Capacity of Permutation Channels

Anuran Makur

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

7 October 2020

1/39

Outline

- Introduction
 - Three Motivations
 - Permutation Channel Model
 - Information Capacity
 - Example: Binary Symmetric Channel
- Achievability and Converse for the BSC
- General Achievability Bound
- 4 General Converse Bounds
- Conclusion

• Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...

3/39

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.

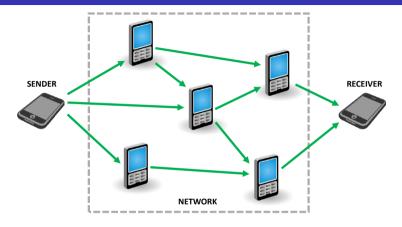
- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets do not have sequence numbers

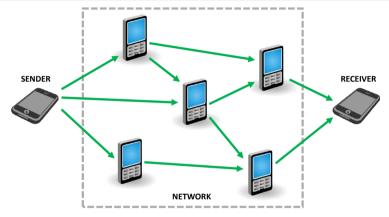
- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets do not have sequence numbers
- Molecular/Biological Communications: [YKGR⁺15], [KPM16], [HSRT17], [SH19], ...

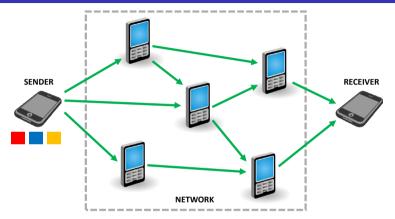
- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets do not have sequence numbers
- Molecular/Biological Communications: [YKGR⁺15], [KPM16], [HSRT17], [SH19], ...
 - DNA based storage systems
 - Source data encoded into DNA molecules

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets do not have sequence numbers
- Molecular/Biological Communications: [YKGR⁺15], [KPM16], [HSRT17], [SH19], ...
 - DNA based storage systems
 - Source data encoded into DNA molecules
 - Fragments of DNA molecules cached
 - Receiver reads encoded data by shotgun sequencing (i.e., random sampling)

- Coding theory: [DG01], [Mit06], [Met09], [KV15], [KT18], ...
 - Random deletion channel: LDPC codes nearly achieve capacity for large alphabets
 - Codes correct for transpositions of symbols
 - Permutation channels with insertions, deletions, substitutions, or erasures
 - Construction and analysis of multiset codes
- Communication networks: [XZ02], [WWM09], [GG10], [KV13], ...
 - Mobile ad hoc networks, multipath routed networks, etc.
 - Out-of-order delivery of packets
 - Correct for packet errors/losses when packets do not have sequence numbers
- Molecular/Biological Communications: [YKGR⁺15], [KPM16], [HSRT17], [SH19], ...
 - DNA based storage systems
 - Source data encoded into DNA molecules
 - Fragments of DNA molecules cached
 - Receiver reads encoded data by shotgun sequencing (i.e., random sampling)





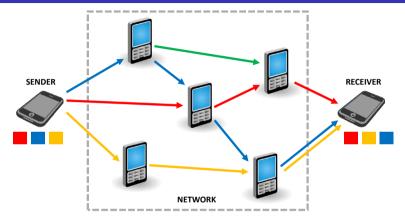


Model communication network as a channel:

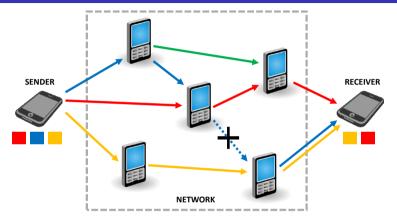
• Alphabet symbols = all possible *b*-bit packets \Rightarrow 2^{*b*} input symbols



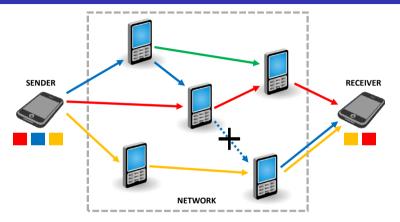
- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network or evolving network topology



- Alphabet symbols = all possible *b*-bit packets
- Multipath routed network ⇒ packets received with transpositions

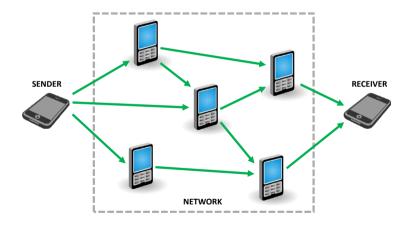


- Alphabet symbols = all possible *b*-bit packets
- ullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired (e.g., deletions, substitutions, etc.)

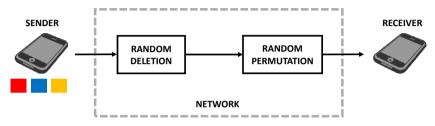


- Alphabet symbols = all possible *b*-bit packets
- ullet Multipath routed network \Rightarrow packets received with transpositions
- Packets are impaired ⇒ model using channel probabilities

Consider a communication network where packets can be dropped:



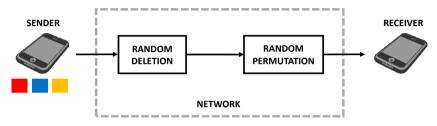
Consider a communication network where packets can be dropped:



Abstraction:

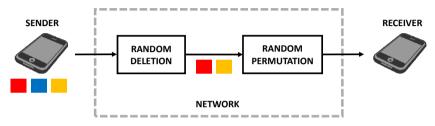
• n-length codeword = sequence of n packets

Consider a communication network where packets can be dropped:



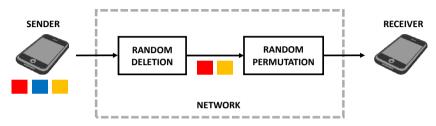
- *n*-length codeword = sequence of *n* packets
- ullet Random deletion channel: Delete each symbol/packet independently with prob $p\in(0,1)$

Consider a communication network where packets can be dropped:



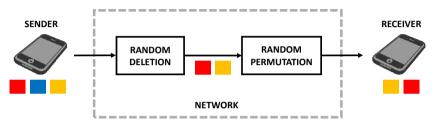
- *n*-length codeword = sequence of *n* packets
- ullet Random deletion channel: Delete each symbol/packet independently with prob $p\in(0,1)$

Consider a communication network where packets can be dropped:



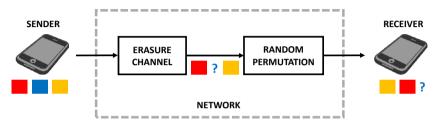
- *n*-length codeword = sequence of *n* packets
- ullet Random deletion channel: Delete each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:



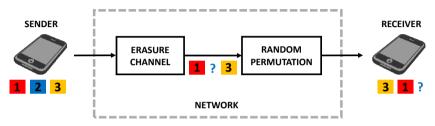
- *n*-length codeword = sequence of *n* packets
- ullet Random deletion channel: Delete each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:



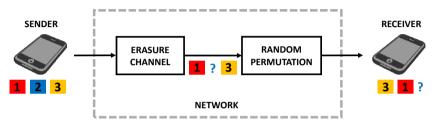
- *n*-length codeword = sequence of *n* packets
- ullet Equivalent Erasure channel: Erase each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword

Consider a communication network where packets can be dropped:



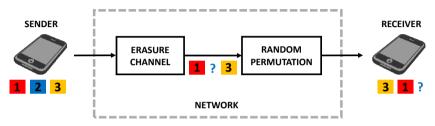
- *n*-length codeword = sequence of *n* packets
- ullet Erasure channel: Erase each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers (packet size = $b + \log(n)$ bits, alphabet size = $n2^b$)

Consider a communication network where packets can be dropped:



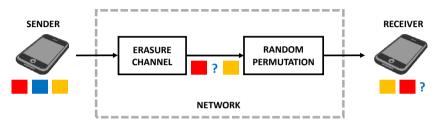
- *n*-length codeword = sequence of *n* packets
- ullet Erasure channel: Erase each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques

Consider a communication network where packets can be dropped:



- *n*-length codeword = sequence of *n* packets
- ullet Erasure channel: Erase each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword
- Coding: Add sequence numbers and use standard coding techniques
- More refined coding techniques simulate sequence numbers [Mit06], [Met09]

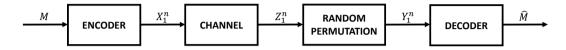
Consider a communication network where packets can be dropped:



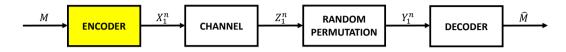
Abstraction:

- *n*-length codeword = sequence of *n* packets
- ullet Erasure channel: Erase each symbol/packet independently with prob $p\in(0,1)$
- Random permutation block: Randomly permute packets of codeword

How do you code in such channels without increasing alphabet size?

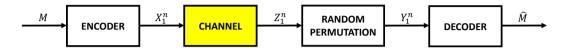


- Sender sends message $M \sim \mathsf{Uniform}(\mathcal{M})$
- n = blocklength



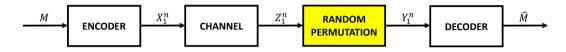
- Sender sends message $M \sim \mathsf{Uniform}(\mathcal{M})$
- n = blocklength
- Randomized encoder $f_n: \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(M)$

6/39



- Sender sends message $M \sim \mathsf{Uniform}(\mathcal{M})$
- n = blocklength
- Randomized encoder $f_n: \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(M)$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets \mathcal{X} & \mathcal{Y} produces Z_1^n :

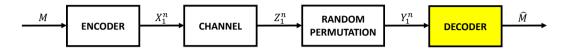
$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$



- Sender sends message $M \sim \mathsf{Uniform}(\mathcal{M})$
- n = blocklength
- Randomized encoder $f_n: \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(M)$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets \mathcal{X} & \mathcal{Y} produces Z_1^n :

$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

• Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, ..., n\}$

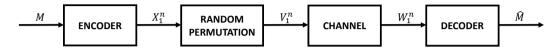


- Sender sends message $M \sim \mathsf{Uniform}(\mathcal{M})$
- n = blocklength
- Randomized encoder $f_n: \mathcal{M} \to \mathcal{X}^n$ produces codeword $X_1^n = (X_1, \dots, X_n) = f_n(M)$
- Discrete memoryless channel $P_{Z|X}$ with input & output alphabets \mathcal{X} & \mathcal{Y} produces Z_1^n :

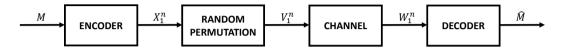
$$P_{Z_1^n|X_1^n}(z_1^n|x_1^n) = \prod_{i=1}^n P_{Z|X}(z_i|x_i)$$

- Random permutation π generates Y_1^n from Z_1^n : $Y_{\pi(i)} = Z_i$ for $i \in \{1, \dots, n\}$
- Randomized decoder $g_n: \mathcal{Y}^n \to \mathcal{M} \cup \{\text{error}\}$ produces estimate $\hat{\mathcal{M}} = g_n(Y_1^n)$ at receiver

What if we analyze the "swapped" model?

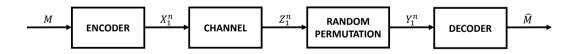


What if we analyze the "swapped" model?



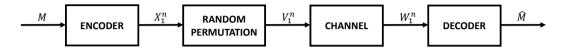
Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.



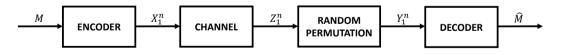
Permutation Channel Model

What if we analyze the "swapped" model?



Proposition (Equivalent Models)

If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.

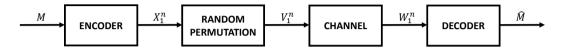


Remarks:

• Proof follows from direct calculation.

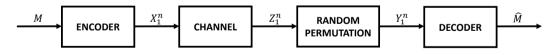
Permutation Channel Model

What if we analyze the "swapped" model?



Proposition (Equivalent Models)

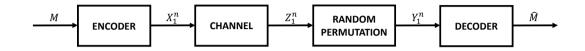
If channel $P_{W|V}$ is equal to channel $P_{Z|X}$, then channel $P_{W_1^n|X_1^n}$ is equal to channel $P_{Y_1^n|X_1^n}$.



Remarks:

- Proof follows from direct calculation.
- Can analyze either model!

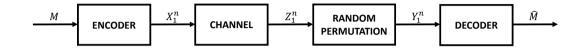
Coding for the Permutation Channel



General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

Coding for the Permutation Channel

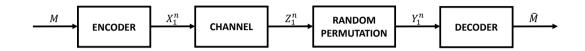


• General Principle:

"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

• Multiset codes are studied in [KV13], [KV15], and [KT18].

Coding for the Permutation Channel

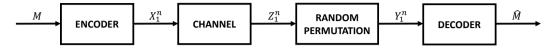


• General Principle:

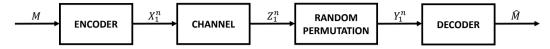
"Encode the information in an object that is invariant under the [permutation] transformation." [KV13]

Multiset codes are studied in [KV13], [KV15], and [KT18].

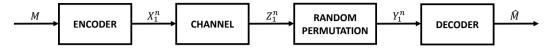
What are the fundamental information theoretic limits of this model?



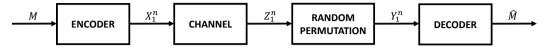
• Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$



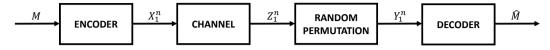
- Average probability of error $P^n_{ ext{error}} riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$



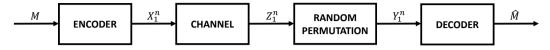
- Average probability of error $P_{ ext{error}}^n riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$



- Average probability of error $P_{\text{error}}^n \triangleq \mathbb{P}(M \neq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$ because number of empirical distributions of Y_1^n is poly(n)



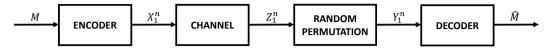
- Average probability of error $P_{ ext{error}}^n riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $\bullet |\mathcal{M}| = n^R$
- ullet Rate $R\geq 0$ is achievable $\Leftrightarrow \exists \, \{(f_n,g_n)\}_{n\in \mathbb{N}}$ such that $\lim_{n o\infty} P_{ ext{error}}^n=0$



- Average probability of error $P^n_{ ext{error}} riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$
- ullet Rate $R\geq 0$ is achievable $\Leftrightarrow \exists \, \{(f_n,g_n)\}_{n\in \mathbb{N}}$ such that $\lim_{n o\infty} P^n_{ ext{error}}=0$

Definition (Permutation Channel Capacity)

$$C_{\mathsf{perm}}(P_{Z|X}) \triangleq \mathsf{sup}\{R \geq 0 : R \text{ is achievable}\}$$



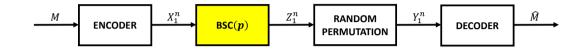
- Average probability of error $P^n_{ ext{error}} riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- $|\mathcal{M}| = n^R$
- Rate $R \geq 0$ is achievable $\Leftrightarrow \exists \{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $\lim_{n \to \infty} P_{\mathsf{error}}^n = 0$

Definition (Permutation Channel Capacity)

$$C_{\mathsf{perm}}(P_{Z|X}) \triangleq \sup\{R \geq 0 : R \text{ is achievable}\}$$

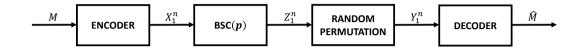
Main Question

What is the permutation channel capacity of a general $P_{Z|X}$?



• Channel is binary symmetric channel, denoted BSC(p):

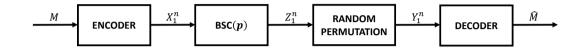
$$\forall z, x \in \{0,1\}, \ P_{Z|X}(z|x) = egin{cases} 1-p, & ext{for } z=x \\ p, & ext{for } z \neq x \end{cases}$$



• Channel is binary symmetric channel, denoted BSC(p):

$$\forall z, x \in \{0,1\}, \ P_{Z|X}(z|x) = egin{cases} 1-p, & ext{for } z=x \\ p, & ext{for } z \neq x \end{cases}$$

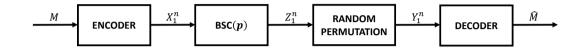
ullet Alphabets are $\mathcal{X}=\mathcal{Y}=\{0,1\}$



• Channel is binary symmetric channel, denoted BSC(p):

$$\forall z, x \in \{0,1\}, \ P_{Z|X}(z|x) = egin{cases} 1-p, & ext{for } z=x \\ p, & ext{for } z \neq x \end{cases}$$

- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- ullet Assume crossover probability $p\in(0,1)$ and $p
 eqrac{1}{2}$



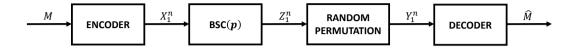
• Channel is binary symmetric channel, denoted BSC(p):

$$\forall z, x \in \{0,1\}, \ P_{Z|X}(z|x) = egin{cases} 1-p, & ext{for } z=x \\ p, & ext{for } z
eq x \end{cases}$$

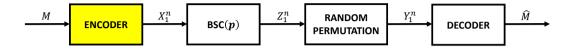
- Alphabets are $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
- ullet Assume crossover probability $p\in(0,1)$ and $p
 eq rac{1}{2}$
- Question: What is the permutation channel capacity of the BSC?

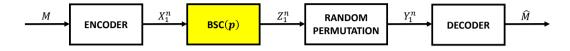
Outline

- Introduction
- Achievability and Converse for the BSC
 - Encoder and Decoder
 - Testing between Converging Hypotheses
 - Second Moment Method for TV Distance
 - Fano's Inequality and CLT Approximation
- General Achievability Bound
- 4 General Converse Bounds
- Conclusion

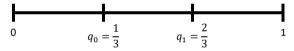


ullet Fix a message $m \in \{0,1\}$

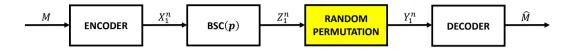


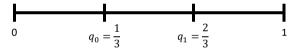


• Fix a message $m \in \{0,1\}$, and encode m as $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q_m)$

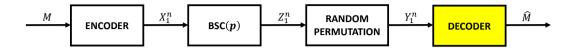


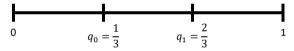
• Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p*q_m)$, where $p*q_m \triangleq p(1-q_m)+q_m(1-p)$ is the convolution of p and q_m



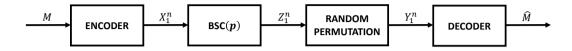


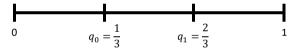
- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p*q_m)$, where $p*q_m \triangleq p(1-q_m)+q_m(1-p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$





- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p*q_m)$, where $p*q_m \triangleq p(1-q_m)+q_m(1-p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$
- Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_{i} \geq \frac{1}{2}\right\}$ (for $p < \frac{1}{2}$)

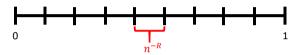




- Memoryless BSC(p) outputs $Z_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p*q_m)$, where $p*q_m \triangleq p(1-q_m)+q_m(1-p)$ is the convolution of p and q_m
- Random permutation generates $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(p * q_m)$
- Maximum Likelihood (ML) decoder: $\hat{M} = \mathbb{1}\left\{\frac{1}{n}\sum_{i=1}^{n}Y_{i} \geq \frac{1}{2}\right\}$ (for $p < \frac{1}{2}$)
- $\frac{1}{n}\sum_{i=1}^{n}Y_{i}\to p*q_{m}$ in probability as $n\to\infty$ \Rightarrow $\lim_{n\to\infty}P_{\mathrm{error}}^{n}=0$ as $p*q_{0}\neq p*q_{1}$

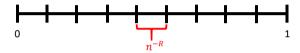
• Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



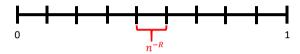
13 / 39

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



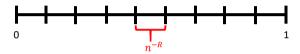
• Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$ (as before)

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



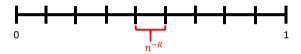
- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\arg \max} P_{Y_1^n|\mathcal{M}}(y_1^n|m)$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



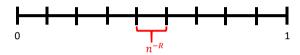
- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\operatorname{arg max}} P_{Y_1^n|M}(y_1^n|m)$
- Trade-off: Although $\frac{1}{n}\sum_{i=1}^{n}Y_{i}\to p*\frac{m}{n^{R}}$ in probability as $n\to\infty$, consecutive messages become indistinguishable, i.e. $\frac{m}{n^{R}}-\frac{m+1}{n^{R}}\to 0$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \underset{m \in \mathcal{M}}{\operatorname{arg max}} P_{Y_1^n|M}(y_1^n|m)$
- **Trade-off:** Although $\frac{1}{n}\sum_{i=1}^{n}Y_{i}\to p*\frac{m}{n^{R}}$ in probability as $n\to\infty$, consecutive messages become indistinguishable, i.e. $\frac{m}{n^{R}}-\frac{m+1}{n^{R}}\to 0$
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{\text{error}}^n = 0$

- Suppose $\mathcal{M} = \{1, \dots, n^R\}$ for some R > 0
- Randomized encoder: Given $m \in \mathcal{M}$, $f_n(m) = X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(\frac{m}{n^R}\right)$



- Given $m \in \mathcal{M}$, $Y_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}\left(p * \frac{m}{n^R}\right)$
- ML decoder: For $y_1^n \in \{0,1\}^n$, $g_n(y_1^n) = \arg\max_{m \in \mathcal{M}} P_{Y_1^n|\mathcal{M}}(y_1^n|m)$
- **Trade-off:** Although $\frac{1}{n}\sum_{i=1}^{n}Y_{i}\to p*\frac{m}{n^{R}}$ in probability as $n\to\infty$, consecutive messages become indistinguishable, i.e. $\frac{m}{n^{R}}-\frac{m+1}{n^{R}}\to 0$
- Fact: Consecutive messages distinguishable $\Rightarrow \lim_{n \to \infty} P_{\text{error}}^n = 0$

What is the largest R such that two consecutive messages can be distinguished?

Binary Hypothesis Testing:

ullet Consider hypothesis $H \sim \operatorname{Ber}(rac{1}{2})$ with uniform prior

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0,1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \stackrel{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0,1)$, and R > 0, consider likelihoods:

Given
$$H=0: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H=1: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0,1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

• Let $\hat{H}_{ML}^n(T_n)$ denote the ML decoder for H based on T_n with minimum probability of error $P_{ML}^n \triangleq \mathbb{P}(\hat{H}_{ML}^n(T_n) \neq H)$

Binary Hypothesis Testing:

- Consider hypothesis $H \sim \text{Ber}(\frac{1}{2})$ with uniform prior
- For any $n \in \mathbb{N}$, $q \in (0,1)$, and R > 0, consider likelihoods:

Given
$$H = 0: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=0} = \text{Ber}(q)$$

Given $H = 1: X_1^n \overset{\text{i.i.d.}}{\sim} P_{X|H=1} = \text{Ber}\left(q + \frac{1}{n^R}\right)$

• Define the *zero-mean* sufficient statistic of X_1^n for H:

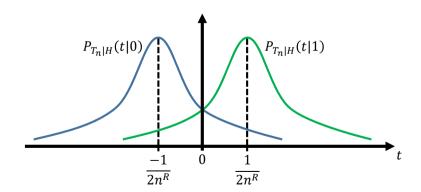
$$T_n \triangleq \frac{1}{n} \sum_{i=1}^n X_i - q - \frac{1}{2n^R}$$

- Let $\hat{H}_{ML}^n(T_n)$ denote the ML decoder for H based on T_n with minimum probability of error $P_{ML}^n \triangleq \mathbb{P}(\hat{H}_{ML}^n(T_n) \neq H)$
- Want: Largest R > 0 such that $\lim_{n \to \infty} P_{ML}^n = 0$?

Intuition via Central Limit Theorem

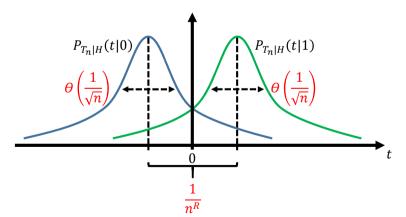
• For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions

Figure:



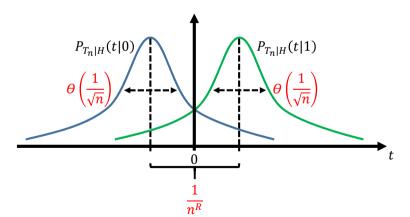
- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$

Figure:



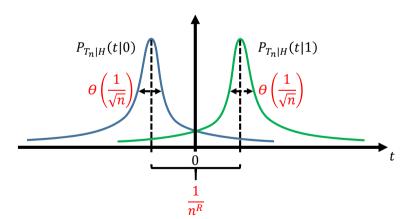
- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Figure:



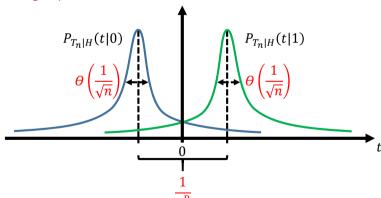
- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Case $R < \frac{1}{2}$:



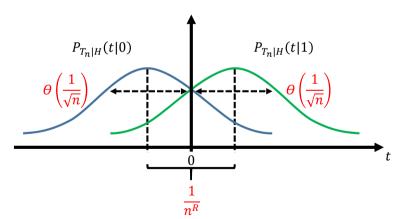
- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Case $R < \frac{1}{2}$: Decoding is possible ©



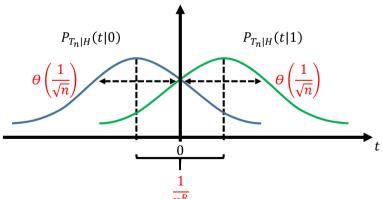
- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Case $R > \frac{1}{2}$:



- For large n, $P_{T_n|H}(\cdot|0)$ and $P_{T_n|H}(\cdot|1)$ are Gaussian distributions
- $|\mathbb{E}[T_n|H=0] \mathbb{E}[T_n|H=1]| = 1/n^R$
- Standard deviations are $\Theta(1/\sqrt{n})$

Case $R > \frac{1}{2}$: Decoding is impossible ©



Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Let
$$T_n^+ \sim P_{T_n|H=1}$$
 and $T_n^- \sim P_{T_n|H=0}$
$$\left(\mathbb{E} \left[T_n^+\right] - \mathbb{E} \left[T_n^-\right]\right)^2 = \left(\sum_t t \left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)\right)^2$$

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Let $T_n^+ \sim P_{T_n|H=1}$ and $T_n^- \sim P_{T_n|H=0}$

$$\left(\mathbb{E}\big[T_n^+\big] - \mathbb{E}\big[T_n^-\big]\right)^2 = \left(\sum_t t\sqrt{P_{\mathcal{T}_n}(t)} \frac{\left(P_{\mathcal{T}_n|\mathcal{H}}(t|1) - P_{\mathcal{T}_n|\mathcal{H}}(t|0)\right)}{\sqrt{P_{\mathcal{T}_n}(t)}}\right)^2$$

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Cauchy-Schwarz inequality

$$\left(\mathbb{E}[T_{n}^{+}] - \mathbb{E}[T_{n}^{-}]\right)^{2} = \left(\sum_{t} t \sqrt{P_{T_{n}}(t)} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)}{\sqrt{P_{T_{n}}(t)}}\right)^{2} \\
\leq \left(\sum_{t} t^{2} P_{T_{n}}(t)\right) \left(\sum_{t} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)^{2}}{P_{T_{n}}(t)}\right)$$

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Recall that T_n is zero-mean

$$\begin{split} \left(\mathbb{E}\left[T_{n}^{+}\right] - \mathbb{E}\left[T_{n}^{-}\right]\right)^{2} &= \left(\sum_{t} t \sqrt{P_{T_{n}}(t)} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)}{\sqrt{P_{T_{n}}(t)}}\right)^{2} \\ &\leq \mathbb{VAR}(T_{n}) \left(\sum_{t} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)^{2}}{P_{T_{n}}(t)}\right) \end{split}$$

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof: Hammersley-Chapman-Robbins bound

$$(\mathbb{E}[T_n^+] - \mathbb{E}[T_n^-])^2 = \left(\sum_t t\sqrt{P_{T_n}(t)} \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)}{\sqrt{P_{T_n}(t)}}\right)^2$$

$$\leq 4 \, \mathbb{VAR}(T_n) \left(\frac{1}{4} \sum_t \frac{\left(P_{T_n|H}(t|1) - P_{T_n|H}(t|0)\right)^2}{P_{T_n}(t)}\right)$$

Vincze-Le Cam distance

Lemma (2nd Moment Method [EKPS00])

$$\|P_{T_n|H=1} - P_{T_n|H=0}\|_{\mathsf{TV}} \ge \frac{(\mathbb{E}[T_n|H=1] - \mathbb{E}[T_n|H=0])^2}{4\,\mathbb{VAR}(T_n)}$$

where $||P - Q||_{TV} = \frac{1}{2} ||P - Q||_1$ denotes the *total variation (TV) distance* between the distributions P and Q.

Proof:

$$\begin{split} \left(\mathbb{E}[T_{n}^{+}] - \mathbb{E}[T_{n}^{-}]\right)^{2} &= \left(\sum_{t} t \sqrt{P_{T_{n}}(t)} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)}{\sqrt{P_{T_{n}}(t)}}\right)^{2} \\ &\leq 4 \, \mathbb{VAR}(T_{n}) \left(\frac{1}{4} \sum_{t} \frac{\left(P_{T_{n}|H}(t|1) - P_{T_{n}|H}(t|0)\right)^{2}}{P_{T_{n}}(t)}\right) \\ &\leq 4 \, \mathbb{VAR}(T_{n}) \left\|P_{T_{n}|H=1} - P_{T_{n}|H=0}\right\|_{TV} \end{split}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0,1\}$.

Proof: Start with Le Cam's relation

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{T_{n}|H=1} - P_{T_{n}|H=0} \right\|_{\mathsf{TV}} \right)$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: Apply second moment method lemma

$$\begin{aligned} P_{\mathsf{ML}}^{n} &= \frac{1}{2} \left(1 - \left\| P_{T_{n}|H=1} - P_{T_{n}|H=0} \right\|_{\mathsf{TV}} \right) \\ &\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[T_{n}|H=1] - \mathbb{E}[T_{n}|H=0] \right)^{2}}{4 \, \mathbb{VAR}(T_{n})} \right) \end{aligned}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: After explicit computation and simplification...

$$\begin{aligned} P_{\mathsf{ML}}^{n} &= \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|H=1} - P_{\mathcal{T}_{n}|H=0} \right\|_{\mathsf{TV}} \right) \\ &\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|H=1] - \mathbb{E}[\mathcal{T}_{n}|H=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right) \end{aligned}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0, 1\}$.

Proof: For any $0 < R < \frac{1}{2}$,

$$P_{\mathsf{ML}}^{n} = \frac{1}{2} \left(1 - \left\| P_{T_{n}|H=1} - P_{T_{n}|H=0} \right\|_{\mathsf{TV}} \right)$$

$$\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[T_{n}|H=1] - \mathbb{E}[T_{n}|H=0] \right)^{2}}{4 \, \mathbb{VAR}(T_{n})} \right)$$

$$\leq \frac{3}{2n^{1-2R}}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and $X_1^n \stackrel{\text{i.i.d.}}{\sim} \text{Ber}(q + \frac{h}{n^R})$ given $H = h \in \{0,1\}$. Then, $\lim_{n \to \infty} P_{\text{ML}}^n = 0$.

Proof: For any $0 < R < \frac{1}{2}$,

$$\begin{aligned} P_{\mathsf{ML}}^{n} &= \frac{1}{2} \left(1 - \left\| P_{T_{n}|H=1} - P_{T_{n}|H=0} \right\|_{\mathsf{TV}} \right) \\ &\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[T_{n}|H=1] - \mathbb{E}[T_{n}|H=0] \right)^{2}}{4 \, \mathbb{VAR}(T_{n})} \right) \\ &\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty \end{aligned}$$

Proposition (BSC Achievability)

For any 0 < R < 1/2, consider the binary hypothesis testing problem with $H \sim \text{Ber}(\frac{1}{2})$, and

$$X_1^n \overset{\text{i.i.d.}}{\sim} \mathsf{Ber}ig(q + rac{h}{n^R}ig) \; \mathsf{given} \; H = h \in \{0,1\}.$$

Then, $\lim_{n\to\infty} P_{\rm ML}^n = 0$. This implies that:

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) \geq rac{1}{2}$$
 .

Proof: For any $0 < R < \frac{1}{2}$,

$$\begin{aligned} P_{\mathsf{ML}}^{n} &= \frac{1}{2} \left(1 - \left\| P_{\mathcal{T}_{n}|H=1} - P_{\mathcal{T}_{n}|H=0} \right\|_{\mathsf{TV}} \right) \\ &\leq \frac{1}{2} \left(1 - \frac{\left(\mathbb{E}[\mathcal{T}_{n}|H=1] - \mathbb{E}[\mathcal{T}_{n}|H=0] \right)^{2}}{4 \, \mathbb{VAR}(\mathcal{T}_{n})} \right) \\ &\leq \frac{3}{2n^{1-2R}} \to 0 \text{ as } n \to \infty \end{aligned}$$

Outline

- Introduction
- Achievability and Converse for the BSC
 - Encoder and Decoder
 - Testing between Converging Hypotheses
 - Second Moment Method for TV Distance
 - Fano's Inequality and CLT Approximation
- General Achievability Bound
- 4 General Converse Bounds
- Conclusion

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \to Y \to Z$.

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \to Y \to Z$.

Lemma (Data Processing Inequality [CT06])

$$I(X;Z) \leq I(X;Y)$$

with equality if and only if Z is a *sufficient statistic* of Y for X, i.e., $X \to Z \to Y$ also forms a Markov chain.

Recall: Two Information Inequalities

Consider discrete random variables X, Y, Z that form a Markov chain $X \to Y \to Z$.

Lemma (Data Processing Inequality [CT06])

$$I(X; Z) \leq I(X; Y)$$

with equality if and only if Z is a *sufficient statistic* of Y for X, i.e., $X \to Z \to Y$ also forms a Markov chain.

Lemma (Fano's Inequality [CT06])

If X takes values in the finite alphabet \mathcal{X} , then

$$H(X|Z) \le 1 + \mathbb{P}(X \ne Z) \log(|\mathcal{X}|)$$

where we perceive Z as an estimator for X based on Y.

• Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: M is uniform

$$R\log(n) = H(M)$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: Fano's inequality, data processing inequality

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(M; Y_{1}^{n})$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: sufficiency

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(M; Y_{1}^{n})$$

$$= 1 + P_{\text{error}}^{n} R \log(n) + I(M; S_{n})$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]: data processing inequality

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(M; Y_{1}^{n})$$

$$= 1 + P_{\text{error}}^{n} R \log(n) + I(M; S_{n})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(X_{1}^{n}; S_{n})$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n,g_n)\}_{n\in\mathbb{N}}$ such that $|\mathcal{M}|=n^R$ and $\lim_{n\to\infty}P_{\text{error}}^n=0$
- Standard argument [CT06]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(M; Y_{1}^{n})$$

$$= 1 + P_{\text{error}}^{n} R \log(n) + I(M; S_{n})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(X_{1}^{n}; S_{n})$$

• Divide by log(n)

$$R \leq \frac{1}{\log(n)} + P_{\text{error}}^n R + \frac{I(X_1^n; S_n)}{\log(n)}$$

- Consider the Markov chain $M \to X_1^n \to Z_1^n \to Y_1^n \to S_n \triangleq \sum_{i=1}^n Y_i \to \hat{M}$, and a sequence of encoder-decoder pairs $\{(f_n, g_n)\}_{n \in \mathbb{N}}$ such that $|\mathcal{M}| = n^R$ and $\lim_{n \to \infty} P_{\text{error}}^n = 0$
- Standard argument [CT06]:

$$R \log(n) = H(M|\hat{M}) + I(M; \hat{M})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(M; Y_{1}^{n})$$

$$= 1 + P_{\text{error}}^{n} R \log(n) + I(M; S_{n})$$

$$\leq 1 + P_{\text{error}}^{n} R \log(n) + I(X_{1}^{n}; S_{n})$$

• Divide by $\log(n)$ and let $n \to \infty$:

$$R \le \lim_{n \to \infty} \frac{I(X_1^n; S_n)}{\log(n)}$$

Upper bound on $I(X_1^n; S_n)$:

$$I(X_1^n;S_n)=H(S_n)-H(S_n|X_1^n)$$

Since
$$S_n \in \{0, \dots, n\}$$
,

$$I(X_1^n; S_n) = H(S_n) - H(S_n | X_1^n)$$

$$\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(S_n | X_1^n = x_1^n)$$

Given
$$X_1^n = x_1^n$$
 with $\sum_{i=1}^n x_i = k$, $S_n = bin(k, 1-p) + bin(n-k, p)$:
$$I(X_1^n; S_n) = H(S_n) - H(S_n|X_1^n)$$

$$\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(bin(k, 1-p) + bin(n-k, p))$$

21 / 39

Using [CT06, Problem 2.14], i.e.,
$$\max\{H(X), H(Y)\} \le H(X+Y)$$
 for $X \perp \!\!\!\! \perp Y$,
$$I(X_1^n; S_n) = H(S_n) - H(S_n|X_1^n)$$

$$\le \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\text{bin}(k, 1-p) + \text{bin}(n-k, p))$$

$$\le \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) H(\text{bin}\left(\frac{n}{2}, p\right))$$

Approximate binomial entropy using CLT [ALY10]:

$$\begin{split} I(X_{1}^{n};S_{n}) &= H(S_{n}) - H(S_{n}|X_{1}^{n}) \\ &\leq \log(n+1) - \sum_{x_{1}^{n} \in \{0,1\}^{n}} P_{X_{1}^{n}}(x_{1}^{n}) \, H(\operatorname{bin}(k,1-p) + \operatorname{bin}(n-k,p)) \\ &\leq \log(n+1) - \sum_{x_{1}^{n} \in \{0,1\}^{n}} P_{X_{1}^{n}}(x_{1}^{n}) \, H\left(\operatorname{bin}\left(\frac{n}{2},p\right)\right) \\ &= \log(n+1) - \sum_{x_{1}^{n} \in \{0,1\}^{n}} P_{X_{1}^{n}}(x_{1}^{n}) \left(\frac{1}{2} \log(\pi e p(1-p)n) + O\left(\frac{1}{n}\right)\right) \end{split}$$

Upper bound on $I(X_1^n; S_n)$:

$$egin{aligned} I(X_1^n;S_n) &= H(S_n) - H(S_n|X_1^n) \ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H(\mathrm{bin}(k,1-p) + \mathrm{bin}(n-k,p)) \ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H\Big(\mathrm{bin}\Big(rac{n}{2},p\Big)\Big) \ &= \log(n+1) - rac{1}{2} \log(\pi e p(1-p)n) + Oigg(rac{1}{n}igg) \end{aligned}$$

BSC Converse Proof: CLT Approximation

Upper bound on $I(X_1^n; S_n)$:

$$egin{aligned} I(X_1^n;S_n) &= H(S_n) - H(S_n|X_1^n) \ &\leq \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H(\mathrm{bin}(k,1-p) + \mathrm{bin}(n-k,p)) \ &\leq \log(n+1) - \sum_{X_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H\Big(\mathrm{bin}\Big(rac{n}{2},p\Big)\Big) \ &= \log(n+1) - rac{1}{2} \log(\pi e p(1-p)n) + O\Big(rac{1}{n}\Big) \end{aligned}$$

Hence, we have $R \leq \lim_{n \to \infty} I(X_1^n; S_n)/\log(n) = \frac{1}{2}$.

BSC Converse Proof: CLT Approximation

Upper bound on $I(X_1^n; S_n)$:

$$egin{aligned} I(X_1^n;S_n) &= H(S_n) - H(S_n|X_1^n) \ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H(\mathrm{bin}(k,1-p) + \mathrm{bin}(n-k,p)) \ &\leq \log(n+1) - \sum_{x_1^n \in \{0,1\}^n} P_{X_1^n}(x_1^n) \, H\Big(\mathrm{bin}\Big(rac{n}{2},p\Big)\Big) \ &= \log(n+1) - rac{1}{2} \log(\pi e p (1-p) n) + O\Big(rac{1}{n}\Big) \end{aligned}$$

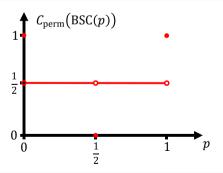
Hence, we have $R \leq \lim_{n \to \infty} I(X_1^n; S_n)/\log(n) = \frac{1}{2}$.

Proposition (BSC Converse)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) \leq \frac{1}{2}$$

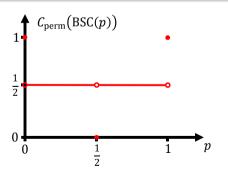
Proposition (Pemutation Channel Capacity of BSC)

$$C_{\text{perm}}(\mathsf{BSC}(p)) = \begin{cases} 1, & \text{for } p = 0, 1\\ \frac{1}{2}, & \text{for } p \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1)\\ 0, & \text{for } p = \frac{1}{2} \end{cases}$$



Proposition (Pemutation Channel Capacity of BSC)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & \mathsf{for} \ p = 0, 1 \ rac{1}{2}, & \mathsf{for} \ p \in \left(0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight) \ 0, & \mathsf{for} \ p = rac{1}{2} \end{cases}$$

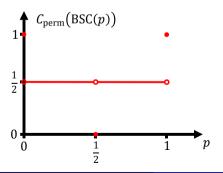


Remarks:

 C_{perm}(·) is discontinuous and non-convex

Proposition (Pemutation Channel Capacity of BSC)

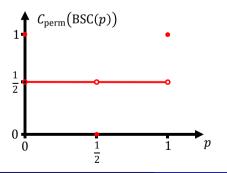
$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & \mathsf{for} \ p = 0, 1 \ rac{1}{2}, & \mathsf{for} \ p \in \left(0, rac{1}{2}
ight) \cup \left(rac{1}{2}, 1
ight) \ 0, & \mathsf{for} \ p = rac{1}{2} \end{cases}$$



- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel

Proposition (Pemutation Channel Capacity of BSC)

$$C_{\mathsf{perm}}(\mathsf{BSC}(p)) = egin{cases} 1, & \mathsf{for} \ p = 0, 1 \ rac{1}{2}, & \mathsf{for} \ p \in \left(0, rac{1}{2}\right) \cup \left(rac{1}{2}, 1
ight) \ 0, & \mathsf{for} \ p = rac{1}{2} \end{cases}$$

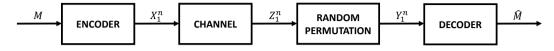


- C_{perm}(·) is discontinuous and non-convex
- C_{perm}(·) is generally agnostic to parameters of channel
- Computationally tractable coding scheme in achievability proof

Outline

- Introduction
- 2 Achievability and Converse for the BSC
- General Achievability Bound
 - Coding Scheme
 - Rank Bound
- 4 General Converse Bounds
- Conclusion

Recall General Problem



- Average probability of error $P^n_{ ext{error}} riangleq \mathbb{P}(M
 eq \hat{M})$
- "Rate" of coding scheme (f_n, g_n) is $R \triangleq \frac{\log(|\mathcal{M}|)}{\log(n)}$
- ullet Rate $R\geq 0$ is achievable $\Leftrightarrow \exists\, \{(f_n,g_n)\}_{n\in\mathbb{N}}$ such that $\lim_{n o\infty} P^n_{\mathsf{error}}=0$

Definition (Permutation Channel Capacity)

$$C_{\mathsf{perm}}(P_{Z|X}) \triangleq \sup\{R \geq 0 : R \text{ is achievable}\}$$

Main Question

What is the permutation channel capacity of a general $P_{Z|X}$?

• Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$

25 / 39

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

25 / 39

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where
$$|\mathcal{M}| = \binom{k+r-1}{r-1} = \Theta(n^{\frac{r-1}{2}})$$

- Let $r = \operatorname{rank}(P_{Z|X})$ and $k = \lfloor \sqrt{n} \rfloor$
- Consider $\mathcal{X}' \subseteq \mathcal{X}$ with $|\mathcal{X}'| = r$ such that $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$ are linearly independent
- Message set:

$$\mathcal{M} \triangleq \left\{ p = (p(x) : x \in \mathcal{X}') \in (\mathbb{Z}_+)^{\mathcal{X}'} : \sum_{x \in \mathcal{X}'} p(x) = k \right\}$$

where
$$|\mathcal{M}| = {k+r-1 \choose r-1} = \Theta(n^{\frac{r-1}{2}})$$

Randomized Encoder:

$$\forall p \in \mathcal{M}, \ f_n(p) = X_1^n \overset{\text{i.i.d.}}{\sim} P_X \quad \text{where} \quad P_X(x) = \begin{cases} \frac{p(x)}{k}, & \text{for } x \in \mathcal{X}' \\ 0, & \text{for } x \in \mathcal{X} \setminus \mathcal{X}' \end{cases}$$

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its Moore-Penrose pseudoinverse

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its Moore-Penrose pseudoinverse
- (Sub-optimal) Thresholding Decoder: For any $y_1^n \in \mathcal{Y}^n$, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \hat{P}_{y_1^n}(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its Moore-Penrose pseudoinverse
- (Sub-optimal) Thresholding Decoder: For any $y_1^n \in \mathcal{Y}^n$, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \hat{P}_{y_1^n}(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{\rho} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{\rho}(x) = \operatorname*{arg\,min}_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

- Let stochastic matrix $\tilde{P}_{Z|X} \in \mathbb{R}^{r \times |\mathcal{Y}|}$ have rows $\{P_{Z|X}(\cdot|x) : x \in \mathcal{X}'\}$
- Let $\tilde{P}_{Z|X}^{\dagger}$ denote its Moore-Penrose pseudoinverse
- (Sub-optimal) Thresholding Decoder: For any $y_1^n \in \mathcal{Y}^n$, Step 1: Construct its type/empirical distribution/histogram

$$\forall y \in \mathcal{Y}, \ \hat{P}_{y_1^n}(y) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}\{y_i = y\}$$

Step 2: Generate estimate $\hat{p} \in (\mathbb{Z}_+)^{\mathcal{X}'}$ with components

$$\forall x \in \mathcal{X}', \ \hat{p}(x) = \operatorname*{arg\,min}_{j \in \{0, \dots, k\}} \left| \sum_{y \in \mathcal{Y}} \hat{P}_{y_1^n}(y) \left[\tilde{P}_{Z|X}^{\dagger} \right]_{y, x} - \frac{j}{k} \right|$$

Step 3: Output decoded message

$$g_n(y_1^n) = \begin{cases} \hat{p}, & \text{if } \hat{p} \in \mathcal{M} \\ \text{error}, & \text{otherwise} \end{cases}$$

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
 .

Remarks about Coding Scheme:

• Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.

27 / 39

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
.

- Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.
- Intuition: Conditioned on M=p, $\hat{P}_{Y_1^n}\approx P_Z$ with high probability as $n\to\infty$.

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
.

- Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.
- Intuition: Conditioned on M=p, $\hat{P}_{Y_1^n}\approx P_Z$ with high probability as $n\to\infty$. Hence, $\sum_{y\in\mathcal{Y}}\hat{P}_{Y_1^n}(y)\big[\tilde{P}_{Z|X}^\dagger\big]_{y,x}\approx P_X(x)$ for all $x\in\mathcal{X}'$ with high probability.

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
.

- Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.
- Intuition: Conditioned on M=p, $\hat{P}_{Y_1^n}\approx P_Z$ with high probability as $n\to\infty$. Hence, $\sum_{y\in\mathcal{Y}}\hat{P}_{Y_1^n}(y)\big[\tilde{P}_{Z|X}^{\dagger}\big]_{y,x}\approx P_X(x)$ for all $x\in\mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq rac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
.

- Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.
- Intuition: Conditioned on M=p, $\hat{P}_{Y_1^n}\approx P_Z$ with high probability as $n\to\infty$. Hence, $\sum_{y\in\mathcal{Y}}\hat{P}_{Y_1^n}(y)\big[\tilde{P}_{Z|X}^{\dagger}\big]_{y,x}\approx P_X(x)$ for all $x\in\mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.

Theorem (Rank Bound)

For any channel $P_{Z|X}$:

$$C_{\mathsf{perm}}(P_{Z|X}) \geq \frac{\mathsf{rank}(P_{Z|X}) - 1}{2}$$
.

- Showing $\lim_{n\to\infty} P_{\text{error}}^n = 0$ proves theorem.
- Intuition: Conditioned on M=p, $\hat{P}_{Y_1^n}\approx P_Z$ with high probability as $n\to\infty$. Hence, $\sum_{y\in\mathcal{Y}}\hat{P}_{Y_1^n}(y)\big[\tilde{P}_{Z|X}^{\dagger}\big]_{y,x}\approx P_X(x)$ for all $x\in\mathcal{X}'$ with high probability.
- Computational complexity: Decoder has O(n) running time.
- Probabilistic method: Good deterministic codes exist.
- Expurgation: Achievability bound holds under maximal probability of error criterion.

Outline

- Introduction
- Achievability and Converse for the BSC
- General Achievability Bound
- General Converse Bounds
 - Output Alphabet Bound
 - Effective Input Alphabet Bound
 - Degradation by Symmetric Channels
- Conclusion

Theorem (Output Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{|\mathcal{Y}|-1}{2}$$
.

Theorem (Output Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{|\mathcal{Y}|-1}{2}$$
.

Remarks:

Proof hinges on Fano's inequality and CLT approximation of binomial entropy.

Theorem (Output Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{|\mathcal{Y}|-1}{2}$$
.

- Proof hinges on Fano's inequality and CLT approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?

Theorem (Output Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{|\mathcal{Y}|-1}{2}$$
.

- Proof hinges on Fano's inequality and CLT approximation of binomial entropy.
- What if $|\mathcal{X}|$ is much smaller than $|\mathcal{Y}|$?
- Want: Converse bound in terms of input alphabet size.

Theorem (Effective Input Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $\text{ext}(P_{Z|X})$ denotes the number of *extreme points* of $\text{conv}\{P_{Z|X}(\cdot|x):x\in\mathcal{X}\}$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $\text{ext}(P_{Z|X})$ denotes the number of *extreme points* of $\text{conv}\{P_{Z|X}(\cdot|x):x\in\mathcal{X}\}$.

Remarks:

• Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $\text{ext}(P_{Z|X})$ denotes the number of *extreme points* of $\text{conv}\{P_{Z|X}(\cdot|x):x\in\mathcal{X}\}$.

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{perm}(P_{Z|X}) \le (\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1)/2$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $\text{ext}(P_{Z|X})$ denotes the number of *extreme points* of $\text{conv}\{P_{Z|X}(\cdot|x):x\in\mathcal{X}\}$.

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \leq \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{perm}(P_{Z|X}) \leq \min\{ext(P_{Z|X}), |\mathcal{Y}|\} 1$.

Theorem (Effective Input Alphabet Bound)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$

where $\text{ext}(P_{Z|X})$ denotes the number of *extreme points* of $\text{conv}\{P_{Z|X}(\cdot|x):x\in\mathcal{X}\}$.

- Effective input alphabet size: $\operatorname{rank}(P_{Z|X}) \leq \operatorname{ext}(P_{Z|X}) \leq |\mathcal{X}|$.
- For any channel $P_{Z|X} > 0$, $C_{\text{perm}}(P_{Z|X}) \leq \left(\min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\} 1\right)/2$.
- For any general channel $P_{Z|X}$, $C_{perm}(P_{Z|X}) \leq \min\{ext(P_{Z|X}), |\mathcal{Y}|\} 1$.
- How do we prove above theorem?

Brief Digression: Degradation

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Brief Digression: Degradation

Definition (Degradation/Blackwell Order [Bla51], [She51], [Ste51], [Cov72], [Ber73])

Given channels $P_{Z_1|X}$ and $P_{Z_2|X}$ with common input alphabet \mathcal{X} , $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if $P_{Z_2|X} = P_{Z_1|X}P_{Z_2|Z_1}$ for some channel $P_{Z_2|Z_1}$.

Theorem (Blackwell-Sherman-Stein [Bla51], [She51], [Ste51])

The observation model $P_{Z_2|X}$ is a degraded version of $P_{Z_1|X}$ if and only if for every prior distribution P_X , and every loss function $L: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, the Bayes risks satisfy:

$$\min_{f(\cdot)} \mathbb{E}\left[L(X, f(Z_1))\right] \leq \min_{g(\cdot)} \mathbb{E}\left[L(X, g(Z_2))\right]$$

where the minima are over all randomized estimators of X.

Brief Digression: Symmetric Channels

Definition (*q*-ary Symmetric Channel)

A *q*-ary symmetric channel, denoted *q*-SC(δ), with total crossover probability $\delta \in [0,1]$ and alphabet \mathcal{X} where $|\mathcal{X}| = q$, is given by the doubly stochastic matrix:

$$W_\delta riangleq egin{bmatrix} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{bmatrix}.$$

Definition (q-ary Symmetric Channel)

A q-ary symmetric channel, denoted q-SC(δ), with total crossover probability $\delta \in [0,1]$ and alphabet $\mathcal X$ where $|\mathcal X|=q$, is given by the doubly stochastic matrix:

$$W_\delta riangleq egin{bmatrix} 1-\delta & rac{\delta}{q-1} & \cdots & rac{\delta}{q-1} \ rac{\delta}{q-1} & 1-\delta & \cdots & rac{\delta}{q-1} \ dots & dots & \ddots & dots \ rac{\delta}{q-1} & rac{\delta}{q-1} & \cdots & 1-\delta \end{bmatrix}.$$

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$,

if
$$0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$$
, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

Remarks:

• Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

- ullet Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \le \nu / (1 (q-1)\nu + \frac{\nu}{q-1})$.

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \leq \nu/(1-(q-1)\nu+\frac{\nu}{q-1})$.
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{q-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

- Prop follows from computing extremal δ such that $W_{\delta}^{-1}P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \leq \nu/\big(1-(q-1)\nu+\frac{\nu}{q-1}\big)$.
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.
 - Alternative bounds for Markov chains [MOS13].

Proposition (Degradation by Symmetric Channels)

Given channel
$$P_{Z|X}$$
 with $\nu = \min_{x \in \mathcal{X}, y \in \mathcal{Y}} P_{Z|X}(y|x)$, if $0 \le \delta \le \frac{\nu}{1 - \nu + \frac{\nu}{g-1}}$, then $P_{Z|X}$ is a degraded version of $q\text{-SC}(\delta)$.

- ullet Prop follows from computing extremal δ such that $W_\delta^{-1} P_{Z|X}$ is row stochastic.
- Bound on δ can be improved when more is known about $P_{Z|X}$:
 - Markov chain [MP18]: $\delta \leq \nu/\big(1-(q-1)\nu+\frac{\nu}{q-1}\big)$.
 - Additive noise channel on Abelian group \mathcal{X} [MP18]: $\delta \leq (q-1)\nu$.
 - Alternative bounds for Markov chains [MOS13].
- Many applications in information theory, statistics, and probability [MP18], [MOS13].

Proof Idea: Degradation by Symmetric Channels

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq rac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$
 .

Proof Sketch:

• Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and $q\text{-SC}(\delta)$, resp.

Proof Idea: Degradation by Symmetric Channels

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$
.

Proof Sketch:

• Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and $q\text{-SC}(\delta)$, resp.

• *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to $ext(P_{Z|X})$.

Proof Idea: Degradation by Symmetric Channels

Theorem (Effective Input Alphabet Bound)

For any entry-wise strictly positive channel $P_{Z|X} > 0$:

$$C_{\mathsf{perm}}(P_{Z|X}) \leq \frac{\mathsf{ext}(P_{Z|X}) - 1}{2}$$
.

Proof Sketch:

ullet Degradation by symmetric channels + tensorization of degradation + data processing

$$\Rightarrow I(X_1^n; Y_1^n) \leq I(X_1^n; \tilde{Y}_1^n)$$

where Y_1^n and \tilde{Y}_1^n are outputs of permutation channels with $P_{Z|X}$ and $q\text{-SC}(\delta)$, resp.

- *Convexity* of KL divergence \Rightarrow Reduce $|\mathcal{X}|$ to $ext(P_{Z|X})$.
- Fano argument of output alphabet bound \Rightarrow effective input alphabet bound.

Outline

- Introduction
- 2 Achievability and Converse for the BSC
- General Achievability Bound
- 4 General Converse Bounds
- Conclusion
 - Strictly Positive and "Full Rank" Channels

Strictly Positive and "Full Rank" Channels

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is "full rank" in the sense that $r \triangleq \text{rank}(P_{Z|X}) = \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

$$C_{\mathsf{perm}}(P_{Z|X}) = \frac{r-1}{2} \, .$$

Strictly Positive and "Full Rank" Channels

Achievability and converse bounds yield:

Theorem (Strictly Positive and "Full Rank" Channels)

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$ that is "full rank" in the sense that $r \triangleq \text{rank}(P_{Z|X}) = \min\{\text{ext}(P_{Z|X}), |\mathcal{Y}|\}$:

$$C_{\mathsf{perm}}(P_{Z|X}) = \frac{r-1}{2} \, .$$

Recall Example: C_{perm} of non-trivial binary symmetric channel is $\frac{1}{2}$.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

Future Directions:

• Characterize C_{perm} of all (entry-wise strictly positive) channels.

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).
- ullet Perform finite blocklength analysis (i.e., exact asymptotics for maximum achievable $|\mathcal{M}|$).

Main Result:

For any entry-wise *strictly positive* channel $P_{Z|X} > 0$:

$$\frac{\operatorname{\mathsf{rank}}(P_{Z|X})-1}{2} \leq C_{\operatorname{\mathsf{perm}}}(P_{Z|X}) \leq \frac{\min\{\operatorname{\mathsf{ext}}(P_{Z|X}), |\mathcal{Y}|\}-1}{2} \,.$$

- Characterize C_{perm} of all (entry-wise strictly positive) channels.
- Perform error exponent analysis (i.e., tight bounds on P_{error}^n).
- Prove strong converse results (i.e., phase transition for P_{error}^n).
- ullet Perform finite blocklength analysis (i.e., exact asymptotics for maximum achievable $|\mathcal{M}|$).
- Analyze permutation channels with more complex probability models in the random permutation block.

References

This talk was based on:

- A. Makur, "Information capacity of BSC and BEC permutation channels," in *Proceedings of the 56th Annual Allerton Conference on Communication, Control, and Computing*, Monticello, IL, USA, October 2-5 2018, pp. 1112–1119.
- A. Makur, "Bounds on permutation channel capacity," in Proceedings of the IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA, June 21-26 2020.
- A. Makur, "Coding theorems for noisy permutation channels," accepted to *IEEE Transactions on Information Theory*, July 2020.

Thank You!