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Motivation: Point-to-point Communication in Networks
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Model communication network as a channel:
@ Alphabet symbols = all possible L-bit packets = 2L input symbols
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Motivation: Point-to-point Communication in Networks
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Model communication network as a channel:

NETWORK
@ Alphabet symbols = all possible L-bit packets
@ multipath routed network or evolving network topology
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Motivation: Point-to-point Communication in Networks
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Model communication network as a channel:

NETWORK
@ Alphabet symbols = all possible L-bit packets
@ multipath routed network = packets received with transpositions
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Motivation: Point-to-point Communication in Networks
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Model communication network as a channel:
@ Alphabet symbols = all possible L-bit packets
@ multipath routed network = packets received with transpositions
@ packets are impaired (e.g. deletions, substitutions)
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Motivation: Point-to-point Communication in Networks
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Model communication network as a channel:
@ Alphabet symbols = all possible L-bit packets
@ multipath routed network = packets received with transpositions
@ packets are impaired = model using channel probabilities

NETWORK
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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@ n-length codeword = sequence of n packets
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@ n-length codeword = sequence of n packets
e Random deletion channel: Delete each symbol/packet of codeword
independently with probability p € (0,1)
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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@ n-length codeword = sequence of n packets

e Random deletion channel: Delete each symbol/packet of codeword
independently with probability p € (0,1)

@ Random permutation block: Randomly permute packets of codeword
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

SENDER RECEIVER
ERASURE RANDOM
CHANNEL - > PERMUTATION
[ | | m-
NETWORK
Abstraction:

@ n-length codeword = sequence of n packets

e Equivalent Erasure channel: Erase each symbol/packet of codeword
independently with probability p € (0,1)

@ Random permutation block: Randomly permute packets of codeword
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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Abstraction:
@ n-length codeword = sequence of n packets
@ Erasure channel: Erase each symbol/packet of codeword
independently with probability p € (0,1)
@ Random permutation block: Randomly permute packets of codeword
e Coding: Add sequence numbers (packet size = L + log(n) bits,
alphabet size = n2t)
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:
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@ n-length codeword = sequence of n packets
@ Erasure channel: Erase each symbol/packet of codeword
independently with probability p € (0,1)
@ Random permutation block: Randomly permute packets of codeword
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

SENDER RECEIVER

& — e |-~ &
W3

3 3|
NETWORK

Abstraction:
@ n-length codeword = sequence of n packets
@ Erasure channel: Erase each symbol/packet of codeword
independently with probability p € (0,1)
@ Random permutation block: Randomly permute packets of codeword
@ Coding: Add sequence numbers and use standard coding techniques
@ More refined coding techniques simulate sequence numbers,
e.g. [Mitzenmacher 2006], [Metzner 2009]
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

SENDER RECEIVER
ERASURE RANDOM
CHANNEL - > PERMUTATION
[ | | m-
NETWORK
Abstraction:

@ n-length codeword = sequence of n packets

@ Erasure channel: Erase each symbol/packet of codeword
independently with probability p € (0,1)

@ Random permutation block: Randomly permute packets of codeword

How do you code in such channels
without increasing alphabet size? J
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The Permutation Channel Model

M X7 zZt RANDOM v M
— ——p
ENCODER CHANNEL PERMUTATION DECODER

@ Sender sends message M ~ Uniform(M)

@ Possibly randomized encoder f, : M — X" produces codeword
X{ = (X1,...,X,) = fo(M) (with block-length n)

A. Makur (MIT) Capacity of BSC Permutation Channel 5 October 2018 5/21



The Permutation Channel Model
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ENCODER CHANNEL PERMUTATION DECODER

@ Sender sends message M ~ Uniform(M)

@ Possibly randomized encoder f, : M — X" produces codeword
X{ = (X1,...,Xp) = f,(M) (with block-length n)

@ Discrete memoryless channel Pz x with input and output alphabets
X and Y produces Z7":

n
Pzoxp (2 1x7) = [ [ Pzix(zilx)
i—1
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The Permutation Channel Model

u X0 A RANDOM v
—
ENCODER CHANNEL PERMUTATION
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@ Sender sends message M ~ Uniform(M)

@ Possibly randomized encoder f, : M — X" produces codeword
X{ = (X1,...,Xp) = f,(M) (with block-length n)

@ Discrete memoryless channel Pz x with input and output alphabets
X and Y produces Z7":

n
Pzoxe(2f1x7) = [ [ Pzix(zilxi)
i—1

@ Random permutation generates Y]" from Z7
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The Permutation Channel Model

u X0 A RANDOM v
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ENCODER CHANNEL PERMUTATION
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DECODER [——

Sender sends message M ~ Uniform(M)

Possibly randomized encoder f, : M — X" produces codeword

X{ = (X1,...,Xp) = f,(M) (with block-length n)

Discrete memoryless channel Pz x with input and output alphabets
X and Y produces Z7":

n
Pzoxe(2f1x7) = [ [ Pzix(zilxi)
i—1

Random permutation generates Y{" from Z7'
Possibly randomized decoder g, : Y" — M produces estimate

A

M = gn(Y]") at receiver
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Coding for the Permutation Channel

M Xl Zl RANDOM )1
—
ENCODER CHANNEL PERMUTATION DECODER

l@

o General Principle:
“Encode the information in an object that is invariant under the
[permutation] transformation.” [Kova&evi¢-Vukobratovi¢ 2013]
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o General Principle:
“Encode the information in an object that is invariant under the
[permutation] transformation.” [Kova&evi¢-Vukobratovi¢ 2013]
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Coding for the Permutation Channel

M Xl Zl RANDOM )1
—
ENCODER CHANNEL PERMUTATION DECODER

l@

o General Principle:
“Encode the information in an object that is invariant under the
[permutation] transformation.” [Kova&evi¢-Vukobratovi¢ 2013]

e Multiset codes are studied in [Kovagevi¢-Vukobratovi¢ 2013],
[Kovacevi¢-Vukobratovi¢ 2015], and [Kovalevié¢-Tan 2018]

What about the information theoretic
aspects of this model? J
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Information Capacity of the Permutation Channel

M Xt Z7 RANDOM v 1
— NN
ENCODER CHANNEL PERMUTATION DECODER

e Average probability of error P2 2 P(M # M)

error
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Information Capacity of the Permutation Channel
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@ Average probability of error P2 . 2 P(M # M)
e “Rate” of encoder-decoder pair (f,, gn):
« log(IM])
log(n)
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Information Capacity of the Permutation Channel
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— NN
ENCODER CHANNEL PERMUTATION DECODER

@ Average probability of error P2 . 2 P(M # M)
e “Rate” of encoder-decoder pair (f,, gn):
« log(IM])
log(n)

o |[M|=nR
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Information Capacity of the Permutation Channel

M Xt Z7 RANDOM v 1
— NN
ENCODER CHANNEL PERMUTATION DECODER

@ Average probability of error P2 . 2 P(M # M)
e “Rate” of encoder-decoder pair (f,, gn):
« log(IM])
log(n)

o | M| = nR because number of empirical distributions of Y{" is poly(n)

A. Makur (MIT) Capacity of BSC Permutation Channel 5 October 2018 7/21



Information Capacity of the Permutation Channel

M Xt Z7 RANDOM v 1
— NN
ENCODER CHANNEL PERMUTATION DECODER

2 P(M £ M)

“Rate” of encoder-decoder pair (f,, gn):

» log(IM])

log(n)

Average probability of error PZ

error

(M| = nR
Rate R > 0 is achievable < 3{(f,, gn)} nen such that

Pl o =0

error

lim
n—oo
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Information Capacity of the Permutation Channel

M Xt Z7 RANDOM v 1
— NN
ENCODER CHANNEL PERMUTATION DECODER

2 P(M £ M)

“Rate” of encoder-decoder pair (f,, gn):

» log(IM])

log(n)

Average probability of error PZ

error

(M| = nR

Rate R > 0 is achievable < 3{(f,, gn)} nen such that Ii_)m Pl =0
n—o0

error

Definition (Permutation Channel Capacity)

Coerm(Pz|x) £ sup{R > 0 : R is achievable}
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Capacity of the BSC Permutation Channel

M X7 Z7 RANDOM v 1
— -
ENCODER BSC(p) PERMUTATION DECODER

@ Channel is binary symmetric channel, denoted BSC(p):

1—p, forz=x

Vz,x € {Oal}a PZ\X(Z‘X) = {
p, for z #£ x
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Capacity of the BSC Permutation Channel
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@ Channel is binary symmetric channel, denoted BSC(p):

1—p, forz=x

Vz,x € {Oal}a PZ\X(Z‘X) = {
p, for z #£ x

@ Alphabets are X =Y ={0,1}
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Capacity of the BSC Permutation Channel
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@ Channel is binary symmetric channel, denoted BSC(p):

1—p, forz=x

Vz,x € {Oal}a PZ\X(Z‘X) = {
p, for z #£ x

@ Alphabets are X =Y ={0,1}
@ Assume crossover probability p € (0,1) and p # %
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Capacity of the BSC Permutation Channel

A4 RANDOM )i
——| ENCODER BSC(p) L PERMUTATION 1 DECODER [——

@ Channel is binary symmetric channel, denoted BSC(p):

1—p, forz=x

Vz,x € {Oal}a PZ\X(Z‘X) = {
p, for z #£ x

@ Alphabets are X =Y ={0,1}
@ Assume crossover probability p € (0,1) and p # %

Main Question
What is the permutation channel capacity of the BSC?
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0 Introduction

© Achievability
@ Encoder and Decoder
@ Testing between Converging Hypotheses
@ Intuition via Central Limit Theorem
@ Second Moment Method for TV Distance

© Converse

@ Conclusion
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Warm-up: Sending Two Messages
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Warm-up: Sending Two Messages

M xp 7 RANDOM 4 M
——> ENCODER BSC(p) PERMUTATION DECODER [|—
. iid.
o Fix a message m € {0,1}, and encode m as f,(m) = X{" "~ Ber(qm)
| 1 1 ]
1 1 1 1 ) 1
0 Qo = 3 G =7 1
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Warm-up: Sending Two Messages

M xp 7 RANDOM 4 M
——| ENCODER BSC(p) PERMUTATION DECODER [|—
: iid.
o Fix a message m € {0,1}, and encode m as f,(m) = X{" "~ Ber(qm)
| 1 1 ]
1 1 1 1 ) 1
0 _1 _Z 1
Qo = 3 =3

e Memoryless BSC(p) outputs Z; Hig Ber(p * gm), where
p*qm = p(1—gm) + gm(1 — p) is the convolution of p and gy,
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: iid.
o Fix a message m € {0,1}, and encode m as f,(m) = X{" "~ Ber(qm)
| 1 1 ]
1 1 1 1 ) 1
0 _1 _Z 1
Qo = 3 =3

e Memoryless BSC(p) outputs Z; Hig Ber(p * gm), where
p*qm = p(1—gm) + gm(1 — p) is the convolution of p and gy,

@ Random permutation generates Y’ S Ber(p * qm)
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Warm-up: Sending Two Messages

M xp 7 RANDOM 4 M
—>| ENCODER BSC(p) PERMUTATION DECODER [|—

: iid.
o Fix a message m € {0,1}, and encode m as f,(m) = X{" "~ Ber(qm)

2 1

3

1
0 Z
qo 3 91

Memoryless BSC(p) outputs Z Hg Ber(p * gm), where
p*qm = p(1—gm) + gm(1 — p) is the convolution of p and gy,

Random permutation generates Y/’ RS Ber(p * qm)
e Maximum Likelihood (ML) decoder: M =1{1 %" | v;>1}
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Warm-up: Sending Two Messages

M xp 7 RANDOM 4 M
——| ENCODER BSC(p) PERMUTATION DECODER [|—
: iid.
o Fix a message m € {0,1}, and encode m as f,(m) = X{" "~ Ber(qm)
| 1 1 ]
1 1 1 1 ) 1
0 _1 _Z 1
Qo = 3 =3

e Memoryless BSC(p) outputs Z; H- Ber(p * gm), where
p*qm = p(1—gm) + gm(1 — p) is the convolution of p and gy,
@ Random permutation generates Y/’ S Ber(p * qm)
@ Maximum Likelihood (ML) decoder: M =1{1%"  v; > 1}
° %2721 Y; — p * gm in probability as n — oo [WLLN]
= Penrrorzoasp*q07ép*ql

lim
n—oo
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Encoder and Decoder

@ Suppose M = {1,...,n"} for some R >0
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Encoder and Decoder

@ Suppose M = {1,...,n"} for some R >0
e Randomized encoder: Given m € M, f,(m) = X{ L Ber(nﬂR)
| [ 1 [ 1 1 [ 1 1 ]
1 1 1 1 1 1 1 1
0 T 1
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Encoder and Decoder

@ Suppose M = {1,...,n"} for some R >0
e Randomized encoder: Given m € M, f,(m) = X{ L Ber(nﬂR)
| [ 1 [ 1 1 [ 1 1 ]
1 1 1 1 1 1 1 1
0 T 1

e Given me M, Y/ S Ber(p * n—n;) (as before)

5 October 2018 11 /21
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Encoder and Decoder

@ Suppose M = {1,...,n"} for some R >0
e Randomized encoder: Given m € M, f,(m) = X{ L Ber(nﬂR)
| [ 1 [ 1 1 [ 1 1 ]
1 1 1 1 1 1 1 1 1
0 T 1

e Given me M, Y/ Hig Ber(p* ﬂR)
n
o ML decoder: For yi' € {0,1}", gn(yy) = arg max Py (y1'|m)
meM

5 October 2018 11 /21
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Encoder and Decoder

@ Suppose M = {1,...,n"} for some R >0

e Randomized encoder: Given m € M, f,(m) = X{ L Ber(nﬂR)

Given me M, Y/ L Ber(p % ﬂR)
n
o ML decoder: For yi' € {0,1}", gn(yy) = arg max Py (y1'|m)
M

meJ
Challenge: Although %Z,’-’Zl Yi — p* % in probability as n — oo,

consecutive messages become indistinguishable i.e. & — ":1+R1 —0
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Encoder and Decoder

Suppose M = {1,...,nR} for some R >0

Randomized encoder: Given m € M, f,(m) = X/ L Ber(nﬂR)

Given me M, Y! Hig Ber(p* n—n;)

e ML decoder: For y;' € {0,1}", g,(y{) = arg mv?X PY1"|M(Y1n|m)

me/

Challenge: Although %Zle Yi — p* % in probability as n — oo,
consecutive messages become indistinguishable i.e. & — ’7:1+R1 —0
Pl =0

error

@ Fact: Consecutive messages distinguishable = lim
n—o0
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Encoder and Decoder

Suppose M = {1,...,nR} for some R >0

Randomized encoder: Given m € M, f,(m) = X/ L Ber(nﬂR)

Given me M, Y! Hig Ber(p* ni’;)

e ML decoder: For y;' € {0,1}", g,(y{) = arg m@X PY1"|M(Y1n|m)

me/

Challenge: Although %Z,’-’:l Yi — p* % in probability as n — oo,
consecutive messages become indistinguishable i.e. & — ":1+R1 —0

e Fact: Consecutive messages distinguishable = lim P, =0
n—oo
What is the largest R such that two consecutive messages
can be distinguished?
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Testing between Converging Hypotheses

Binary Hypothesis Testing:
@ Consider hypothesis H ~ Ber(%) with uniform prior
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Testing between Converging Hypotheses

Binary Hypothesis Testing:

@ Consider hypothesis H ~ Ber(%) with uniform prior
@ Forany ne N, g €(0,1), and R > 0, consider likelihoods:

piid.

Given H =0: X{" '~ Px|y—o = Ber(q)

piid.

1
Given H=1:X{' '~ Px|p=1 = Ber<q+ nR>
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Testing between Converging Hypotheses

Binary Hypothesis Testing:

@ Consider hypothesis H ~ Ber(%) with uniform prior
@ Forany ne N, g €(0,1), and R > 0, consider likelihoods:

piid.

Given H =0: X{" '~ Px|y—o = Ber(q)
piid.

1
Given H=1:X{' '~ Px|p=1 = Ber<q+ nR>

@ Define the zero-mean sufficient statistic of X{" for H:

n

1 1
A
Tn= - EIX/CIQnR
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Testing between Converging Hypotheses

Binary Hypothesis Testing:

@ Consider hypothesis H ~ Ber(%) with uniform prior
@ Forany ne N, g €(0,1), and R > 0, consider likelihoods:

Given H=10: X"IId Px|H=o = Ber(q)

|| 1
Given H = 1: X{' "% Py 1_Ber<q+ )

@ Define the zero-mean sufficient statistic of X{" for H:

n

1 1
A
Tn= - EIX/CIQnR

o Let A7 (T,) denote the ML decoder for H based on T, with
minimum probability of error P = ]P’( L(Tn) # H)
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Testing between Converging Hypotheses

Binary Hypothesis Testing:
@ Consider hypothesis H ~ Ber(%) with uniform prior
@ Forany ne N, g €(0,1), and R > 0, consider likelihoods:
Given H=10: X"Ild Px|H=o = Ber(q)

|| 1
Given H = 1: X{' "% Py 1_Ber<q+ )

@ Define the zero-mean sufficient statistic of X{" for H:
1 1
N g — ——
Tn - E Zl XI q 2nR
o Let A7 (T,) denote the ML decoder for H based on T, with

minimum probability of error P = ]P’( L(Tn) # H)
@ Want: Largest R > 0 such that I|_)m PML =07
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Intuition via Central Limit Theorem

e For large n, Pr,4(+|0) and Pr, 4(-[1) are Gaussian distributions [CLT]

Figure:
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0] —E[T,|H=1]| = 1/nR

Figure:
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0]—E[T,H=1]| = 1/nR
e Standard deviations are ©(1/y/n)

Figure:
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0]—E[T,H=1]| = 1/nR
e Standard deviations are ©(1/y/n)

Case R < %:
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0]—E[T,H=1]| = 1/nR
e Standard deviations are ©(1/y/n)

Case R < %: Decoding is possible ®
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0]—E[T,H=1]| = 1/nR
e Standard deviations are ©(1/y/n)

Case R > %:
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Intuition via Central Limit Theorem

e For large n, P1,4(:|0) and Pr, (1) are Gaussian distributions [CLT]
o [E[T,|H =0]—E[T,H=1]| = 1/nR
e Standard deviations are ©(1/y/n)

Case R > %: Decoding is impossible ®

Pr,1(£]0) Pr1u(t11)

A. Makur (MIT) Capacity of BSC Permutation Channel 5 October 2018 13 /21



Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[To|H = 1] — E[T,|H = 0])°

HPTn\Hzl - PTn|H:0HTV = 4VAR(T),)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

”PTnIH:l - 'DTnIH:OHTv =z

Proof: Let T, ~ Pr,H=1 and T, ~ Pt 1n=0o

(E[T4] - B[T,)) = (Z ¢ (Prlel1) — PT".Hum)))
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

”PTnIH:l - 'DTnIH:OHTv =z

Proof: Let T, ~ Pr,H=1 and T, ~ Pt 1n=0o

Bl - {171 = (5 v/ o) PrnttO)

Pr,(t)
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

HPTnIH=1 - 'DTnIH:OHTv =z

Proof: Cauchy-Schwarz inequality

B[] 517 1) = S evmnn PT"'”“'°”>2

VP (D)
. (Z t2PTn(t)> (Z (Prm(tl1) Pw(tm))z)

- Pr,(t)
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

HPTnIH=1 - 'DTnIH:OHTv =z

Proof: Recall that T, is zero-mean

(E[T;] ~E[T;])* = (Z ey/Pr. (e Lrr ) Pranlt0) )2

Pr,(t)
2
(Pr,1(t|1) — Pr,1(t]0))
< VAR(T, : 2
< VAR(T,) (Z Pr.(®)
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

HPTnIH=1 - 'DTnIH:OHTv =z

Proof: Hammersley-Chapman-Robbins bound

®[T;] - E[T,]) = (Z /Py (P (L) — in(tl0>)>2

Pr.(t)
2
< 4VAR(T,) (i Z (PTHH(th’,)DT_(I;T"'H(t‘O)) >

~
Vincze-Le Cam distance
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Second Moment Method for TV Distance

Lemma (2" Moment Method [Evans-Kenyon-Peres-Schulman 2000])
(E[T,|H = 1] — E[T,|H = 0])°
4VAR(T,)

where ||P — Q|ltv = 5 ||P — Q|| is the total variation (TV) distance
between the distributions P and Q.

HPTnIH=1 - 'DTnIH:OHTv =z

Proof:
2
P tj1) — P t|0
" Pr,(1)
1 (Pr,ju(tll) = Pr,n(t|0))*
< 4VAR(T,) (4 ; P
< 4VAR(T,) ||Pr,jH=1 — ProjH=0ll7y
[ |
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with
H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.

Proof: Start with Le Cam’s relation

1
Pi = 5 (1 - HPT,,\H:I - 'DTn|H:0HTV>
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with
H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.

Proof: Apply second moment method lemma
n 1
PuL =5 (1 —[|Pr=1 — PTn\H:OHTv)
<1 (E[TH =1~ E[T,/H = 01)2)

<

N+~

4VAR(T,)
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with
H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.

Proof: After explicit computation and simplification...
n 1
PuL =5 (1 —||Pryjp=1 — PTn\H:OHTV)
<1 (E[TH =1~ E[T,/H = 01)2)

<

N+~

4VAR(T,)
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with
H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.

Proof: For any 0 < R < %

1
PaL = (1 —||Prjp=1 — PTn\HonTv)

>
1 <1 (BT, H=1] - B[T,|H = 01)2>
2

4VAR(T,)
3
= 2n1—2R
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with

H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.
Then, Ii_}m P = 0.

Proof: For any 0 < R < %

1
P = 5 (1 — HPT,,|H:1 - 'DTn\HZOHTV)

< 1 (1 . (]E[Tn’H = 1] _E[Tn‘H _ 01)2)

4VAR(T,)
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with
H ~ Ber(), and X[ %" Ber(q + ) given H = h € {0,1}.
Then, Ii_)m P = 0. This implies that:

n—o0

Coerm(BSC(p)) >

N| =

Proof: Forany 0 < R < %

1
P = 5 (1 — HPT,,|H:1 - PTn\HZOHTV)

<1, _ (ETa|H =1] ~ E[T,|H = 0])*
2\ 4VAR(T,)
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z' — Y{ = S, £ 3" V;,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
IM| = nR and Pl =0

lim
error
n—0o0
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z' — Y{ = S, £ 37 Y;,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
M| = n® and Pl =0

lim
error
n—0o0

e Standard argument, cf. [Cover-Thomas 2006]: M is uniform

Rlog(n) = H(M)
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z' — Y{ = S, £ 37 Y;,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
(M| =nRand lim P2, =0

n—oo

error

e Standard argument, cf. [Cover-Thomas 2006]: Fano's inequality, DPI

Rlog(n) = H(M|N) + I(M; M)
<1+ Pl Rlog(n)+ I(M;Y{])

error
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z — Y = S, £ 3", Y,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
(M| =nRand lim P2, =0

n—oo

error

e Standard argument, cf. [Cover-Thomas 2006]: sufficiency

Rlog(n) = H(M|N) + I(M; M)
<14 Pl Rlog(n)+I(M;Y])

error

=1 + PgrrorRlog(n) + /(M' 5”)
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z' — Y{ = S, £ 37 Y;,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
(M| =nRand lim P2, =0

n—oo

error

e Standard argument, cf. [Cover-Thomas 2006]: DPI

Rlog(n) = H(M|M) + I(M; M)
< 1+ PgrrorR |Og(n) + I(M' Yln)

=1 + PgrrorR Iog(n) + I(M' Sﬂ)
<14 Pl Rlog(n)+ I(X];Sh)

error
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Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z — Y = S, £ 3", Y,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
IM| = nR and lim Pl =0

n—oo

e Standard argument, cf. [Cover-Thomas 2006]:

Rlog(n) = H(M|M) + I(M; M)

<1+ Pl Rlog(n)+ I(M;Y{])
=1+ PgrrorR Iog(n) + I(M. Sn)
<1+ P(grrorR |Og(n) + I(Xlny Sn)
e Divide by log(n)
n.
fe 1 g g 106
log(n) log(n)

A. Makur (MIT) Capacity of BSC Permutation Channel 5 October 2018 17 /21



Converse: Fano's Inequality Argument

o Consider the Markov chain M — X{ — Z' — Y{ = S, £ 37 Y;,
and a sequence of encoder-decoder pairs {(f,,gn)}nen such that
(M| =nRand lim P2 =0

n—o00

error

e Standard argument, cf. [Cover-Thomas 2006]:

Rlog(n) = H(M|M) + I(M; M)
< 1+ PgrrorR |Og(n) + I(M' Yln)

=1+ PgrrorR Iog(n) + I(M. Sn)
<1+ chrrorR |Og(n) + I(Xlny Sn)

@ Divide by log(n) and let n — oc:

R< lim [Xii5n)
n—oo  log(n)
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Converse: CLT Approximation

Upper bound on /(X]; Sy):
I(X{'; Sn) = H(Sn) — H(Sn|X{)
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Converse: CLT Approximation

Since S, € {0,...,n},
I(X1'; Sn) = H(Sn) — H(Sa|XT)

<log(n+1) = > Pxa(x]) H(SalX{ = x{)
x7€{0,1}"
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Converse: CLT Approximation

Given X{" = x{ with > ; xi = k, S, = bin(k, 1 — p) + bin(n — k, p):
I(X{'; Sn) = H(Sn) — H(Sa|X{)

<log(n+1)— > Pxp(x)H(bin(k,1— p) + bin(n — k, p))
x7€{0,1}"
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Converse: CLT Approximation

Using Problem 2.14 in [Cover-Thomas 2006],
I(X1"; Sn) = H(Sn) — H(SalXT")

<log(n+1)— > Pxp(x) H(bin(k,1— p) + bin(n — k, p))
x7€{0,1}"

< log(n Z Pxn (x7") (bin(%,p))

x7e{0,1}"
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Converse: CLT Approximation

Approximate binomial entropy using CLT, cf. [Adell-Lekuona-Yu 2010]:
I(X{': Sn) = H(Sn) — H(Sa|XT)
<log(n+1)— > Pxp(x) H(bin(k,1— p) + bin(n — k, p))

x7€{0,1}"
. /N
< log(n Z Pxn (x7") <b|n<§,p))
x7e{0,1}"
m 1 1
= log(n+1) — Z Pxp(x7) 5 log(mep(1 — p)n) + O -
x7'€{0,1}n
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Converse: CLT Approximation

Upper bound on /(X]; Sy):
I(X{"; Sn) = H(Sn) — H(Sn|X{)

<log(n+1)— > Pxp(x) H(bin(k,1— p) + bin(n — k, p))
x7€{0,1}"

< log(n Z Pxn (x7") (bin(%,p))

x7e{0,1}"

= log(n+1) — % log(mep(1l — p)n) + O(i)
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Converse: CLT Approximation

Upper bound on /(X]; Sy):
I(X{"; Sn) = H(Sn) — H(Sn|X{)

<log(n+1)— > Pxp(x) H(bin(k,1— p) + bin(n — k, p))
x7€{0,1}"

< log(n Z Pxn (x7") (bin(%,p))

x7e{0,1}"
1 1
= log(n+1) — B log(mep(1 — p)n) + O(n)

Hence, we have: xesy) 1
R< lim ———% =~
n—oo log(n) 2
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Converse: CLT Approximation

Upper bound on /(X]; Sy):
I(X{'; Sn) = H(Sn) — H(Sn|X{)

<log(n+1)— > Pxp(x) H(bin(k,1— p) + bin(n — k, p))
x7€{0,1}"

< log(n Z Pxn (x7") (bin(%,p))

x7e{0,1}"
1 1
= log(n+1) — 5 log(mep(1l — p)n) + O(n)

Hence, we have: xesy) 1
R< lm ————% =~
n—oo log(n) 2

Theorem (Converse)

N

Coerm(BSC(p)) <
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Conclusion

Theorem (Pemutation Channel Capacity of BSC)

1
Goerm(BSC(p)) =< 3, forpe (0,2) U (3,1)
0

4 Coerm(BSC(D))

1' °

1

— 0

2

0 2 y—p
0 1 1 p

2

A. Makur (MIT) Capacity of BSC Permutation Channel 5 October 2018 20 /21



Conclusion

Theorem (Pemutation Channel Capacity of BSC)

1, forp=0,1
Coerm(BSC(p)) = 1 3, forpe (0,3) U (3,1)
0, forp= %
Remarks:
1“ Cperm (BSC(p)) @ Coerm(+) is discontinuous
and non-convex
1 O
2
0 . r >
0 1 1 p
2
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Conclusion

Theorem (Pemutation Channel Capacity of BSC)

1, forp=0,1
Coerm(BSC(p)) = 4 3, forpe (0,3) U (3,1)
0, forp= %
Remarks:
1“ Cperm (BSC(p)) @ Coerm(+) is discontinuous
and non-convex
. @ Cperm(+) is generally agnostic
5 o to parameters of channel
0 r v >
0 1 1 p
2
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Conclusion

Theorem (Pemutation Channel Capacity of BSC)

1, forp=0,1
Coerm(BSC(p)) = { 3, for p€ (0,3) U (3,1)
0, forp= %
Remarks:
1:‘ Cperm(BSC(P)) . @ Coerm(+) is discontinuous
and non-convex
. @ Cperm(+) is generally agnostic
3 o to parameters of channel
@ Computationally tractable
0 . — coding scheme in proof
0 1 1 P
2
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Conclusion

Theorem (Pemutation Channel Capacity of BSC)

1
Goerm(BSC(p)) =< 3, for pe (0,3) U (3,1)
0

a

1+

Cperm(BSC(P))

Remarks:

@ Coerm(+) is discontinuous
and non-convex

@ Cperm(+) is generally agnostic

N =

o to parameters of channel

@ Computationally tractable
coding scheme in proof

A. Makur

N

(MIT)

o
v

1 p @ Proof technique yields more
general results
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Thank Youl
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