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Motivation: Point-to-point Communication in Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets
multipath routed network
packets are impaired
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NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets ⇒ 2L input symbols

multipath routed network
packets are impaired
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Motivation: Point-to-point Communication in Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets
multipath routed network or evolving network topology

packets are impaired
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NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets
multipath routed network ⇒ packets received with transpositions

packets are impaired
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Motivation: Point-to-point Communication in Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets
multipath routed network ⇒ packets received with transpositions
packets are impaired (e.g. deletions, substitutions)
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Motivation: Point-to-point Communication in Networks

NETWORK

SENDER RECEIVER

Model communication network as a channel:

Alphabet symbols = all possible L-bit packets
multipath routed network ⇒ packets received with transpositions
packets are impaired ⇒ model using channel probabilities
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

NETWORK

SENDER RECEIVER

Abstraction:

n-length codeword = sequence of n packets
:
Random permutation block: Randomly permute packets of codeword

How do you code in such channels
without increasing alphabet size?
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

NETWORK

SENDER RECEIVER

ERASURE 
CHANNEL

RANDOM 
PERMUTATION?

?

Abstraction:

n-length codeword = sequence of n packets
Equivalent Erasure channel: Erase each symbol/packet of codeword
independently with probability p ∈ (0, 1)
Random permutation block: Randomly permute packets of codeword

How do you code in such channels
without increasing alphabet size?
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Example: Coding for Random Deletion Network

Consider a communication network where packets can be dropped:

NETWORK

SENDER RECEIVER

ERASURE 
CHANNEL

RANDOM 
PERMUTATION?

?1 2 3
3

3
1

1

Abstraction:

n-length codeword = sequence of n packets
Erasure channel: Erase each symbol/packet of codeword
independently with probability p ∈ (0, 1)
Random permutation block: Randomly permute packets of codeword
Coding: Add sequence numbers (packet size = L + log(n) bits,
alphabet size = n 2L)

More refined coding techniques simulate sequence numbers,
e.g. [Mitzenmacher 2006], [Metzner 2009]

How do you code in such channels
without increasing alphabet size?
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The Permutation Channel Model

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Sender sends message M ∼ Uniform(M)

Possibly randomized encoder fn :M→ X n produces codeword
X n
1 = (X1, . . . ,Xn) = fn(M) (with block-length n)

Discrete memoryless channel PZ |X with input and output alphabets
X and Y produces Zn

1 :

PZn
1 |X n

1
(zn1 |xn1 ) =

n∏
i=1

PZ |X (zi |xi )

Random permutation generates Y n
1 from Zn

1

Possibly randomized decoder gn : Yn →M produces estimate
M̂ = gn(Y n

1 ) at receiver
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Coding for the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

General Principle:
“Encode the information in an object that is invariant under the
[permutation] transformation.” [Kovac̆ević-Vukobratović 2013]

Multiset codes are studied in [Kovac̆ević-Vukobratović 2013],
[Kovac̆ević-Vukobratović 2015], and [Kovac̆ević-Tan 2018]

What about the information theoretic
aspects of this model?
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Information Capacity of the Permutation Channel

ENCODER CHANNEL RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Average probability of error Pn
error , P(M 6= M̂)

“Rate” of encoder-decoder pair (fn, gn):

R ,
log(|M|)

log(n)

|M| = nR

Rate R ≥ 0 is achievable ⇔ ∃{(fn, gn)}n∈N such that lim
n→∞

Pn
error = 0

Definition (Permutation Channel Capacity)

Cperm(PZ |X ) , sup{R ≥ 0 : R is achievable}
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Average probability of error Pn
error , P(M 6= M̂)

“Rate” of encoder-decoder pair (fn, gn):

R ,
log(|M|)

log(n)

|M| = nR because number of empirical distributions of Y n
1 is poly(n)
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Capacity of the BSC Permutation Channel

ENCODER BSC 𝒑 RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Channel is binary symmetric channel, denoted BSC(p):

∀z , x ∈ {0, 1}, PZ |X (z |x) =

{
1− p, for z = x

p, for z 6= x

Alphabets are X = Y = {0, 1}
Assume crossover probability p ∈ (0, 1) and p 6= 1

2

Main Question

What is the permutation channel capacity of the BSC?
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Warm-up: Sending Two Messages

ENCODER BSC 𝒑 RANDOM 
PERMUTATION DECODER

𝑀 𝑋 𝑍 𝑌 𝑀

Fix a message m ∈ {0, 1}

, and encode m as fn(m) = X n
1

i.i.d.∼ Ber(qm)

𝑞
1
3

𝑞
2
3

10

Memoryless BSC(p) outputs Zn
1

i.i.d.∼ Ber(p ∗ qm), where
p ∗ qm , p(1− qm) + qm(1− p) is the convolution of p and qm

Random permutation generates Y n
1

i.i.d.∼ Ber(p ∗ qm)

Maximum Likelihood (ML) decoder: M̂ = 1
{
1
n

∑n
i=1 Yi ≥ 1

2

}
1
n

∑n
i=1 Yi → p ∗ qm in probability as n→∞ [WLLN]

⇒ lim
n→∞

Pn
error = 0 as p ∗ q0 6= p ∗ q1
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i=1 Yi → p ∗ qm in probability as n→∞ [WLLN]

⇒ lim
n→∞

Pn
error = 0 as p ∗ q0 6= p ∗ q1
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Encoder and Decoder

Suppose M = {1, . . . , nR} for some R > 0

Randomized encoder: Given m ∈M, fn(m) = X n
1

i.i.d.∼ Ber
( m

nR

)
10

𝑛

Given m ∈M, Y n
1

i.i.d.∼ Ber
(
p ∗ m

nR

)
ML decoder: For yn1 ∈ {0, 1}n, gn(yn1 ) = arg max

m∈M
PY n

1 |M(yn1 |m)

Challenge: Although 1
n

∑n
i=1 Yi → p ∗ m

nR
in probability as n→∞,

consecutive messages become indistinguishable i.e. m
nR
− m+1

nR
→ 0

Fact: Consecutive messages distinguishable ⇒ lim
n→∞

Pn
error = 0

What is the largest R such that two consecutive messages
can be distinguished?
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Testing between Converging Hypotheses

Binary Hypothesis Testing:

Consider hypothesis H ∼ Ber
(
1
2

)
with uniform prior

For any n ∈ N, q ∈ (0, 1), and R > 0, consider likelihoods:

Given H = 0 : X n
1

i.i.d.∼ PX |H=0 = Ber(q)

Given H = 1 : X n
1

i.i.d.∼ PX |H=1 = Ber

(
q +

1

nR

)
Define the zero-mean sufficient statistic of X n

1 for H:

Tn ,
1

n

n∑
i=1

Xi − q − 1

2nR

Let Ĥn
ML(Tn) denote the ML decoder for H based on Tn with

minimum probability of error Pn
ML , P(Ĥn

ML(Tn) 6= H)

Want: Largest R > 0 such that lim
n→∞

Pn
ML = 0?
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Intuition via Central Limit Theorem

For large n, PTn|H(·|0) and PTn|H(·|1) are Gaussian distributions [CLT]

|E[Tn|H = 0]− E[Tn|H = 1]| = 1/nR

Standard deviations are Θ
(
1/
√
n
)

Figure:

𝑡0

𝑃 | 𝑡|0 𝑃 | 𝑡|1

1
2𝑛

1
2𝑛
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Second Moment Method for TV Distance

Lemma (2nd Moment Method [Evans-Kenyon-Peres-Schulman 2000])∥∥PTn|H=1 − PTn|H=0

∥∥
TV
≥ (E[Tn|H = 1]− E[Tn|H = 0])2

4VAR(Tn)

where ‖P − Q‖TV = 1
2 ‖P − Q‖`1 is the total variation (TV) distance

between the distributions P and Q.

Proof:

�
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︸ ︷︷ ︸

Vincze-Le Cam distance
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Achievability Proof

Theorem (Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with

H ∼ Ber
(
1
2

)
, and X n

1
i.i.d.∼ Ber

(
q + h

nR

)
given H = h ∈ {0, 1}.

Then, lim
n→∞

Pn
ML = 0. This implies that:

Cperm(BSC(p)) ≥ 1

2
.

Proof: Start with Le Cam’s relation

Pn
ML =

1

2

(
1−

∥∥PTn|H=1 − PTn|H=0

∥∥
TV

)
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Converse: Fano’s Inequality Argument

Consider the Markov chain M → X n
1 → Zn

1 → Y n
1 → Sn ,

∑n
i=1 Yi ,

and a sequence of encoder-decoder pairs {(fn, gn)}n∈N such that
|M| = nR and lim

n→∞
Pn
error = 0

Standard argument, cf. [Cover-Thomas 2006]:

R log(n)

= H(M|M̂) + I (M; M̂)

≤ 1 + Pn
errorR log(n) + I (M;Y n

1 )

= 1 + Pn
errorR log(n) + I (M;Sn)

≤ 1 + Pn
errorR log(n) + I (X n

1 ;Sn)

Divide by log(n)

and let n→∞:

R ≤ I (X n
1 ;Sn)

log(n)
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Converse: CLT Approximation

Upper bound on I (X n
1 ;Sn):

I (X n
1 ;Sn) = H(Sn)− H(Sn|X n

1 )

≤ log(n + 1)−
∑

xn1∈{0,1}n
PX n

1
(xn1 )H(bin(k , 1− p) + bin(n − k , p))

≤ log(n + 1)−
∑

xn1∈{0,1}n
PX n

1
(xn1 )H

(
bin
(n

2
, p
))

= log(n + 1)− 1

2
log(πep(1− p)n) + O

(
1

n

)
Hence, we have:

R ≤ lim
n→∞

I (X n
1 ;Sn)

log(n)
=

1

2

Theorem (Converse)

Cperm(BSC(p)) ≤ 1

2
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Converse: CLT Approximation
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Conclusion

Theorem (Pemutation Channel Capacity of BSC)

Cperm(BSC(p)) =


1, for p = 0, 1
1
2 , for p ∈

(
0, 12
)
∪
(
1
2 , 1
)

0, for p = 1
2

𝑝0

𝐶perm BSC 𝑝

0

1

11
2

1
2

Remarks:

Cperm(·) is discontinuous
and non-convex

Cperm(·) is generally agnostic
to parameters of channel

Computationally tractable
coding scheme in proof

Proof technique yields more
general results
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Thank You!
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