Anuran Makur

EECS Department, Massachusetts Institute of Technology

Allerton Conference 2018

A. Makur (MIT)

Capacity of BSC Permutation Channel

5 October 2018 1 / 21

Outline

Introduction

- Motivation: Coding for Communication Networks
- The Permutation Channel Model
- Capacity of the BSC Permutation Channel

2 Achievability

3 Converse

4 Conclusion

5 October 2018 3 / 21

Model communication network as a channel:

• Alphabet symbols = all possible *L*-bit packets $\Rightarrow 2^{L}$ input symbols

- Alphabet symbols = all possible *L*-bit packets
- multipath routed network or evolving network topology

- Alphabet symbols = all possible *L*-bit packets
- multipath routed network \Rightarrow packets received with transpositions

- Alphabet symbols = all possible *L*-bit packets
- multipath routed network \Rightarrow packets received with transpositions
- packets are impaired (e.g. deletions, substitutions)

- Alphabet symbols = all possible *L*-bit packets
- multipath routed network \Rightarrow packets received with transpositions
- packets are impaired ⇒ model using channel probabilities

Consider a communication network where packets can be dropped:

A. Makur (MIT)

Capacity of BSC Permutation Channel

5 October 2018 4 / 21

Consider a communication network where packets can be dropped:

Abstraction:

• *n*-length codeword = sequence of *n* packets

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet of codeword independently with probability $p \in (0, 1)$

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet of codeword independently with probability p ∈ (0, 1)

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet of codeword independently with probability $p \in (0, 1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Random deletion channel: Delete each symbol/packet of codeword independently with probability $p \in (0, 1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Equivalent Erasure channel: Erase each symbol/packet of codeword independently with probability p ∈ (0, 1)
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet of codeword independently with probability p ∈ (0, 1)
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers (packet size = $L + \log(n)$ bits, alphabet size = $n2^{L}$)

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet of codeword independently with probability p ∈ (0, 1)
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques

Consider a communication network where packets can be dropped:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet of codeword independently with probability p ∈ (0, 1)
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques
- More refined coding techniques *simulate* sequence numbers,
 - e.g. [Mitzenmacher 2006], [Metzner 2009]

Consider a communication network where packets can be dropped:

Abstraction:

- *n*-length codeword = sequence of *n* packets
- Erasure channel: Erase each symbol/packet of codeword independently with probability p ∈ (0, 1)
- Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?

A. Makur (MIT)

Capacity of BSC Permutation Channel

• Sender sends message $M \sim \text{Uniform}(\mathcal{M})$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- Possibly randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$ (with block-length n)

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- Possibly randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$ (with block-length n)
- Discrete memoryless channel $P_{Z|X}$ with input and output alphabets \mathcal{X} and \mathcal{Y} produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- Possibly randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$ (with block-length n)
- Discrete memoryless channel $P_{Z|X}$ with input and output alphabets \mathcal{X} and \mathcal{Y} produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

• Random permutation generates Y_1^n from Z_1^n

- Sender sends message $M \sim \text{Uniform}(\mathcal{M})$
- Possibly randomized encoder $f_n : \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(\mathcal{M})$ (with block-length n)
- Discrete memoryless channel $P_{Z|X}$ with input and output alphabets \mathcal{X} and \mathcal{Y} produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Random permutation generates Y_1^n from Z_1^n
- Possibly randomized decoder $g_n : \mathcal{Y}^n \to \mathcal{M}$ produces estimate $\hat{\mathcal{M}} = g_n(Y_1^n)$ at receiver

General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [Kovačević-Vukobratović 2013]

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [Kovačević-Vukobratović 2013]

 Multiset codes are studied in [Kovačević-Vukobratović 2013], [Kovačević-Vukobratović 2015], and [Kovačević-Tan 2018]

• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [Kovačević-Vukobratović 2013]

 Multiset codes are studied in [Kovačević-Vukobratović 2013], [Kovačević-Vukobratović 2015], and [Kovačević-Tan 2018]

What about the information theoretic aspects of this model?

• Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$

- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of encoder-decoder pair (f_n, g_n) :

$$R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$$

- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of encoder-decoder pair (f_n, g_n) :

$$R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$$

• $|\mathcal{M}| = n^R$

- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of encoder-decoder pair (f_n, g_n) :

$$R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$$

• $|\mathcal{M}| = n^R$ because number of empirical distributions of Y_1^n is poly(n)

- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of encoder-decoder pair (f_n, g_n) :

$$R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$$

- $|\mathcal{M}| = n^R$
- Rate $R \ge 0$ is achievable $\Leftrightarrow \exists \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{error}^n = 0$

- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of encoder-decoder pair (f_n, g_n) :

$$R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$$

•
$$|\mathcal{M}| = n^R$$

• Rate $R \ge 0$ is achievable $\Leftrightarrow \exists \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{\text{error}}^n = 0$

Definition (Permutation Channel Capacity)

$$C_{\mathsf{perm}}(P_{Z|X}) \triangleq \sup\{R \ge 0 : R \text{ is achievable}\}$$

A. Makur (MIT)

• Channel is binary symmetric channel, denoted BSC(*p*):

$$\forall z, x \in \{0, 1\}, \ P_{Z|X}(z|x) = \begin{cases} 1-p, & \text{for } z = x \\ p, & \text{for } z \neq x \end{cases}$$

• Channel is binary symmetric channel, denoted BSC(*p*):

$$\forall z, x \in \{0, 1\}, \ P_{Z|X}(z|x) = \begin{cases} 1-p, & \text{for } z = x \\ p, & \text{for } z \neq x \end{cases}$$

• Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$

• Channel is binary symmetric channel, denoted BSC(*p*):

$$\forall z, x \in \{0, 1\}, \ P_{Z|X}(z|x) = \begin{cases} 1-p, & \text{for } z = x \\ p, & \text{for } z \neq x \end{cases}$$

- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- Assume crossover probability $p \in (0,1)$ and $p \neq \frac{1}{2}$

• Channel is binary symmetric channel, denoted BSC(*p*):

$$\forall z, x \in \{0, 1\}, \ P_{Z|X}(z|x) = \begin{cases} 1-p, & \text{for } z = x \\ p, & \text{for } z \neq x \end{cases}$$

- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- Assume crossover probability $p \in (0,1)$ and $p \neq \frac{1}{2}$

Main Question

What is the permutation channel capacity of the BSC?

A. Makur (MIT)

5 October 2018 8 / 21

Image: A match a ma

Introduction

2 Achievability

- Encoder and Decoder
- Testing between Converging Hypotheses
- Intuition via Central Limit Theorem
- Second Moment Method for TV Distance

3 Converse

• Fix a message $m \in \{0, 1\}$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 - q_m) + q_m(1 - p)$ is the convolution of p and q_m

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 - q_m) + q_m(1 - p)$ is the convolution of p and q_m

• Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 - q_m) + q_m(1 - p)$ is the convolution of p and q_m

• Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$

• Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_{i} \geq \frac{1}{2}\right\}$

0
$$q_0 = \frac{1}{3}$$
 $q_1 = \frac{2}{3}$ 1

• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$, where $p * q_m \triangleq p(1 - q_m) + q_m(1 - p)$ is the convolution of p and q_m

- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$
- Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_i \geq \frac{1}{2}\right\}$

•
$$\frac{1}{n} \sum_{i=1}^{n} Y_i \rightarrow p * q_m$$
 in probability as $n \rightarrow \infty$ [WLLN]
 $\Rightarrow \lim_{n \rightarrow \infty} P_{\text{error}}^n = 0$ as $p * q_0 \neq p * q_1$

• Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0

3

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

• Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$ (as before)

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

$$\begin{bmatrix} & & & \\ & & & \\ 0 & & & \\ & & & \\ n^{-R} & & 1 \end{bmatrix}$$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n | M}(y_1^n | m)$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n | \mathcal{M}}(y_1^n | m)$
- Challenge: Although ¹/_n ∑ⁿ_{i=1} Y_i → p * ^m/_{n^R} in probability as n → ∞, consecutive messages become indistinguishable i.e. ^m/_{n^R} ^{m+1}/_{n^R} → 0

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n | M}(y_1^n | m)$
- **Challenge:** Although $\frac{1}{n} \sum_{i=1}^{n} Y_i \to p * \frac{m}{n^R}$ in probability as $n \to \infty$, consecutive messages become indistinguishable i.e. $\frac{m}{n^R} \frac{m+1}{n^R} \to 0$
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{error}^n = 0$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$

$$\begin{bmatrix} & & & \\ & & & \\ 0 & & & \\ & & & \\ n^{-R} & & 1 \end{bmatrix}$$

- Given $m \in \mathcal{M}, Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n | M}(y_1^n | m)$
- **Challenge:** Although $\frac{1}{n} \sum_{i=1}^{n} Y_i \to p * \frac{m}{n^R}$ in probability as $n \to \infty$, consecutive messages become indistinguishable i.e. $\frac{m}{n^R} \frac{m+1}{n^R} \to 0$
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{error}^n = 0$

What is the largest *R* such that two consecutive messages can be distinguished?

A. Makur (MIT)

Capacity of BSC Permutation Channel

Binary Hypothesis Testing:

• Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0,1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

• Let $\hat{H}_{ML}^{n}(T_{n})$ denote the ML decoder for H based on T_{n} with minimum probability of error $P_{ML}^{n} \triangleq \mathbb{P}(\hat{H}_{ML}^{n}(T_{n}) \neq H)$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0, 1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

- Let $\hat{H}_{ML}^{n}(T_{n})$ denote the ML decoder for H based on T_{n} with minimum probability of error $P_{ML}^{n} \triangleq \mathbb{P}(\hat{H}_{ML}^{n}(T_{n}) \neq H)$
- Want: Largest R > 0 such that $\lim_{n \to \infty} P_{ML}^n = 0$?

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions [CLT]

Figure:

For large n, P_{Tn|H}(·|0) and P_{Tn|H}(·|1) are Gaussian distributions [CLT]
 |ℝ[Tn|H = 0] - ℝ[Tn|H = 1]| = 1/n^R

Figure:

- For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions [CLT]
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Figure:

- For large n, P_{T_n|H}(·|0) and P_{T_n|H}(·|1) are Gaussian distributions [CLT]
 |𝔼[T_n|H = 0] − 𝔼[T_n|H = 1]| = 1/n^R
- Standard deviations are $\Theta(1/\sqrt{n})$
- Case $R < \frac{1}{2}$:

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions [CLT]

•
$$|\mathbb{E}[T_n|H=0] - \mathbb{E}[T_n|H=1]| = 1/n^r$$

- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R < \frac{1}{2}$: Decoding is possible \bigcirc

- For large n, P_{T_n|H}(·|0) and P_{T_n|H}(·|1) are Gaussian distributions [CLT]
 |𝔼[T_n|H = 0] − 𝔼[T_n|H = 1]| = 1/n^R
- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R > \frac{1}{2}$:

• For large *n*, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions [CLT]

•
$$|\mathbb{E}[T_n|H=0] - \mathbb{E}[T_n|H=1]| = 1/n^{t}$$

- Standard deviations are $\Theta(1/\sqrt{n})$
- **Case** $R > \frac{1}{2}$: Decoding is impossible \otimes

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left\| P_{\mathcal{T}_n | \mathcal{H}=1} - P_{\mathcal{T}_n | \mathcal{H}=0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[\mathcal{T}_n | \mathcal{H}=1] - \mathbb{E}[\mathcal{T}_n | \mathcal{H}=0] \right)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left\| \boldsymbol{P}_{T_n|H=1} - \boldsymbol{P}_{T_n|H=0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0] \right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof: Let
$$T_n^+ \sim P_{T_n|H=1}$$
 and $T_n^- \sim P_{T_n|H=0}$
 $\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)\right)^2$

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left|P_{T_n|H=1} - P_{T_n|H=0}\right|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0]\right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof: Let
$$T_n^+ \sim P_{T_n|H=1}$$
 and $T_n^- \sim P_{T_n|H=0}$
 $\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)}{\sqrt{P_{T_n}(t)}}\right)^2$

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left\| \boldsymbol{P}_{T_n|H=1} - \boldsymbol{P}_{T_n|H=0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0] \right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof: Cauchy-Schwarz inequality

$$\left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n \mid \mathcal{H}}(t \mid 1) - P_{T_n \mid \mathcal{H}}(t \mid 0) \right)}{\sqrt{P_{T_n}(t)}} \right)^2 \\ \leq \left(\sum_t t^2 P_{T_n}(t) \right) \left(\sum_t \frac{\left(P_{T_n \mid \mathcal{H}}(t \mid 1) - P_{T_n \mid \mathcal{H}}(t \mid 0) \right)^2}{P_{T_n}(t)} \right)$$

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left| P_{T_n|H=1} - P_{T_n|H=0} \right|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0] \right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof: Recall that T_n is zero-mean

$$\left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 = \left(\sum_t t \sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)}{\sqrt{P_{T_n}(t)}} \right)^2 \\ \leq \mathbb{VAR}(T_n) \left(\sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0) \right)^2}{P_{T_n}(t)} \right)$$

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left|P_{T_n|H=1} - P_{T_n|H=0}\right|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0]\right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof: Hammersley-Chapman-Robbins bound

$$\left(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-]\right)^2 = \left(\sum_t t \sqrt{P_{\mathcal{T}_n}(t)} \frac{\left(P_{\mathcal{T}_n|H}(t|1) - P_{\mathcal{T}_n|H}(t|0)\right)}{\sqrt{P_{\mathcal{T}_n}(t)}}\right)^2$$
$$\leq 4 \operatorname{VAR}(\mathcal{T}_n) \underbrace{\left(\frac{1}{4}\sum_t \frac{\left(P_{\mathcal{T}_n|H}(t|1) - P_{\mathcal{T}_n|H}(t|0)\right)^2}{P_{\mathcal{T}_n}(t)}\right)}_{H_{\mathcal{T}_n}(t)}$$

Vincze-Le Cam distance

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])

$$\left\| \boldsymbol{P}_{T_n|H=1} - \boldsymbol{P}_{T_n|H=0} \right\|_{\mathsf{TV}} \geq \frac{\left(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0] \right)^2}{4 \, \mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_{\ell^1}$ is the total variation (TV) distance between the distributions P and Q.

Proof:

$$\begin{split} \left(\mathbb{E} \left[T_n^+ \right] - \mathbb{E} \left[T_n^- \right] \right)^2 &= \left(\sum_t t \sqrt{P_{\mathcal{T}_n}(t)} \, \frac{\left(P_{\mathcal{T}_n|H}(t|1) - P_{\mathcal{T}_n|H}(t|0) \right)}{\sqrt{P_{\mathcal{T}_n}(t)}} \right)^2 \\ &\leq 4 \, \mathbb{VAR}(\mathcal{T}_n) \left(\frac{1}{4} \sum_t \frac{\left(P_{\mathcal{T}_n|H}(t|1) - P_{\mathcal{T}_n|H}(t|0) \right)^2}{P_{\mathcal{T}_n}(t)} \right) \\ &\leq 4 \, \mathbb{VAR}(\mathcal{T}_n) \left\| P_{\mathcal{T}_n|H=1} - P_{\mathcal{T}_n|H=0} \right\|_{\mathsf{TV}} \end{split}$$

Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: Start with Le Cam's relation

$$P_{ML}^{n} = \frac{1}{2} \left(1 - \left\| P_{T_{n}|H=1} - P_{T_{n}|H=0} \right\|_{TV} \right)$$
Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: Apply second moment method lemma

$$\begin{aligned} P_{\mathsf{ML}}^{n} &= \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right) \\ &\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right) \end{aligned}$$

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: After explicit computation and simplification...

$$egin{split} P_{\mathsf{ML}}^n &= rac{1}{2} \left(1 - \left\| P_{\mathcal{T}_n \mid H=1} - P_{\mathcal{T}_n \mid H=0}
ight\|_{\mathsf{TV}}
ight) \ &\leq rac{1}{2} \left(1 - rac{\left(\mathbb{E}[\mathcal{T}_n \mid H=1] - \mathbb{E}[\mathcal{T}_n \mid H=0]
ight)^2}{4 \, \mathbb{VAR}(\mathcal{T}_n)}
ight) \end{split}$$

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right)$$
$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right)$$
$$\leq \frac{3}{2n^{1-2R}}$$

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$. Then, $\lim_{n \to \infty} P_{\text{ML}}^n = 0$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right)$$

$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right)$$

$$\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty$$

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$. Then, $\lim_{n \to \infty} P_{\text{ML}}^n = 0$. This implies that: $C_{\text{perm}}(\text{BSC}(p)) \ge \frac{1}{2}$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|\mathcal{H}=1} - P_{\mathcal{T}_{n}|\mathcal{H}=0} \right\|_{\mathsf{TV}} \right)$$
$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=1] - \mathbb{E}[\mathcal{T}_{n}|\mathcal{H}=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right)$$
$$\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty$$

Introduction

2 Achievability

3 Converse

- Fano's Inequality Argument
- CLT Approximation

Conclusion

• Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]: *M* is uniform

 $R\log(n) = H(M)$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]: Fano's inequality, DPI

$$\begin{aligned} R\log(n) &= H(M|\hat{M}) + I(M;\hat{M}) \\ &\leq 1 + P_{\text{error}}^n R\log(n) + I(M;Y_1^n) \end{aligned}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]: sufficiency

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]: DPI

$$\begin{aligned} \mathsf{R}\log(n) &= H(M|\hat{M}) + I(M;\hat{M}) \\ &\leq 1 + P_{\text{error}}^n R \log(n) + I(M;Y_1^n) \\ &= 1 + P_{\text{error}}^n R \log(n) + I(M;S_n) \\ &\leq 1 + P_{\text{error}}^n R \log(n) + I(X_1^n;S_n) \end{aligned}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(X_1^n; S_n)$$

Divide by log(n)

$$R \leq \frac{1}{\log(n)} + P_{\text{error}}^n R + \frac{I(X_1^n; S_n)}{\log(n)}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument, cf. [Cover-Thomas 2006]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(M; Y_1^n)$$

$$= 1 + P_{\text{error}}^n R \log(n) + I(M; S_n)$$

$$\leq 1 + P_{\text{error}}^n R \log(n) + I(X_1^n; S_n)$$

• Divide by $\log(n)$ and let $n \to \infty$:

$$R \leq \lim_{n \to \infty} \frac{I(X_1^n; S_n)}{\log(n)}$$

Upper bound on $I(X_1^n; S_n)$:

 $I(X_1^n;S_n) = H(S_n) - H(S_n|X_1^n)$

A 1

3

Since
$$S_n \in \{0, ..., n\}$$
,
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(S_n | X_1^n = x_1^n)$

< A >

æ

Given
$$X_1^n = x_1^n$$
 with $\sum_{i=1}^n x_i = k$, $S_n = bin(k, 1-p) + bin(n-k, p)$:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(bin(k, 1-p) + bin(n-k, p))$

< A >

æ

Using Problem 2.14 in [Cover-Thomas 2006], $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$ $\leq \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$ $\leq \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$

Approximate binomial entropy using CLT, cf. [Adell-Lekuona-Yu 2010]:

$$\begin{split} I(X_1^n;S_n) &= H(S_n) - H(S_n|X_1^n) \\ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H(\min(k,1-p) + \min(n-k,p)) \\ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H\left(\min\left(\frac{n}{2},p\right)\right) \\ &= \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \left(\frac{1}{2}\log(\pi e p(1-p)n) + O\left(\frac{1}{n}\right)\right) \end{split}$$

Upper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$
 $= \log(n+1) - \frac{1}{2}\log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)$

-

æ

Upper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$
 $= \log(n+1) - \frac{1}{2}\log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)$
Hence, we have:

$$R \leq \lim_{n \to \infty} \frac{I(X_1^n; S_n)}{\log(n)} = \frac{1}{2}$$

э.

æ

• • • • • • • • • • • •

Upper bound on
$$I(X_1^n; S_n)$$
:
 $I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\min(k, 1-p) + \min(n-k, p))$
 $\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H\left(\min\left(\frac{n}{2}, p\right)\right)$
 $= \log(n+1) - \frac{1}{2}\log(\pi ep(1-p)n) + O\left(\frac{1}{n}\right)$

Hence, we have:

$$R \leq \lim_{n \to \infty} \frac{I(X_1^n; S_n)}{\log(n)} = \frac{1}{2}$$

Theorem (Converse)

$$C_{\text{perm}}(\text{BSC}(p)) \leq \frac{1}{2}$$

A. Makur (MIT)

2 Achievability

3 Converse

ም.

æ

Theorem (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Theorem (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Remarks:

• C_{perm}(·) is discontinuous and non-convex

Theorem (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Remarks:

- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel

5 October 2018

20 / 21

Theorem (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Remarks:

- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel
- Computationally tractable coding scheme in proof

20 / 21

Theorem (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\text{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in \left(0, \frac{1}{2}\right) \cup \left(\frac{1}{2}, 1\right)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$

Remarks:

- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel
- Computationally tractable coding scheme in proof
- Proof technique yields more general results

Thank You!

2