
\forall x, y \in \mathbb{R}, \quad P_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi \nu}} \exp \left(-\frac{(y-x)^{2}}{2 \nu}\right)
$$

Gaussian Source: $P_{X}=\mathcal{N}(0, p)$ with fixed variance $p \in(0, \infty)$

$$
\forall x \in \mathbb{R}, \quad P_{X}(x)=\frac{1}{\sqrt{2 \pi p}} \exp \left(-\frac{x^{2}}{2 p}\right)
$$

The Hermite SVD

Gaussian Channel: $P_{Y \mid X=x}=\mathcal{N}(x, \nu)$ with expectation parameter $x \in \mathbb{R}$ and fixed variance $\nu \in(0, \infty)$

$$
\forall x, y \in \mathbb{R}, \quad P_{Y \mid X}(y \mid x)=\frac{1}{\sqrt{2 \pi \nu}} \exp \left(-\frac{(y-x)^{2}}{2 \nu}\right)
$$

Gaussian Source: $P_{X}=\mathcal{N}(0, p)$ with fixed variance $p \in(0, \infty)$

$$
\forall x \in \mathbb{R}, \quad P_{X}(x)=\frac{1}{\sqrt{2 \pi p}} \exp \left(-\frac{x^{2}}{2 p}\right)
$$

Remark: (AWGN channel) $Y=X+W$ with $X \Perp W \sim \mathcal{N}(0, \nu)$
Gaussian Output Marginal: $P_{Y}=\mathcal{N}(0, p+\nu)$

$$
\forall y \in \mathbb{R}, \quad P_{Y}(y)=\frac{1}{\sqrt{2 \pi(p+\nu)}} \exp \left(-\frac{y^{2}}{2(p+\nu)}\right)
$$

The Hermite SVD

Prop (Hermite SVD) [Abbe \& Zheng, 2012], [Makur \& Zheng, 2016]

For the Gaussian channel $P_{Y \mid X}$ and Gaussian source P_{X}, the conditional expectation operator $C: \mathcal{L}^{2}\left(\mathbb{R}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathbb{R}, \mathbb{P}_{Y}\right)$ has SVD:

$$
\forall k \in \mathbb{N}, \quad C\left(H_{k}^{(p)}\right)=\sigma_{k} H_{k}^{(p+\nu)}
$$

with singular values: $\left\{\sigma_{k} \in(0,1]: k \in \mathbb{N}\right\}$ where $\sigma_{0}=1$ and $\lim _{k \rightarrow \infty} \sigma_{k}=0$, and singular vectors:

- $\left\{H_{k}^{(p)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Hermite polynomials that are orthonormal with respect to \mathbb{P}_{X},
- $\left\{H_{k}^{(p+\nu)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Hermite polynomials that are orthonormal with respect to \mathbb{P}_{Y}.

The Hermite SVD

Prop (Hermite SVD) [Abbe \& Zheng, 2012], [Makur \& Zheng, 2016]

For the Gaussian channel $P_{Y \mid X}$ and Gaussian source P_{X}, the conditional expectation operator $C: \mathcal{L}^{2}\left(\mathbb{R}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathbb{R}, \mathbb{P}_{Y}\right)$ has SVD:

$$
\forall k \in \mathbb{N}, \quad C\left(H_{k}^{(p)}\right)=\sigma_{k} H_{k}^{(p+\nu)}
$$

with singular values: $\left\{\sigma_{k} \in(0,1]: k \in \mathbb{N}\right\}$ where $\sigma_{0}=1$ and $\lim _{k \rightarrow \infty} \sigma_{k}=0$, and singular vectors:

- $\left\{H_{k}^{(p)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Hermite polynomials that are orthonormal with respect to \mathbb{P}_{X},
- $\left\{H_{k}^{(p+\nu)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Hermite polynomials that are orthonormal with respect to \mathbb{P}_{Y}.

For which joint distributions $P_{X, Y}$ are the singular vectors of C orthonormal polynomials?

Assumptions and Definitions

- $\mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ and $\mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ are infinite-dimensional.

Assumptions and Definitions

- $\mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ and $\mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ are infinite-dimensional.
- $\mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ admits a unique countable orthonormal basis of polynomials, $\left\{p_{k}: k \in \mathbb{N}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$, where $p_{k}: \mathcal{X} \rightarrow \mathbb{R}$ is an orthonormal polynomial with degree k.

Assumptions and Definitions

- $\mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ and $\mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ are infinite-dimensional.
- $\mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ admits a unique countable orthonormal basis of polynomials, $\left\{p_{k}: k \in \mathbb{N}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$, where $p_{k}: \mathcal{X} \rightarrow \mathbb{R}$ is an orthonormal polynomial with degree k.
- $\mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ admits a unique countable orthonormal basis of polynomials, $\left\{q_{k}: k \in \mathbb{N}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$, where $q_{k}: \mathcal{Y} \rightarrow \mathbb{R}$ is an orthonormal polynomial with degree k.

Assumptions and Definitions

Definition (Closure over Polynomials and Degree Preservation)

An operator $T: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is closed over polynomials if for any polynomial $p \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right), T(p)$ is also a polynomial. Furthermore, T is degree preserving if:

$$
\operatorname{deg}(T(p)) \leq \operatorname{deg}(p)
$$

and T is strictly degree preserving if:

$$
\operatorname{deg}(T(p))=\operatorname{deg}(p)
$$

Assumptions and Definitions

Definition (Closure over Polynomials and Degree Preservation)

An operator $T: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is closed over polynomials if for any polynomial $p \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right), T(p)$ is also a polynomial. Furthermore, T is degree preserving if:

$$
\operatorname{deg}(T(p)) \leq \operatorname{deg}(p)
$$

and T is strictly degree preserving if:

$$
\operatorname{deg}(T(p))=\operatorname{deg}(p)
$$

Gaussian Channel Example: $Y=X+W$ with $X \Perp W \sim \mathcal{N}(0, \nu)$

$$
\mathbb{E}[g(Y) \mid X=x]=\frac{1}{\sqrt{2 \pi \nu}} \int_{\mathbb{R}} g(y) \exp \left(-\frac{(y-x)^{2}}{2 \nu}\right) d \mu(y)
$$

Assumptions and Definitions

Definition (Closure over Polynomials and Degree Preservation)

An operator $T: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is closed over polynomials if for any polynomial $p \in \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right), T(p)$ is also a polynomial. Furthermore, T is degree preserving if:

$$
\operatorname{deg}(T(p)) \leq \operatorname{deg}(p)
$$

and T is strictly degree preserving if:

$$
\operatorname{deg}(T(p))=\operatorname{deg}(p)
$$

Gaussian Channel Example: $Y=X+W$ with $X \Perp W \sim \mathcal{N}(0, \nu)$

$$
\mathbb{E}[g(Y) \mid X=x]=\frac{1}{\sqrt{2 \pi \nu}} \int_{\mathbb{R}} g(y) \exp \left(-\frac{(y-x)^{2}}{2 \nu}\right) d \mu(y)
$$

Convolution preserves polynomials!

Polynomial EVD of Compact Self-Adjoint Operators

Theorem (Condition for Orthonormal Polynomial Eigenbasis) [Makur and Zheng, 2016]
Let $T: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ be a compact self-adjoint operator. T is closed over polynomials and degree preserving if and only if:

$$
\forall k \in \mathbb{N}, \quad T\left(p_{k}\right)=\alpha_{k} p_{k}
$$

where $\left\{\alpha_{k} \in \mathbb{R}: k \in \mathbb{N}\right\}$ are eigenvalues satisfying $\lim _{k \rightarrow \infty} \alpha_{k}=0$.

Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors) [Makur and Zheng, 2016]

Suppose $C: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is compact and $C^{*}: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ is its adjoint operator.
C and C^{*} are closed over polynomials and strictly degree preserving if and only if:

$$
\forall k \in \mathbb{N}, \quad C\left(p_{k}\right)=\beta_{k} q_{k}
$$

where $\left\{\beta_{k} \in(0, \infty): k \in \mathbb{N}\right\}$ are the singular values such that $\lim _{k \rightarrow \infty} \beta_{k}=0$.

Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors)

 [Makur and Zheng, 2016]Suppose $C \triangleq \mathbb{E}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is compact and $C^{*}=\mathbb{E}[\mid X]: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ is its adjoint operator. For every $n \in \mathbb{N}, \mathbb{E}\left[X^{n} \mid Y\right]$ is a polynomial in Y with degree n and $\mathbb{E}\left[Y^{n} \mid X\right]$ is polynomial in X with degree n if and only if:

$$
\forall k \in \mathbb{N}, \quad C\left(p_{k}\right)=\beta_{k} q_{k}
$$

where $\left\{\beta_{k} \in(0,1]: k \in \mathbb{N}\right\}$ are the singular values such that $\beta_{0}=1$ and $\lim _{k \rightarrow \infty} \beta_{k}=0$.

Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors)

 [Makur and Zheng, 2016]Suppose $C \triangleq \mathbb{E}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is compact and $C^{*}=\mathbb{E}[\cdot \mid X]: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ is its adjoint operator. For every $n \in \mathbb{N}, \mathbb{E}\left[X^{n} \mid Y\right]$ is a polynomial in Y with degree n and $\mathbb{E}\left[Y^{n} \mid X\right]$ is polynomial in X with degree n if and only if:

$$
\forall k \in \mathbb{N}, \quad C\left(p_{k}\right)=\beta_{k} q_{k}
$$

where $\left\{\beta_{k} \in(0,1]: k \in \mathbb{N}\right\}$ are the singular values such that $\beta_{0}=1$ and $\lim _{k \rightarrow \infty} \beta_{k}=0$.

Gaussian Example Proof Sketch:

- $Y=X+W$ with $X \sim \mathcal{N}(0, p) \Perp W \sim \mathcal{N}(0, \nu)$.

Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors) [Makur and Zheng, 2016]

Suppose $C \triangleq \mathbb{E}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is compact and $C^{*}=\mathbb{E}[\cdot \mid X]: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ is its adjoint operator. For every $n \in \mathbb{N}, \mathbb{E}\left[X^{n} \mid Y\right]$ is a polynomial in Y with degree n and $\mathbb{E}\left[Y^{n} \mid X\right]$ is polynomial in X with degree n if and only if:

$$
\forall k \in \mathbb{N}, \quad C\left(p_{k}\right)=\beta_{k} q_{k}
$$

where $\left\{\beta_{k} \in(0,1]: k \in \mathbb{N}\right\}$ are the singular values such that $\beta_{0}=1$ and $\lim _{k \rightarrow \infty} \beta_{k}=0$.

Gaussian Example Proof Sketch:

- $Y=X+W$ with $X \sim \mathcal{N}(0, p) \Perp W \sim \mathcal{N}(0, \nu)$.
- C, C^{*} are defined by convolution kernels which preserve polynomials.

Polynomial SVD of Conditional Expectation Operators

Theorem (Condition for Orthonormal Polynomial Singular Vectors) [Makur and Zheng, 2016]

Suppose $C \triangleq \mathbb{E}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right)$ is compact and $C^{*}=\mathbb{E}[\cdot \mid X]: \mathcal{L}^{2}\left(\mathcal{Y}, \mathbb{P}_{Y}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{X}, \mathbb{P}_{X}\right)$ is its adjoint operator. For every $n \in \mathbb{N}, \mathbb{E}\left[X^{n} \mid Y\right]$ is a polynomial in Y with degree n and $\mathbb{E}\left[Y^{n} \mid X\right]$ is polynomial in X with degree n if and only if:

$$
\forall k \in \mathbb{N}, \quad C\left(p_{k}\right)=\beta_{k} q_{k}
$$

where $\left\{\beta_{k} \in(0,1]: k \in \mathbb{N}\right\}$ are the singular values such that $\beta_{0}=1$ and $\lim _{k \rightarrow \infty} \beta_{k}=0$.

Gaussian Example Proof Sketch:

- $Y=X+W$ with $X \sim \mathcal{N}(0, p) \Perp W \sim \mathcal{N}(0, \nu)$.
- C, C^{*} are defined by convolution kernels which preserve polynomials.
- By above theorem, C has Hermite polynomial singular vectors.

Outline

(1) Introduction
(2) Polynomial Decompositions of Compact Operators
(3) Illustrations of Polynomial SVDs

- The Laguerre SVD
- The Jacobi SVD
- Natural Exponential Families and Conjugate Priors

The Laguerre SVD

Poisson Channel: $P_{Y \mid X=x}=\operatorname{Poisson}(x)$ with rate parameter $x \in(0, \infty)$

$$
\forall x \in(0, \infty), \forall y \in \mathbb{N}, \quad P_{Y \mid X}(y \mid x)=\frac{x^{y} e^{-x}}{y!}
$$

Gamma Source: $P_{X}=\operatorname{gamma}(\alpha, \beta)$ with shape parameter $\alpha \in(0, \infty)$ and rate parameter $\beta \in(0, \infty)$

$$
\forall x \in(0, \infty), \quad P_{X}(x)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
$$

The Laguerre SVD

Poisson Channel: $P_{Y \mid X=x}=\operatorname{Poisson}(x)$ with rate parameter $x \in(0, \infty)$

$$
\forall x \in(0, \infty), \forall y \in \mathbb{N}, \quad P_{Y \mid X}(y \mid x)=\frac{x^{y} e^{-x}}{y!}
$$

Gamma Source: $P_{X}=\operatorname{gamma}(\alpha, \beta)$ with shape parameter $\alpha \in(0, \infty)$ and rate parameter $\beta \in(0, \infty)$

$$
\forall x \in(0, \infty), \quad P_{X}(x)=\frac{\beta^{\alpha} x^{\alpha-1} e^{-\beta x}}{\Gamma(\alpha)}
$$

Negative Binomial Output Marginal:
$P_{Y}=$ negative-binomial $\left(p=\frac{1}{\beta+1}, \alpha\right)$ with success probability parameter $p \in(0,1)$ and number of failures parameter $\alpha \in(0, \infty)$

$$
\forall y \in \mathbb{N}, \quad P_{Y}(y)=\frac{\Gamma(\alpha+y)}{\Gamma(\alpha) y!}\left(\frac{1}{\beta+1}\right)^{y}\left(\frac{\beta}{\beta+1}\right)^{\alpha}
$$

The Laguerre SVD

Proposition (Laguerre SVD) [Makur and Zheng, 2016]

For the Poisson channel $P_{Y \mid X}$ and gamma source P_{X}, the conditional expectation operator $C: \mathcal{L}^{2}\left((0, \infty), \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathbb{N}, \mathbb{P}_{Y}\right)$ has SVD:

$$
\forall k \in \mathbb{N}, \quad C\left(L_{k}^{(\alpha, \beta)}\right)=\sigma_{k} M_{k}^{\left(\alpha, \frac{1}{\beta+1}\right)}
$$

with singular values: $\left\{\sigma_{k} \in(0,1]: k \in \mathbb{N}\right\}$ where $\sigma_{0}=1$ and $\lim _{k \rightarrow \infty} \sigma_{k}=0$, and singular vectors:

- $\left\{L_{k}^{(\alpha, \beta)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - generalized Laguerre polynomials that are orthonormal with respect to \mathbb{P}_{X},
- $\left\{M_{k}^{\left(\alpha, \frac{1}{\beta+1}\right)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Meixner polynomials that are orthonormal with respect to \mathbb{P}_{Y}.

The Jacobi SVD

Binomial Channel: $P_{Y \mid X=x}=\operatorname{binomial}(n, x)$ with number of trials parameter $n \in \mathbb{N} \backslash\{0\}$ and success probability parameter $x \in(0,1)$

$$
\forall x \in(0,1), \forall y \in[n] \triangleq\{0, \ldots, n\}, P_{Y \mid X}(y \mid x)=\binom{n}{y} x^{y}(1-x)^{n-y}
$$

Beta Source: $P_{X}=\operatorname{beta}(\alpha, \beta)$ with shape parameters $\alpha \in(0, \infty)$ and $\beta \in(0, \infty)$

$$
\forall x \in(0,1), \quad P_{X}(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

The Jacobi SVD

Binomial Channel: $P_{Y \mid X=x}=$ binomial (n, x) with number of trials parameter $n \in \mathbb{N} \backslash\{0\}$ and success probability parameter $x \in(0,1)$

$$
\forall x \in(0,1), \forall y \in[n] \triangleq\{0, \ldots, n\}, \quad P_{Y \mid X}(y \mid x)=\binom{n}{y} x^{y}(1-x)^{n-y}
$$

Beta Source: $P_{X}=\operatorname{beta}(\alpha, \beta)$ with shape parameters $\alpha \in(0, \infty)$ and $\beta \in(0, \infty)$

$$
\forall x \in(0,1), \quad P_{X}(x)=\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

Beta-Binomial Output Marginal: $P_{Y}=$ beta-binomial (n, α, β)

$$
\forall y \in[n], \quad P_{Y}(y)=\binom{n}{y} \frac{\mathrm{~B}(\alpha+y, \beta+n-y)}{\mathrm{B}(\alpha, \beta)}
$$

The Jacobi SVD

Proposition (Jacobi SVD) [Makur and Zheng, 2016]

For the binomial channel $P_{Y \mid X}$ and beta source P_{X}, the conditional expectation operator $C: \mathcal{L}^{2}\left((0,1), \mathbb{P}_{X}\right) \rightarrow \mathcal{L}^{2}\left([n], \mathbb{P}_{Y}\right)$ has SVD:

$$
\begin{aligned}
\forall k \in[n], \quad C\left(J_{k}^{(\alpha, \beta)}\right) & =\sigma_{k} Q_{k}^{(\alpha, \beta)} \\
\forall k \in \mathbb{N} \backslash[n], \quad C\left(J_{k}^{(\alpha, \beta)}\right) & =0
\end{aligned}
$$

with singular values: $\left\{\sigma_{k} \in(0,1]: k \in[n]\right\}$ where $\sigma_{0}=1$, and singular vectors:

- $\left\{J_{k}^{(\alpha, \beta)}\right.$ with degree $\left.k: k \in \mathbb{N}\right\}$ - Jacobi polynomials that are orthonormal with respect to \mathbb{P}_{x},
- $\left\{Q_{k}^{(\alpha, \beta)}\right.$ with degree $\left.k: k \in[n]\right\}$ - Hahn polynomials that are orthonormal with respect to \mathbb{P}_{Y}.

Why are these joint distributions special?

- $P_{Y \mid X}$ is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$
\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \quad P_{Y \mid X}(y \mid x)=\exp (x y-\alpha(x)+\beta(y))
$$

where $P_{Y \mid X}(y \mid 0)=\exp (\beta(y))$ is the base distribution, $\alpha(x)$ is the log-partition function with $\alpha(0)=0$, and $\mathbb{V} \mathbb{A} \mathbb{R}(Y \mid X=x)$ is a quadratic function of $\mathbb{E}[Y \mid X=x]$.

Why are these joint distributions special?

- $P_{Y \mid X}$ is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$
\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \quad P_{Y \mid X}(y \mid x)=\exp (x y-\alpha(x)+\beta(y))
$$

- P_{X} belongs to the corresponding conjugate prior family:

$$
\forall x \in \mathcal{X}, \quad P_{X}\left(x ; y^{\prime}, n\right)=\exp \left(y^{\prime} x-n \alpha(x)-\tau\left(y^{\prime}, n\right)\right)
$$

where $\tau\left(y^{\prime}, n\right)$ is the log-partition function.

Why are these joint distributions special?

- $P_{Y \mid X}$ is a natural exponential family with quadratic variance function (introduced in [Morris, 1982]):

$$
\forall x \in \mathcal{X}, \forall y \in \mathcal{Y}, \quad P_{Y \mid X}(y \mid x)=\exp (x y-\alpha(x)+\beta(y))
$$

- P_{X} belongs to the corresponding conjugate prior family:

$$
\forall x \in \mathcal{X}, \quad P_{X}\left(x ; y^{\prime}, n\right)=\exp \left(y^{\prime} x-n \alpha(x)-\tau\left(y^{\prime}, n\right)\right)
$$

- All moments exist and are finite:
- Gaussian likelihood with Gaussian prior,
- Poisson likelihood with gamma prior,
- binomial likelihood with beta prior.

Conclusion

Summary:

(1) Regression and maximal correlation \Rightarrow conditional expectation operators
(2) Closure over polynomials and degree preservation \Leftrightarrow orthogonal polynomial eigenvectors or singular vectors
(3) Check conditional moments are polynomials \Rightarrow Gaussian-Gaussian, Gamma-Poisson, Beta-Binomial examples
(9) Examples have natural exponential family/conjugate prior structure

