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Preliminaries

finite alphabets X and Y

random variables X ∈ X and Y ∈ Y
probability distributions are row vectors
e.g. PX is pmf on X , and PY is pmf on Y
channels (conditional distributions) are row stochastic matrices
e.g. W = PY |X such that PY = PXW

probability simplex of pmfs of 𝑋

𝑃

𝑃

probability simplex of pmfs of 𝑌

𝑊 𝑃 |

channel
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f -Divergence

Definition (f -Divergence [Csi63, Mor63, AS66, ZZ73, Aka73])

For any convex function f : (0,∞)→ R such that f (1) = 0, we define the
f -divergence between any two pmfs RX and PX on X as:

Df (RX ||PX ) ,
∑
x∈X

PX (x) f

(
RX (x)

PX (x)

)

.

where f (0) = lim
t→0

f (t), 0 f
(

0
0

)
= 0, and 0 f

(
r
0

)
= lim

p→0
p f
(
r
p

)
for all r > 0.

Intuition:
“Distance” between distributions

Non-negativity:

Df (RX ||PX ) ≥ 0

with equality iff RX = PX (where we
assume that f is strictly convex at 1)

probability simplex of pmfs of 𝑋

𝑃𝑅

𝐷 𝑅 ||𝑃
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Examples of f -Divergences

Kullback-Leibler (KL) Divergence: f (t) = t log(t)

D(RX ||PX ) =
∑
x∈X

RX (x) log

(
RX (x)

PX (x)

)
(also known as relative entropy)

χ2-Divergence: f (t) = (t − 1)2 or f (t) = t2 − 1

χ2(RX ||PX ) =
∑
x∈X

(RX (x)− PX (x))2

PX (x)

Total Variation (TV) Distance: f (t) = 1
2 |t − 1|

‖RX − PX‖TV =
1

2

∑
x∈X
|RX (x)− PX (x)|
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Data Processing Inequality (DPI)

Prop (DPI for f -Divergences [Csi63, Mor63, AS66, ZZ73])

Given channel W = PY |X , for any two pmfs RX and PX on X :

Df (RXW ||PXW ) ≤ Df (RX ||PX ) .

probability simplex of pmfs of 𝑋

𝑃

𝑃 𝑊

probability simplex of pmfs of 𝑌

𝑊 𝑃 |

channel

𝑅

𝑅 𝑊𝐷 𝑅 ||𝑃

𝐷 𝑅 𝑊||𝑃 𝑊

Intuition: RX and PX are “less distinguishable” from noisy observation Y
compared to true data X .
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Motivation for Stronger DPIs: Measuring Ergodicity

Consider ergodic Markov chain on state space X :

row stochastic transition kernel W

irreducible ⇒ unique invariant distribution PX

: PXW = PX

irreducible & aperiodic ⇒ lim
n→∞

RXW
n = PX for all initial pmfs RX

Rate of convergence?

DPI states that for any initial distribution RX :

Df (RXW
n||PX ) ≤ Df (RX ||PX ) .

Want stronger version of DPI:

Df (RXW
n||PX ) ≤ ηnDf (RX ||PX )

for some coefficient η ∈ (0, 1).
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Contraction Coefficients for f -Divergences

Def (Contraction Coefficient I [Dob56, AG76, Sen81, CIRRSZ93])

For a fixed channel W = PY |X , the contraction coefficient for an
f -divergence is:

ηf (PY |X ) , sup
RX ,PX :

0<Df (RX ||PX )<+∞

Df (RXW ||PXW )

Df (RX ||PX )
.

Def (Contraction Coefficient II [Sar58, AG76, MZ15, PW16, Rag16])

For a fixed source distribution PX and channel W = PY |X ,
the contraction coefficient for an f -divergence is:

ηf (PX ,PY |X ) , sup
RX :

0<Df (RX ||PX )<+∞

Df (RXW ||PXW )

Df (RX ||PX )
.
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Strong Data Processing Inequality (SDPI)

For fixed channel W = PY |X , the SDPI states that for all pmfs
RX ,PX :

Df (RXW ||PXW ) ≤ ηf (PY |X )Df (RX ||PX ) .

For fixed source pmf PX and channel W = PY |X , the SDPI states
that for all pmfs RX :

Df (RXW ||PXW ) ≤ ηf (PX ,PY |X )Df (RX ||PX ) .

Special Cases:

KL divergence: ηKL(PY |X ), ηKL(PX ,PY |X )

χ2-divergence: ηχ2(PX ,PY |X ) (squared maximal correlation)

TV distance: ηTV(PY |X ) (Dobrushin contraction coefficient)
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Properties: Contraction Coefficients of Sources & Channels

Theorem (Properties of Contraction Coefficients II)

Normalization: 0 ≤ ηf (PX ,PY |X ) ≤ 1.

Independence: ηf (PX ,PY |X ) = 0 if and only if X and Y are
independent.

Decomposability: If f is strictly convex, twice differentiable at unity
with f ′′(1) > 0, and f (0) <∞, then ηf (PX ,PY |X ) = 1 if and only if
PX ,Y is decomposable.

ηχ2 Lower Bound: f is twice differentiable at unity and f ′′(1) > 0:

ηχ2(PX ,PY |X )

Is there an upper bound on ηf in terms of ηχ2?
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Independence: ηf (PX ,PY |X ) = 0 if and only if X and Y are
independent.

Decomposability: If f is strictly convex, twice differentiable at unity
with f ′′(1) > 0, and f (0) <∞, then ηf (PX ,PY |X ) = 1 if and only if
PX ,Y is decomposable.

ηχ2 Lower Bound [MZ15, Rag16, PW17]:
If f is twice differentiable at unity and f ′′(1) > 0:

ηχ2(PX ,PY |X ) ≤ ηf (PX ,PY |X ) .

Is there an upper bound on ηf in terms of ηχ2?
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Upper Bound on Contraction Coefficients

Fix any pmf PX with p? , minx∈X PX (x) > 0, and any channel PY |X .

Theorem (Contraction Coefficient Bound)

If f satisfies certain “regularity conditions,” then:

ηf (PX ,PY |X ) ≤ f ′(1) + f (0)

f ′′(1) p?
ηχ2(PX ,PY |X ) .

(KL Contraction Coefficient Bound)

ηKL(PX ,PY |X ) ≤
2 ηχ2(PX ,PY |X )

φ
(

max
A⊆X

min{PX (A),PX (Ac)}
)
p?
≤
ηχ2(PX ,PY |X )

p?

where φ(p) = 1
1−2p log

(1−p
p

)
.

Proof Idea: Use bounds between f -divergences and χ2-divergence based
on [Su95, OW05, Gil10, Rag16].
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Illustration of KL Contraction Coefficient Bounds

Suppose X ,Y ∈ {0, 1} such that X ∼ Ber(P(X = 1)) and PY |X is
binary symmetric channel (BSC) with crossover probability p ∈ [0, 1].

ηχ2(PX ,PY |X )

≤ ηKL(PX ,PY |X ) ≤
2 ηχ2(PX ,PY |X )

φ(p?) p?
≤
ηχ2(PX ,PY |X )

p?
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Less Noisy Preorder over Channels

Definition (Less Noisy Preorder [KM77])

PY |X = W is less noisy than PZ |X = V , denoted W �ln V , if and only if:

D(PXW ||QXW ) ≥ D(PXV ||QXV )

for every pair of input distributions PX and QX .

ܺ

ܹ ܻ

ܷ

ܸ ܼ
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Main Results

Test �ln using different divergence measure?

Yes, any non-linear operator convex f -divergence, e.g. χ2-divergence

Sufficient conditions for �ln domination by symmetric channels?

Yes

degradation criterion for general channels
stronger criterion for additive noise channels

Why �ln domination by symmetric channels?

extend SDPIs because we information theory
�ln domination ⇒ log-Sobolev inequality
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Motivation: Extend SDPI

SDPI for KL divergence [AG76]:

For any channel V , for all pairs of pmfs PX ,QX :

ηKL(V )D(PX ||QX ) ≥ D(PXV ||QXV )

where ηKL(V ) ∈ [0, 1] is the contraction coefficient.

Relation to Erasure Channels [PW17]:

Definition: q-ary erasure channel q-EC (1− η)
erases input w.p. 1− η, and reproduces input w.p. η.

Prop [PW17]:

q-EC (1− η) �ln V ⇔ ∀PX ,QX , ηD(PX ||QX ) ≥ D(PXV ||QXV ) .

SDPI ⇔ �ln domination by erasure channel
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Main Question

Given channel V , find q-ary symmetric channel Wδ

with largest δ ∈
[
0, q−1

q

]
such that Wδ �ln V ?

Definition (q-ary Symmetric Channel)

Channel matrix:

Wδ ,


1− δ δ

q−1 · · · δ
q−1

δ
q−1 1− δ · · · δ

q−1
...

...
. . .

...
δ

q−1
δ

q−1 · · · 1− δ


where δ ∈ [0, 1] is the total crossover probability.

0

1 11 −

1 −

1 −

0

− 1 − 1

/( − 1)

/( − 1)

/( − 1)
/( − 1)

/( − 1)

/( − 1)

Remark: For every channel V , W0 �ln V and V �ln W(q−1)/q.
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Operator Convexity

f : R→ R can be applied to an n × n Hermitian matrix A via:

f (A) = U diag(f (λ1), . . . , f (λn))UH

where A = U diag(λ1, . . . , λn)UH , λi are eigenvalues, and U is unitary.

Definition (Operator Convexity)

f : R→ R is operator convex if for every n, every pair of n × n Hermitian
matrices A,B, and every λ ∈ [0, 1]:

λf (A) + (1− λ)f (B) �PSD f (λA + (1− λ)B)

where �PSD is the Löwner partial order.

Löwner-Heinz Theorem (Examples [Löw34, Hei51])

For every α ∈ (0, 2]\{1}, f : (0,∞)→ R, f (t) = tα−1
α−1 is operator

convex.

(Hellinger divergence of order α, χ2-divergence)

f : (0,∞)→ R, f (t) = t log(t) is operator convex.

(KL divergence)
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Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of �ln)

Given channels W and V , and any non-linear operator convex function
f : (0,∞)→ R such that f (1) = 0:

W �ln V ⇔ ∀PX ,QX , Df (PXW ||QXW ) ≥ Df (PXV ||QXV )

⇔ ∀PX ,QX , χ
2(PXW ||QXW ) ≥ χ2(PXV ||QXV )

⇔ ∀QX , W diag(QXW )−1 W T �PSD V diag(QXV )−1 V T

Remarks:

Proof uses Löwner’s integral representation [CRS94].

PSD characterization follows from [vDi97].
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Proof uses Löwner’s integral representation [CRS94].

PSD characterization follows from [vDi97].

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 21 / 64



Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of �ln)

Given channels W and V , and any non-linear operator convex function
f : (0,∞)→ R such that f (1) = 0:

W �ln V ⇔ ∀PX ,QX , Df (PXW ||QXW ) ≥ Df (PXV ||QXV )

⇔ ∀PX ,QX , χ
2(PXW ||QXW ) ≥ χ2(PXV ||QXV )

⇔ ∀QX , W diag(QXW )−1 W T �PSD V diag(QXV )−1 V T

Remarks:
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Condition for Degradation by Symmetric Channels

Given channel V , find q-ary symmetric channel Wδ

with largest δ ∈
[
0, q−1

q

]
such that Wδ �ln V ?

Definition (Degradation [Bla51, She51, Ste51, Cov72, Ber73]):
V is degraded version of W , denoted W �deg V , if V = WA for some
channel A.

Prop: W �deg V ⇒ W �ln V .

Theorem (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum
probability entry ν = min{[V ]i ,j : 1 ≤ i , j ≤ q}:

0 ≤ δ ≤ ν

1− (q − 1)ν + ν
q−1

⇒ Wδ �deg V .
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Condition for Degradation by Symmetric Channels

Theorem (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum
probability entry ν = min{[V ]i ,j : 1 ≤ i , j ≤ q}:

0 ≤ δ ≤ ν

1− (q − 1)ν + ν
q−1

⇒ Wδ �deg V .

Remark: Condition is tight when no further information about V known.
For example, suppose:

V =


ν 1− (q − 1)ν ν · · · ν

1− (q − 1)ν ν ν · · · ν
...

...
...

. . .
...

1− (q − 1)ν ν ν · · · ν

 .
Then, 0 ≤ δ ≤ ν/

(
1− (q − 1)ν + ν

q−1

)
⇔ Wδ �deg V .
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Additive Noise Channels

Fix Abelian group (X ,⊕) with order q as alphabet.

Additive noise channel:

Y = X ⊕ Z , X ⊥⊥ Z

where X ,Y ,Z ∈ X are input, output, and noise random variables.

Channel probabilities given by noise pmf PZ :

∀x , y ∈ X , PY |X (y |x) = PZ (−x ⊕ y) .

PY is convolution of PX and PZ :

∀y ∈ X , PY (y) = (PX ∗ PZ )(y) ,
∑
x∈X

PX (x)PZ (−x ⊕ y) .

q-ary symmetric channel: PZ =
(

1− δ, δ
q−1 , . . . ,

δ
q−1

)
for δ ∈ [0, 1]

(· ∗ PZ ) = Wδ
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More Noisy and Degradation Regions

Fix q-ary symmetric channel Wδ with δ ∈ [0, 1].

More noisy region of Wδ is:

more-noisy (Wδ) , {PZ : Wδ �ln (· ∗ PZ )} .

Degradation region of Wδ is:

degrade (Wδ) , {PZ : Wδ �deg (· ∗ PZ )} .
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Domination Structure of Additive Noise Channels

Theorem (More Noisy and Degradation Regions)

For Wδ with δ ∈
[
0, q−1

q

]
and q ≥ 2:

degrade (Wδ) = conv (rows ofWδ)

⊆ conv (rows ofWδ andWγ)

⊆ more-noisy (Wδ)

⊆ {PZ : ‖PZ − u‖2 ≤ ‖wδ − u‖2}

where conv (·) denotes convex hull, γ = (1− δ)/
(

1− δ + δ
(q−1)2

)
, u is the

uniform pmf, and wδ is first row of Wδ.

Furthermore, more-noisy (Wδ) is closed, convex, and invariant under
permutations corresponding to (X ,⊕).
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Domination Structure of Additive Noise Channels

Illustration of the q = 3 case:
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Logarithmic Sobolev Inequalities

Consider irreducible Markov chain V with uniform stationary pmf u
on state space of size q.

Dirichlet form EV : Rq × Rq → [0,∞)

EV (f , f ) ,
1

q
f T
(
I − V + V T

2

)
f

Log-Sobolev inequality with constant α ≥ 0:
For every f ∈ Rq such that f T f = q:

D(f 2u ||u) =
1

q

q∑
i=1

f 2
i log

(
f 2
i

)
≤ 1

α
EV (f , f ) .

Log-Sobolev constant – largest α satisfying log-Sobolev inequality.
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Comparison of Dirichlet Forms

Standard Dirichlet form:

Estd(f , f ) , VARu(f ) =

q∑
i=1

1

q
f 2
i −

(
q∑

i=1

1

q
fi

)2

For standard Dirichlet form, Estd(f , f ) , VARu(f ),
log-Sobolev constant known [DSC96]:

D(f 2u ||u) ≤ q log(q − 1)

(q − 2)
Estd(f , f )

for all f ∈ Rq with f T f = q.

Theorem (Domination of Dirichlet Forms)

For channels Wδ and V with δ ∈
[
0, q−1

q

]
and stationary pmf u:

Wδ �ln V ⇒ EV ≥
qδ

q − 1
Estd pointwise .

Wδ �ln V ⇒ log-Sobolev inequality for V :

D(f 2u ||u) ≤ (q − 1) log(q − 1)

δ (q − 2)
EV (f , f )

for every f ∈ Rq satisfying f T f = q.
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Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables X ∈ X and Y ∈ Y is:

ρmax(X ;Y ) , max
f , g

E[f (X )g(Y )]

where maximization is over all f : X → R and g : Y → R such that
E[f (X )] = E[g(Y )] = 0 and E

[
f (X )2

]
= E

[
g(Y )2

]
= 1.

Prop (Maximal Correlation as Contraction Coefficient [Sar58])

ηχ2(PX ,PY |X ) = ρmax(X ;Y )2

ρmax(X ;Y ) is singular value of E[·|Y ] [Hir35, Rén59].

SVD structure of E[·|Y ] ⇒ SDPI for χ2-divergence

Singular vectors of E[·|Y ] ⇒ feature functions for embedding
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Conditional Expectation Operators

Fix bivariate distribution PX ,Y such that PX > 0 and PY > 0.

Hilbert Spaces:

L2(X ,PX ) ,
{
f : X → R

∣∣E[f (X )2
]
< +∞

}
with inner product:

∀f , f ′ ∈ L2(X ,PX ),
〈
f , f ′

〉
PX

, E
[
f (X )f ′(X )

]
.

L2(Y,PY ) ,
{
g : Y → R

∣∣E[g(Y )2
]
< +∞

}
with inner product:

∀g , g ′ ∈ L2(Y,PY ),
〈
g , g ′

〉
PY

, E
[
g(Y )g ′(Y )

]
.

Definition (Conditional Expectation Operator)

C : L2(X ,PX )→ L2(Y,PY ) maps f ∈ L2(X ,PX ) to C (f ) ∈ L2(Y,PY ):

(C (f ))(y) , E[f (X )|Y = y ] .
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Singular Value Decomposition (SVD)

SVD of Conditional Expectation Operator: For 1 ≤ i ≤ min{|X |, |Y|},
C (fi ) = σigi

σ1 ≥ σ2 ≥ · · · ≥ σmin{|X |,|Y|} ≥ 0 are singular values,
{f1, . . . , f|X |} ⊆ L2(X ,PX ) are right singular vectors,
{g1, . . . , g|Y|} ⊆ L2(Y,PY ) are left singular vectors.

Theorem (SVD Structure)

Operator Norm: ‖C‖op = σ1 = 1, and corresponding singular vectors
are f1 = 1 and g1 = 1.

Max Correlation [Hir35, Rén59]: σ2 = ρmax(X ;Y ) = E[f2(X )g2(Y )].

Courant-Fischer-Weyl: For 2 ≤ k ≤ min{|X |, |Y|},

σk = E[fk(X )gk(Y )] = max
f , g

E[f (X )g(Y )]

where maximization is over unit-norm f ∈ span(f1, . . . , fk−1)⊥ and
g ∈ span(g1, . . . , gk−1)⊥.
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Representation of Conditional Expectation Operators

Consider C = EPX |Y [·|Y ] : L2(X ,QX )→ L2(Y,PY ) with operator norm:

‖C‖2
QX→PY

, max
f ∈L2(X ,QX ):

EQX [f (X )2]=1

EPY

[
EPX |Y [f (X )|Y ]2

]
.

Prop (Inner Product for Contraction Property)

min
QX

‖C‖2
QX→PY

= ‖C‖2
PX→PY

= 1.

For all QX , ‖C‖2
QX→PY

− 1 ≥ χ2(PX ||QX ).

Remark: Q∗X = PX is only inner product that makes C contractive

.
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Modal Decomposition

Theorem (Modal Decomposition [Hir35, Lan58])

Modal decomposition of bivariate distribution:

PX ,Y (x , y) = PX (x)PY (y)

1 +

min{|X |,|Y|}∑
i=2

σi fi (x) gi (y)


where {fi},{gi} are singular vectors of C , and σi = E[fi (X )gi (Y )] are
singular values.

Modal decomposition of mutual χ2-information:

Iχ2(X ;Y ) , χ2(PX ,Y ||PXPY ) =

min{|X |,|Y|}∑
i=2

σ2
i .
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Application: Embedding Data into Euclidean Space

Consider bivariate distribution PX ,Y on categorical variables X and Y ,

e.g.

X =

 , , , , . . .


Y = {ISIT,Allerton, ICASSP, ICML, . . .}

Want: Embed X into Euclidean space Rk using knowledge of PX ,Y

for further processing, e.g. clustering.

“Natural” Embedding: Represent each x ∈ X using conditional
distribution PY |X=x ∈ R|Y|.

probability simplex

|

embed

Dimensionality Reduction:
|Y| is large!
Reduce dimension of embedding.
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Application: Embedding Data into Euclidean Space

Consider bivariate distribution PX ,Y on categorical variables X and Y , e.g.

X =

 , , , , . . .


Y = {ISIT,Allerton, ICASSP, ICML, . . .}

Want: Low-dimensional embedding of X into Euclidean space Rk .

Modal Decomposition Embedding: (when σk+2 small)

ζk : X → Rk , ζk(x) = [σ2f2(x) · · · σk+1fk+1(x)]T

Diffusion Distance Preservation: (similar to diffusion maps [CL06])

Ddiff(PY |X=x ,PY |X=x ′) ,
∑
y∈Y

(
PY |X (y |x)− PY |X (y |x ′)

)2

PY (y)

=
∥∥ζmin{|X |,|Y|}−1(x)− ζmin{|X |,|Y|}−1(x ′)

∥∥2

2

≈
∥∥ζk(x)− ζk(x ′)

∥∥2

2
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Extended Alternating Conditional Expectations Algorithm

Require: joint pmf PX ,Y , number of dominant modes k

1. Initialization: Randomly choose rk : X → Rk .
Repeat:

2. Center and whiten rk to obtain r̂k :

E[r̂k(X )] = 0 and E
[
r̂k(X )r̂k(X )T

]
= I .

3. Compute update sk : Y → Rk : sk(y) = E[r̂k(X )|Y = y ].
4. Center and whiten sk to obtain ŝk :

E[ŝk(Y )] = 0 and E
[
ŝk(Y )ŝk(Y )T

]
= I .

5. Compute update rk : rk(x) = E[ŝk(Y )|X = x ].

Until E
[
r̂k(X )T ŝk(Y )

]
stops increasing.

Remarks:

Orthogonal iteration method [GvL96]

Termination: E
[
r̂k(X )T ŝk(Y )

]
converges to Ky Fan k-norm

∑k+1
i=2 σi

k = 1 case: alternating conditional expectations (ACE) algorithm
for regression [BF85]
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ŝk(Y )ŝk(Y )T
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Sample Extended ACE Algorithm

Suppose true PX ,Y unknown.

Observe i.i.d. training samples (X1,Y1), . . . , (Xn,Yn) ∼ PX ,Y with
empirical joint pmf:

P̂n
X ,Y (x , y) =

1

n

n∑
i=1

1{Xi = x , Yi = y} .

Assume PX and PY known (e.g. high-dimensional regime
max{|X |, |Y|} � n� |X ||Y|, or additional “unlabeled” data).

Sample Version:
Center and update steps use operator Ĉn : L2(X ,PX )→ L2(Y,PY )
that maps f ∈ L2(X ,PX ) to Ĉn(f ) ∈ L2(Y,PY ):

(Ĉn(f ))(y) ,
P̂n
Y (y)

PY (y)
EP̂n

X |Y
[f (X )|Y = y ]− EPX

[f (X )] .
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Sample Complexity Analysis

Let Ĉn have singular values σ̂2 ≥ · · · ≥ σ̂max{|X |,|Y|}+1 ≥ 0

with right singular vectors {f̂2, . . . , f̂|X |+1} ⊆ L2(X ,PX ).

Ĉn is “empirical version” of C with leading singular vector removed,
i.e. C̃ , C − EPX

[·].
Convergence of Ky Fan k-norm (termination condition):

∥∥Ĉn

∥∥
(k)

=
k+1∑
i=2

σ̂i
P−→

∥∥C̃∥∥
(k)

=
k+1∑
i=2

σi

Convergence of “rank k approximation” of χ2-information:

k+1∑
i=2

EPY

[(
C̃ (f̂i )

)
(Y )2

] P−→
k+1∑
i=2

σ2
i
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Sample Complexity Analysis

Fix δ > 0 such that PX ,PY ≥ δ.

Theorem (Consistency)

Ky Fan k-Norm Estimation: For every 0 ≤ t ≤ 1
δ

√
k
2 :

P
(∣∣∣∥∥Ĉn

∥∥
(k)
−
∥∥C̃∥∥

(k)

∣∣∣ ≥ t
)
≤ exp

(
1

4
− nδ2t2

8k

)
Singular Vector Estimation: For every 0 ≤ t ≤ 4k :

P

(∣∣∣∣∣
k+1∑
i=2

EPY

[(
C̃ (f̂i )

)
(Y )2

]
−

k+1∑
i=2

σ2
i

∣∣∣∣∣ ≥ t

)
≤ (|X |+|Y|) exp

(
− nδt2

64k2

)

Remark: n grows with k
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Broadcasting on Bounded Indegree DAGs

Fix infinite directed acyclic graph (DAG) with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting on Bounded Indegree DAGs

Fix infinite DAG with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting on Bounded Indegree DAGs

Fix infinite DAG with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting on Bounded Indegree DAGs

Fix infinite DAG with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting on Bounded Indegree DAGs

Fix infinite DAG with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting on Bounded Indegree DAGs

Fix infinite DAG with single source node.

Xk,j ∈ {0, 1} – node random variable at jth position in level k

Lk – number of nodes at level k

d – indegree of each node

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

X0,0 ∼ Bernoulli
(

1
2

)
Every edge is independent
BSC with crossover
probability δ ∈

(
0, 1

2

)
.

Nodes combine inputs with
d-ary Boolean functions.

This defines joint
distribution of {Xk,j}.

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 47 / 64



Broadcasting Question

Let Xk , (Xk,0, . . . ,Xk,Lk−1).

Can we decode X0 from Xk as k →∞?

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices

Binary Hypothesis Testing: Let X̂ k
ML(Xk) ∈ {0, 1} be maximum

likelihood (ML) decoder with probability of error:

P
(k)
ML , P

(
X̂ k

ML(Xk) 6= X0,0

)

=
1

2

(
1−

∥∥PXk |X0=1 − PXk |X0=0

∥∥
TV

)

.

By DPI, TV distance contracts as k increases.

Broadcasting/Reconstruction possible if:

lim
k→∞

P
(k)
ML <

1

2
⇔ lim

k→∞

∥∥PXk |X0=1 − PXk |X0=0

∥∥
TV

> 0

.

Broadcasting ⇔ TV distance contraction.

For which δ, d , {Lk}, and Boolean processing functions
is reconstruction possible?
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For which δ, d , {Lk}, and Boolean processing functions
is reconstruction possible?
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Motivation: Broadcasting on Trees

Fix tree T with d = 1, identity processing, and branching number br(T ).

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

If , then reconstruction possible: lim
k→∞

P
(k)
ML <

1
2 .

If , then reconstruction impossible: lim
k→∞

P
(k)
ML = 1

2 .

Idea: Contract ηKL(BSC(δ))k = (1− 2δ)2k along br(T )k paths [ES99].

, , , ,

,

, ,

, , , ,
level 

level 

level 

level 

Observations:

Lk sub-exponential ⇒ br(T ) = 1 and reconstruction impossible
d > 1 ⇒ information fusion at nodes

Can we broadcast with sub-exponential Lk when d > 1?

Yes, we can broadcast with Lk = Θ(log(k))!
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Random DAG Model

Fix {Lk} and d > 1.

For each node Xk,j , randomly and independently select d parents
from level k − 1 (with repetition).
This defines random DAG G .
Let P

(k)
ML(G ) be ML decoding probability of error for DAG G , and

define σk , 1
Lk

∑
j Xk,j which is sufficient statistic of Xk for σ0 = X0,0.

, , , ,

,

, ,,

, , , ,
level 

level 

level 

level 

vertices
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Random DAG with Majority Processing

Theorem (Phase Transition for d ≥ 3)

Consider random DAG model with d ≥ 3 and majority processing (with

ties broken randomly). Let δmaj , 1
2 −

2d−2

dd/2e( d
dd/2e)

.

Suppose δ ∈ (0, δmaj). Then, there exists C (δ, d) > 0 such that if
Lk ≥ C (δ, d) log(k), then reconstruction possible:

lim sup
k→∞

P
(
Ŝk 6= X0,0

)
<

1

2

where Ŝk , 1
{
σk ≥ 1

2

}
is majority decoder.

Suppose δ ∈
(
δmaj,

1
2

)
. Then, there exists D(δ, d) > 1 such that if

Lk = o
(
D(δ, d)k

)
, then reconstruction impossible:

lim
k→∞

P
(k)
ML(G ) =

1

2
G -a.s.
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Random DAG with Majority Processing

Theorem (Phase Transition for d ≥ 3)

Consider random DAG model with d ≥ 3 and majority processing (with

ties broken randomly). Let δmaj , 1
2 −

2d−2

dd/2e( d
dd/2e)

.

Suppose δ ∈ (0, δmaj). Then, there exists C (δ, d) > 0 such that if

Lk ≥ C (δ, d) log(k), then lim
k→∞

E
[
P

(k)
ML(G )

]
< 1

2 .

Suppose δ ∈
(
δmaj,

1
2

)
. Then, there exists D(δ, d) > 1 such that if

Lk = o
(
D(δ, d)k

)
, then lim

k→∞
P

(k)
ML(G ) = 1

2 G -a.s.

Remarks:

δmaj = 1
6 for d = 3 appears in reliable computation [vNe56, HW91].

δmaj for odd d ≥ 3 also relevant in reliable computation [ES03].

δmaj for d ≥ 3 relevant in recursive reconstruction on trees [Mos98].
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Random DAG with Majority Processing

Theorem (Phase Transition for d ≥ 3)

Consider random DAG model with d ≥ 3 and majority processing (with

ties broken randomly). Let δmaj , 1
2 −

2d−2

dd/2e( d
dd/2e)

.

Suppose δ ∈ (0, δmaj). Then, there exists C (δ, d) > 0 such that if

Lk ≥ C (δ, d) log(k), then lim
k→∞

E
[
P

(k)
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< 1

2 .

Suppose δ ∈
(
δmaj,

1
2

)
. Then, there exists D(δ, d) > 1 such that if

Lk = o
(
D(δ, d)k

)
, then lim

k→∞
P

(k)
ML(G ) = 1

2 G -a.s.

Questions:

Broadcasting possible with sub-logarithmic Lk?

Broadcasting possible when δ > δmaj with other processing functions?

What about d = 2?
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Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic Lk?

Prop (Layer Size Impossibility Result)

For any deterministic DAG, if:

Lk ≤
log(k)

d log
(

1
2δ

) ,
then reconstruction impossible for all processing functions:

lim
k→∞

P
(k)
ML =

1

2
.

No, broadcasting impossible with sub-logarithmic Lk !
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Partial Converse Results

Broadcasting possible when δ > δmaj

with other processing functions?

Prop (Single Vertex Reconstruction)

Consider random DAG model with d ≥ 3.

If δ ∈ (0, δmaj), Lk ≥ C (δ, d) log(k), and processing functions are
majority, then single vertex reconstruction possible:

lim sup
k→∞

P(Xk,0 6= X0,0) <
1

2
.

If δ ∈
[
δmaj,

1
2

)
, d is odd, lim

k→∞
Lk =∞, and inf

n≥k
Ln = O

(
d2k
)
, then

single vertex reconstruction impossible for all processing functions:

lim
k→∞

E
[∥∥∥PXk,0|G ,X0,0=1 − PXk,0|G ,X0,0=0

∥∥∥
TV

]
= 0 .

Remark: Converse uses reliable computation results [HW91, ES03].

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 55 / 64



Partial Converse Results

Broadcasting possible when δ > δmaj

with other processing functions?

Prop (Single Vertex Reconstruction)

Consider random DAG model with d ≥ 3.

If δ ∈ (0, δmaj), Lk ≥ C (δ, d) log(k), and processing functions are
majority, then single vertex reconstruction possible:

lim sup
k→∞

P(Xk,0 6= X0,0) <
1

2
.

If δ ∈
[
δmaj,

1
2

)
, d is odd, lim

k→∞
Lk =∞, and inf

n≥k
Ln = O

(
d2k
)
, then

single vertex reconstruction impossible for all processing functions:

lim
k→∞

E
[∥∥∥PXk,0|G ,X0,0=1 − PXk,0|G ,X0,0=0

∥∥∥
TV

]
= 0 .

Remark: Converse uses reliable computation results [HW91, ES03].

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 55 / 64



Partial Converse Results

Broadcasting possible when δ > δmaj

with other processing functions?

Remark: Converse uses reliable computation results [HW91, ES03].

Prop (Information Percolation [ES99])

For any deterministic DAG, if:

δ >
1

2
− 1

2
√
d

> δmaj

and Lk = o

(
1

((1− 2δ)2d)k

)
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2
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Random DAG with NAND Processing

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions.

Let δnand , 3−
√

7
4 .

Suppose δ ∈ (0, δnand). Then, there exist C (δ) > 0 and t(δ) ∈ (0, 1)
such that if Lk ≥ C (δ) log(k), then reconstruction possible:

lim
k→∞

E
[
P

(k)
ML(G )

]
≤ lim sup

k→∞
P
(
T̂2k 6= X0,0

)
<

1

2

where T̂k , 1{σk ≥ t(δ)} is thresholding decoder.

Suppose δ ∈
(
δnand,

1
2

)
. Then, there exist D(δ),E (δ) > 1 such that if

Lk = o
(
D(δ)k

)
and lim inf

k→∞
Lk > E (δ), then reconstruction impossible:

lim
k→∞

P
(k)
ML(G ) =

1

2
G -a.s.

Remark: δnand appears in reliable computation [EP98, Ung07].

Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 56 / 64



Random DAG with NAND Processing

What about d = 2?

Theorem (Phase Transition for d = 2)

Consider random DAG model with d = 2 and NAND processing functions.

Let δnand , 3−
√

7
4 .

Suppose δ ∈ (0, δnand). Then, there exist C (δ) > 0 and t(δ) ∈ (0, 1)
such that if Lk ≥ C (δ) log(k), then reconstruction possible:

lim
k→∞

E
[
P

(k)
ML(G )

]
≤ lim sup

k→∞
P
(
T̂2k 6= X0,0

)
<

1

2

where T̂k , 1{σk ≥ t(δ)} is thresholding decoder.

Suppose δ ∈
(
δnand,

1
2

)
. Then, there exist D(δ),E (δ) > 1 such that if

Lk = o
(
D(δ)k

)
and lim inf

k→∞
Lk > E (δ), then reconstruction impossible:

lim
k→∞

P
(k)
ML(G ) =

1

2
G -a.s.

Remark: δnand appears in reliable computation [EP98, Ung07].
Anuran Makur (MIT) Information Contraction & Decomposition 15 May 2019 56 / 64



Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting ⇒ DAG where reconstruction possible exists.

For example:

Corollary (Existence of Deterministic Broadcasting DAGs)

For every d ≥ 3, δ ∈ (0, δmaj), and Lk ≥ C (δ, d) log(k), there exists DAG
with majority processing functions such that reconstruction possible:

lim
k→∞

P
(k)
ML <

1

2
.
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2D Regular Grid Model

DAG is 2D regular grid with Lk = k + 1.

Side nodes use identity processing.

Other nodes use common Boolean processing function.

Conjecture: For all δ ∈
(
0, 1

2

)
and common processing functions,

reconstruction impossible on 2D regular grid model.

Motivation: “Positive rates conjecture” on ergodicity of simple 1D
probabilistic cellular automata.
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Impossibility of Broadcasting

Theorem (2D Regular AND Grid)

For all δ ∈
(
0, 1

2

)
, reconstruction impossible on 2D regular grid model with

AND processing:

lim
k→∞

P
(k)
ML =

1

2
.

Theorem (2D Regular XOR Grid)

For all δ ∈
(
0, 1

2

)
, reconstruction impossible on 2D regular grid model with

XOR processing:

lim
k→∞

P
(k)
ML =

1

2
.
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Conclusion

Main Contributions:

Properties of contraction coefficients

Broadcasting in random DAGs with d ≥ 3 and majority processing

Broadcasting in random DAGs with d = 2 and NAND processing

Broadcasting impossible in 2D regular grids with AND/XOR processing
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