Information Contraction and Decomposition

Anuran Makur

Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology

Doctoral Thesis Defense
15 May 2019

Thesis Committee

Supervisors: Lizhong Zheng and Yury Polyanskiy Reader: Elchanan Mossel

Outline

(1) Introduction

- f-Divergence
- Data Processing Inequalities
- Motivation for Strong Data Processing Inequalities
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Preliminaries

- finite alphabets \mathcal{X} and \mathcal{Y}

Preliminaries

- finite alphabets \mathcal{X} and \mathcal{Y}
- random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$

Preliminaries

- finite alphabets \mathcal{X} and \mathcal{Y}
- random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$
- probability distributions are row vectors e.g. P_{X} is pmf on \mathcal{X}, and P_{Y} is pmf on \mathcal{Y}

Preliminaries

- finite alphabets \mathcal{X} and \mathcal{Y}
- random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$
- probability distributions are row vectors e.g. P_{X} is pmf on \mathcal{X}, and P_{Y} is pmf on \mathcal{Y}
- channels (conditional distributions) are row stochastic matrices e.g. $W=P_{Y \mid X}$ such that $P_{Y}=P_{X} W$

f-Divergence

Definition (f-Divergence [Csi63, Mor63, AS66, ZZ73, Aka73])

For any convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$, we define the f-divergence between any two pmfs R_{X} and P_{X} on \mathcal{X} as:

$$
D_{f}\left(R_{X} \| P_{X}\right) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) f\left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

where $f(0)=\lim _{t \rightarrow 0} f(t), 0 f\left(\frac{0}{0}\right)=0$, and $0 f\left(\frac{r}{0}\right)=\lim _{p \rightarrow 0} p f\left(\frac{r}{p}\right)$ for all $r>0$.

f-Divergence

Definition (f-Divergence [Csi63, Mor63, AS66, ZZ73, Aka73])

For any convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$, we define the f-divergence between any two pmfs R_{X} and P_{X} on \mathcal{X} as:

$$
D_{f}\left(R_{X} \| P_{X}\right) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) f\left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

- Intuition:

"Distance" between distributions

f-Divergence

Definition (f-Divergence [Csi63, Mor63, AS66, ZZ73, Aka73])

For any convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$, we define the f-divergence between any two pmfs R_{X} and P_{X} on \mathcal{X} as:

$$
D_{f}\left(R_{X} \| P_{X}\right) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) f\left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

- Intuition:

"Distance" between distributions

- Non-negativity:

$$
D_{f}\left(R_{X} \| P_{X}\right) \geq 0
$$

with equality iff $R_{X}=P_{X}$ (where we assume that f is strictly convex at 1)

probability simplex of pmfs of X

Examples of f-Divergences

Examples of f-Divergences

- Kullback-Leibler (KL) Divergence: $f(t)=t \log (t)$

$$
D\left(R_{X} \| P_{X}\right)=\sum_{x \in \mathcal{X}} R_{X}(x) \log \left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

(also known as relative entropy)

Examples of f-Divergences

- Kullback-Leibler (KL) Divergence: $f(t)=t \log (t)$

$$
D\left(R_{X} \| P_{X}\right)=\sum_{x \in \mathcal{X}} R_{X}(x) \log \left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

(also known as relative entropy)

- χ^{2}-Divergence: $f(t)=(t-1)^{2}$ or $f(t)=t^{2}-1$

$$
\chi^{2}\left(R_{X} \| P_{X}\right)=\sum_{x \in \mathcal{X}} \frac{\left(R_{X}(x)-P_{X}(x)\right)^{2}}{P_{X}(x)}
$$

Examples of f-Divergences

- Kullback-Leibler (KL) Divergence: $f(t)=t \log (t)$

$$
D\left(R_{X} \| P_{X}\right)=\sum_{x \in \mathcal{X}} R_{X}(x) \log \left(\frac{R_{X}(x)}{P_{X}(x)}\right)
$$

(also known as relative entropy)

- χ^{2}-Divergence: $f(t)=(t-1)^{2}$ or $f(t)=t^{2}-1$

$$
\chi^{2}\left(R_{X} \| P_{X}\right)=\sum_{x \in \mathcal{X}} \frac{\left(R_{X}(x)-P_{X}(x)\right)^{2}}{P_{X}(x)}
$$

- Total Variation (TV) Distance: $f(t)=\frac{1}{2}|t-1|$

$$
\left\|R_{X}-P_{X}\right\|_{\mathrm{TV}}=\frac{1}{2} \sum_{x \in \mathcal{X}}\left|R_{X}(x)-P_{X}(x)\right|
$$

Data Processing Inequality (DPI)

Prop (DPI for f-Divergences [Csi63, Mor63, AS66, ZZ73])

Given channel $W=P_{Y \mid X}$, for any two pmfs R_{X} and P_{X} on \mathcal{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq D_{f}\left(R_{X} \| P_{X}\right)
$$

Data Processing Inequality (DPI)

Prop (DPI for f-Divergences [Csi63, Mor63, AS66, ZZ73])

Given channel $W=P_{Y \mid X}$, for any two pmfs R_{X} and P_{X} on \mathcal{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq D_{f}\left(R_{X} \| P_{X}\right)
$$

Intuition: R_{X} and P_{X} are "less distinguishable" from noisy observation Y compared to true data X.

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W
- irreducible \Rightarrow unique invariant distribution $P_{X}: P_{X} W=P_{X}$

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W
- irreducible \Rightarrow unique invariant distribution $P_{X}: P_{X} W=P_{X}$
- irreducible \& aperiodic $\Rightarrow \lim _{n \rightarrow \infty} R_{X} W^{n}=P_{X}$ for all initial pmfs R_{X}

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W
- irreducible \Rightarrow unique invariant distribution P_{X}
- irreducible \& aperiodic $\Rightarrow \lim _{n \rightarrow \infty} R_{X} W^{n}=P_{X}$ for all initial pmfs R_{X}

Rate of convergence?

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W
- irreducible \Rightarrow unique invariant distribution P_{X}
- irreducible \& aperiodic $\Rightarrow \lim _{n \rightarrow \infty} R_{X} W^{n}=P_{X}$ for all initial pmfs R_{X}

Rate of convergence?
DPI states that for any initial distribution R_{X} :

$$
D_{f}\left(R_{X} W^{n} \| P_{X}\right) \leq D_{f}\left(R_{X} \| P_{X}\right)
$$

Motivation for Stronger DPls: Measuring Ergodicity

Consider ergodic Markov chain on state space \mathcal{X} :

- row stochastic transition kernel W
- irreducible \Rightarrow unique invariant distribution P_{X}
- irreducible \& aperiodic $\Rightarrow \lim _{n \rightarrow \infty} R_{X} W^{n}=P_{X}$ for all initial pmfs R_{X}

Rate of convergence?
DPI states that for any initial distribution R_{X} :

$$
D_{f}\left(R_{X} W^{n} \| P_{X}\right) \leq D_{f}\left(R_{X} \| P_{X}\right)
$$

Want stronger version of DPI:

$$
D_{f}\left(R_{X} W^{n} \| P_{X}\right) \leq \eta^{n} D_{f}\left(R_{X} \| P_{X}\right)
$$

for some coefficient $\eta \in(0,1)$.

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities

- Properties of Contraction Coefficients
- Linear Bounds between Contraction Coefficients
- Illustration of Binary Case
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs

6 Conclusion

Contraction Coefficients for f-Divergences

Def (Contraction Coefficient I [Dob56, AG76, Sen81, CIRRSZ93])

For a fixed channel $W=P_{Y \mid X}$, the contraction coefficient for an f-divergence is:

$$
\eta_{f}\left(P_{Y \mid X}\right) \triangleq \sup _{\substack{R_{X}, P_{X} \\ 0<D_{f}\left(R_{X} \| P_{X}\right)<+\infty}} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)}
$$

Contraction Coefficients for f-Divergences

Def (Contraction Coefficient I [Dob56, AG76, Sen81, CIRRSZ93])

For a fixed channel $W=P_{Y \mid X}$, the contraction coefficient for an f-divergence is:

$$
\eta_{f}\left(P_{Y \mid X}\right) \triangleq \sup _{\substack{R_{X}, P_{X}: \\ 0<D_{f}\left(R_{X} \| P_{X}\right)<+\infty}} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)}
$$

Def (Contraction Coefficient II [Sar58, AG76, MZ15, PW16, Rag16])

For a fixed source distribution P_{X} and channel $W=P_{Y \mid X}$, the contraction coefficient for an f-divergence is:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \triangleq \sup _{\substack{R_{X}: \\ 0<D_{f}\left(R_{X} \| P_{X}\right)<+\infty}} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)}
$$

Contraction Coefficients for f-Divergences

Def (Contraction Coefficient I [Dob56, AG76, Sen81, CIRRSZ93])

For a fixed channel $W=P_{Y \mid X}$, the contraction coefficient for an f-divergence is:

$$
\eta_{f}\left(P_{Y \mid X}\right) \triangleq \sup _{\substack{R_{X}, P_{X}: \\ 0<D_{f}\left(R_{X} \| P_{X}\right)<+\infty}} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)}=\sup _{P_{X}} \eta_{f}\left(P_{X}, P_{Y \mid X}\right)
$$

Def (Contraction Coefficient II [Sar58, AG76, MZ15, PW16, Rag16])

For a fixed source distribution P_{X} and channel $W=P_{Y \mid X}$, the contraction coefficient for an f-divergence is:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \triangleq \sup _{R_{X}:} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)}
$$

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

Special Cases:

- KL divergence: $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right), \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)$

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

Special Cases:

- KL divergence: $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right), \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)$
- χ^{2}-divergence: $\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)$ (squared maximal correlation)

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

Special Cases:

- KL divergence: $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right), \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)$
- χ^{2}-divergence: $\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)$ (squared maximal correlation)
- TV distance: $\eta_{\mathrm{TV}}\left(P_{Y \mid X}\right)$ (Dobrushin contraction coefficient)

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- Properties of contraction coefficients I well-studied [CIRRSZ93].

Special Cases:

- KL divergence: $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right), \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)$
- χ^{2}-divergence: $\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)$ (squared maximal correlation)
- TV distance: $\eta_{\mathrm{TV}}\left(P_{Y \mid X}\right)$ (Dobrushin contraction coefficient)

Strong Data Processing Inequality (SDPI)

- For fixed channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X}, P_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- For fixed source pmf P_{X} and channel $W=P_{Y \mid X}$, the SDPI states that for all pmfs R_{X} :

$$
D_{f}\left(R_{X} W \| P_{X} W\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) D_{f}\left(R_{X} \| P_{X}\right)
$$

- Properties of contraction coefficients II?

Special Cases:

- KL divergence: $\eta_{\mathrm{KL}}\left(P_{Y \mid X}\right), \eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right)$
- χ^{2}-divergence: $\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)$ (squared maximal correlation)
- TV distance: $\eta_{\mathrm{TV}}\left(P_{Y \mid X}\right)$ (Dobrushin contraction coefficient)

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.
- Decomposability: If f is strictly convex, twice differentiable at unity with $f^{\prime \prime}(1)>0$, and $f(0)<\infty$, then $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=1$ if and only if $P_{X, Y}$ is decomposable.

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.
- Decomposability: If f is strictly convex, twice differentiable at unity with $f^{\prime \prime}(1)>0$, and $f(0)<\infty$, then $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=1$ if and only if $P_{X, Y}$ is decomposable (i.e. there exist $h: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $h(X)=g(Y)$ a.s. and $\mathbb{V A} \mathbb{R}(h(X))>0[A G 76])$.

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.
- Decomposability: If f is strictly convex, twice differentiable at unity with $f^{\prime \prime}(1)>0$, and $f(0)<\infty$, then $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=1$ if and only if $P_{X, Y}$ is decomposable.
- $\eta_{\chi^{2}}$ Lower Bound [MZ15, Rag16, PW17]:

If f is twice differentiable at unity and $f^{\prime \prime}(1)>0$:

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) .
$$

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.
- Decomposability: If f is strictly convex, twice differentiable at unity with $f^{\prime \prime}(1)>0$, and $f(0)<\infty$, then $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=1$ if and only if $P_{X, Y}$ is decomposable.
- $\eta_{\chi^{2}}$ Lower Bound: For any pmf P_{X} and channel $W=P_{Y \mid X}$, if f is twice differentiable at unity and $f^{\prime \prime}(1)>0$:

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)=\lim _{\delta \rightarrow 0^{+}} \sup _{\substack{R_{X} \\ 0<D_{f}\left(R_{X} \| P_{X}\right) \leq \delta}} \frac{D_{f}\left(R_{X} W \| P_{X} W\right)}{D_{f}\left(R_{X} \| P_{X}\right)} .
$$

Properties: Contraction Coefficients of Sources \& Channels

Theorem (Properties of Contraction Coefficients II)

- Normalization: $0 \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq 1$.
- Independence: $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=0$ if and only if X and Y are independent.
- Decomposability: If f is strictly convex, twice differentiable at unity with $f^{\prime \prime}(1)>0$, and $f(0)<\infty$, then $\eta_{f}\left(P_{X}, P_{Y \mid X}\right)=1$ if and only if $P_{X, Y}$ is decomposable.
- $\eta_{\chi^{2}}$ Lower Bound [MZ15, Rag16, PW17]: If f is twice differentiable at unity and $f^{\prime \prime}(1)>0$:

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) \leq \eta_{f}\left(P_{X}, P_{Y \mid X}\right)
$$

- Is there an upper bound on η_{f} in terms of $\eta_{\chi^{2}}$?

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Theorem (Contraction Coefficient Bound)

If f satisfies certain "regularity conditions," then:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{f^{\prime}(1)+f(0)}{f^{\prime \prime}(1) p_{\star}} \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) .
$$

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Theorem (Contraction Coefficient Bound)

If f satisfies certain "regularity conditions," then:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{f^{\prime}(1)+f(0)}{f^{\prime \prime}(1) p_{\star}} \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)
$$

Example: This holds for Hellinger divergences of order $\alpha \in(0,2] \backslash\{1\}$, i.e. $f(t)=\frac{t^{\alpha}-1}{\alpha-1}$.

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Theorem (Contraction Coefficient Bound)

If f satisfies certain "regularity conditions," then:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{f^{\prime}(1)+f(0)}{f^{\prime \prime}(1) p_{\star}} \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)
$$

Example: This holds for Hellinger divergences of order $\alpha \in(0,2] \backslash\{1\}$, i.e. $f(t)=\frac{t^{\alpha}-1}{\alpha-1}$. What about $\alpha=1$?

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Theorem (Contraction Coefficient Bound)

If f satisfies certain "regularity conditions," then:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{f^{\prime}(1)+f(0)}{f^{\prime \prime}(1) p_{\star}} \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)
$$

Corollary (KL Contraction Coefficient Bound)

$$
\eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{p_{\star}}
$$

Upper Bound on Contraction Coefficients

Fix any pmf P_{X} with $p_{\star} \triangleq \min _{x \in \mathcal{X}} P_{X}(x)>0$, and any channel $P_{Y \mid X}$.

Theorem (Contraction Coefficient Bound)

If f satisfies certain "regularity conditions," then:

$$
\eta_{f}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{f^{\prime}(1)+f(0)}{f^{\prime \prime}(1) p_{\star}} \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)
$$

Theorem (Refined KL Contraction Coefficient Bound)

$$
\eta_{\mathrm{KL}}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{2 \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{\phi\left(\max _{A \subseteq \mathcal{X}} \min \left\{P_{X}(A), P_{X}\left(A^{c}\right)\right\}\right) p_{\star}} \leq \frac{\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{p_{\star}}
$$

where $\phi(p)=\frac{1}{1-2 p} \log \left(\frac{1-p}{p}\right)$.
Proof Idea: Use bounds between f-divergences and χ^{2}-divergence based on [Su95, OW05, Gil10, Rag16].

Illustration of KL Contraction Coefficient Bounds

Suppose $X, Y \in\{0,1\}$ such that $X \sim \operatorname{Ber}(\mathbb{P}(X=1))$ and $P_{Y \mid X}$ is binary symmetric channel (BSC) with crossover probability $p \in[0,1]$.

Illustration of KL Contraction Coefficient Bounds

Suppose $X, Y \in\{0,1\}$ such that $X \sim \operatorname{Ber}(\mathbb{P}(X=1))$ and $P_{Y \mid X}$ is binary symmetric channel (BSC) with crossover probability $p \in[0,1]$.

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)
$$

Illustration of KL Contraction Coefficient Bounds

Suppose $X, Y \in\{0,1\}$ such that $X \sim \operatorname{Ber}(\mathbb{P}(X=1))$ and $P_{Y \mid X}$ is binary symmetric channel (BSC) with crossover probability $p \in[0,1]$.

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) \leq \eta_{K L}\left(P_{X}, P_{Y \mid X}\right)
$$

Illustration of KL Contraction Coefficient Bounds

Suppose $X, Y \in\{0,1\}$ such that $X \sim \operatorname{Ber}(\mathbb{P}(X=1))$ and $P_{Y \mid X}$ is binary symmetric channel (BSC) with crossover probability $p \in[0,1]$.

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) \leq \eta_{K L}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{2 \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{\phi\left(p_{\star}\right) p_{\star}}
$$

Illustration of KL Contraction Coefficient Bounds

Suppose $X, Y \in\{0,1\}$ such that $X \sim \operatorname{Ber}(\mathbb{P}(X=1))$ and $P_{Y \mid X}$ is binary symmetric channel (BSC) with crossover probability $p \in[0,1]$.

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right) \leq \eta_{K L}\left(P_{X}, P_{Y \mid X}\right) \leq \frac{2 \eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{\phi\left(p_{\star}\right) p_{\star}} \leq \frac{\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)}{p_{\star}}
$$

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

- Motivation and Main Results
- Equivalent Characterizations of Less Noisy Preorder
- Conditions for Less Noisy Domination by Symmetric Channels
- Less Noisy Domination and Logarithmic Sobolev Inequalities
(4) Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Less Noisy Preorder over Channels

Definition (Less Noisy Preorder [KM77])

$P_{Y \mid X}=W$ is less noisy than $P_{Z \mid X}=V$, denoted $W \succeq_{\ln } V$, if and only if:

$$
D\left(P_{X} W \| Q_{X} W\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

for every pair of input distributions P_{X} and Q_{X}.

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure?

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure? Yes, any non-linear operator convex f-divergence, e.g. χ^{2}-divergence

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure?

Yes, any non-linear operator convex f-divergence, e.g. χ^{2}-divergence

- Sufficient conditions for $\succeq_{\ln }$ domination by symmetric channels?

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure? Yes, any non-linear operator convex f-divergence, e.g. χ^{2}-divergence
- Sufficient conditions for $\succeq_{\ln }$ domination by symmetric channels? Yes
- degradation criterion for general channels
- stronger criterion for additive noise channels

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure? Yes, any non-linear operator convex f-divergence, e.g. χ^{2}-divergence
- Sufficient conditions for $\succeq_{\ln }$ domination by symmetric channels? Yes
- degradation criterion for general channels
- stronger criterion for additive noise channels
- Why $\succeq_{\text {In }}$ domination by symmetric channels?

Main Results

- Test $\succeq_{\text {ln }}$ using different divergence measure?

Yes, any non-linear operator convex f-divergence, e.g. χ^{2}-divergence

- Sufficient conditions for $\succeq_{\ln }$ domination by symmetric channels?

Yes

- degradation criterion for general channels
- stronger criterion for additive noise channels
- Why $\succeq_{\text {In }}$ domination by symmetric channels?
- extend SDPIs because we information theory
- $\succeq_{\text {ln }}$ domination \Rightarrow log-Sobolev inequality

Motivation: Extend SDPI

SDPI for KL divergence [AG76]:

For any channel V, for all pairs of pmfs P_{X}, Q_{X} :

$$
\eta_{\mathrm{KL}}(V) D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

where $\eta_{\mathrm{KL}}(V) \in[0,1]$ is the contraction coefficient.

Motivation: Extend SDPI

SDPI for KL divergence [AG76]:

For any channel V, for all pairs of pmfs P_{X}, Q_{X} :

$$
\eta_{\mathrm{KL}}(V) D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

where $\eta_{\mathrm{KL}}(V) \in[0,1]$ is the contraction coefficient.

Relation to Erasure Channels [PW17]:

- Definition: q-ary erasure channel q - $E C(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η.

Motivation: Extend SDPI

SDPI for KL divergence [AG76]:

For any channel V, for all pairs of pmfs P_{X}, Q_{X} :

$$
\eta_{\mathrm{KL}}(V) D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

where $\eta_{\mathrm{KL}}(V) \in[0,1]$ is the contraction coefficient.

Relation to Erasure Channels [PW17]:

- Definition: q-ary erasure channel q - $E C(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η.
- Prop [PW17]:

$$
q-E C(1-\eta) \succeq_{\ln } V \Leftrightarrow \forall P_{X}, Q_{X}, \eta D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

Motivation: Extend SDPI

SDPI for KL divergence [AG76]:

For any channel V, for all pairs of pmfs P_{X}, Q_{X} :

$$
\eta_{\mathrm{KL}}(V) D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

where $\eta_{\mathrm{KL}}(V) \in[0,1]$ is the contraction coefficient.

Relation to Erasure Channels [PW17]:

- Definition: q-ary erasure channel q - $E C(1-\eta)$ erases input w.p. $1-\eta$, and reproduces input w.p. η.
- Prop [PW17]:

$$
q-E C(1-\eta) \succeq_{\ln } V \Leftrightarrow \forall P_{X}, Q_{X}, \eta D\left(P_{X} \| Q_{X}\right) \geq D\left(P_{X} V \| Q_{X} V\right)
$$

SDPI $\Leftrightarrow \succeq_{\text {In }}$ domination by erasure channel

Main Question

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

Main Question

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

Definition (q-ary Symmetric Channel)

Channel matrix:

$$
W_{\delta} \triangleq\left[\begin{array}{cccc}
1-\delta & \frac{\delta}{q-1} & \cdots & \frac{\delta}{q-1} \\
\frac{\delta}{q-1} & 1-\delta & \cdots & \frac{\delta}{q-1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\delta}{q-1} & \frac{\delta}{q-1} & \cdots & 1-\delta
\end{array}\right]
$$

where $\delta \in[0,1]$ is the total crossover probability.

Main Question

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

Definition (q-ary Symmetric Channel)

Channel matrix:

$$
W_{\delta} \triangleq\left[\begin{array}{cccc}
1-\delta & \frac{\delta}{q-1} & \cdots & \frac{\delta}{q-1} \\
\frac{\delta}{q-1} & 1-\delta & \cdots & \frac{\delta}{q-1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\delta}{q-1} & \frac{\delta}{q-1} & \cdots & 1-\delta
\end{array}\right]
$$

where $\delta \in[0,1]$ is the total crossover probability.

Remark: For every channel $V, W_{0} \succeq_{\ln } V$ and $V \succeq_{\text {ln }} W_{(q-1) / q}$.

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

- Motivation and Main Results
- Equivalent Characterizations of Less Noisy Preorder
- Conditions for Less Noisy Domination by Symmetric Channels
- Less Noisy Domination and Logarithmic Sobolev Inequalities
(4) Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Operator Convexity

$f: \mathbb{R} \rightarrow \mathbb{R}$ can be applied to an $n \times n$ Hermitian matrix A via:

$$
f(A)=U \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) U^{H}
$$

where $A=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{H}, \lambda_{i}$ are eigenvalues, and U is unitary.

Operator Convexity

$f: \mathbb{R} \rightarrow \mathbb{R}$ can be applied to an $n \times n$ Hermitian matrix A via:

$$
f(A)=U \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) U^{H}
$$

where $A=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{H}, \lambda_{i}$ are eigenvalues, and U is unitary.

Definition (Operator Convexity)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is operator convex if for every n, every pair of $n \times n$ Hermitian matrices A, B, and every $\lambda \in[0,1]$:

$$
\lambda f(A)+(1-\lambda) f(B) \succeq_{\mathrm{PSD}} f(\lambda A+(1-\lambda) B)
$$

where $\succeq_{\text {PSD }}$ is the Löwner partial order.

Operator Convexity

$f: \mathbb{R} \rightarrow \mathbb{R}$ can be applied to an $n \times n$ Hermitian matrix A via:

$$
f(A)=U \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) U^{H}
$$

where $A=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{H}, \lambda_{i}$ are eigenvalues, and U is unitary.

Definition (Operator Convexity)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is operator convex if for every n, every pair of $n \times n$ Hermitian matrices A, B, and every $\lambda \in[0,1]$:

$$
\lambda f(A)+(1-\lambda) f(B) \succeq_{\text {PSD }} f(\lambda A+(1-\lambda) B)
$$

where $\succeq_{\text {PSD }}$ is the Löwner partial order.

Löwner-Heinz Theorem (Examples [Löw34, Hei51])

- For every $\alpha \in(0,2] \backslash\{1\}, f:(0, \infty) \rightarrow \mathbb{R}, f(t)=\frac{t^{\alpha}-1}{\alpha-1}$ is operator convex.
- $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=t \log (t)$ is operator convex.

Operator Convexity

$f: \mathbb{R} \rightarrow \mathbb{R}$ can be applied to an $n \times n$ Hermitian matrix A via:

$$
f(A)=U \operatorname{diag}\left(f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{n}\right)\right) U^{H}
$$

where $A=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) U^{H}$, λ_{i} are eigenvalues, and U is unitary.

Definition (Operator Convexity)

$f: \mathbb{R} \rightarrow \mathbb{R}$ is operator convex if for every n, every pair of $n \times n$ Hermitian matrices A, B, and every $\lambda \in[0,1]$:

$$
\lambda f(A)+(1-\lambda) f(B) \succeq_{\text {PSD }} f(\lambda A+(1-\lambda) B)
$$

where $\succeq_{\text {PSD }}$ is the Löwner partial order.

Löwner-Heinz Theorem (Examples [Löw34, Hei51])

- For every $\alpha \in(0,2] \backslash\{1\}, f:(0, \infty) \rightarrow \mathbb{R}, f(t)=\frac{t^{\alpha}-1}{\alpha-1}$ is operator convex. (Hellinger divergence of order α, χ^{2}-divergence)
- $f:(0, \infty) \rightarrow \mathbb{R}, f(t)=t \log (t)$ is operator convex. (KL divergence)

Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of $\succeq_{\text {ln }}$)

Given channels W and V, and any non-linear operator convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$:

$$
W \succeq_{\ln } V \Leftrightarrow \forall P_{X}, Q_{X}, D_{f}\left(P_{X} W \| Q_{X} W\right) \geq D_{f}\left(P_{X} V \| Q_{X} V\right)
$$

Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of $\succeq_{\text {ln }}$)

Given channels W and V, and any non-linear operator convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$:

$$
W \succeq_{\ln } V \Leftrightarrow \forall P_{X}, Q_{X}, D_{f}\left(P_{X} W \| Q_{X} W\right) \geq D_{f}\left(P_{X} V \| Q_{X} V\right)
$$

Remarks:

- Proof uses Löwner's integral representation [CRS94].

Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of $\succeq_{\text {ln }}$)

Given channels W and V, and any non-linear operator convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$:

$$
\begin{aligned}
W \succeq_{\ln } V & \Leftrightarrow \forall P_{X}, Q_{X}, D_{f}\left(P_{X} W \| Q_{X} W\right) \geq D_{f}\left(P_{X} V \| Q_{X} V\right) \\
& \Leftrightarrow \forall P_{X}, Q_{X}, \chi^{2}\left(P_{X} W \| Q_{X} W\right) \geq \chi^{2}\left(P_{X} V \| Q_{X} V\right)
\end{aligned}
$$

Remarks:

- Proof uses Löwner's integral representation [CRS94].

Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of $\succeq_{\text {ln }}$)

Given channels W and V, and any non-linear operator convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$:

$$
\begin{aligned}
W \succeq_{\ln } V & \Leftrightarrow \forall P_{X}, Q_{X}, D_{f}\left(P_{X} W \| Q_{X} W\right) \geq D_{f}\left(P_{X} V \| Q_{X} V\right) \\
& \Leftrightarrow \forall P_{X}, Q_{X}, \chi^{2}\left(P_{X} W \| Q_{X} W\right) \geq \chi^{2}\left(P_{X} V \| Q_{X} V\right) \\
& \Leftrightarrow \forall Q_{X}, W \operatorname{diag}\left(Q_{X} W\right)^{-1} W^{T} \succeq_{\text {PSD }} V \operatorname{diag}\left(Q_{X} V\right)^{-1} V^{T}
\end{aligned}
$$

Remarks:

- Proof uses Löwner's integral representation [CRS94].
- Let $J_{X}=P_{X}-Q_{X}$. Then, we have:

$$
\chi^{2}\left(P_{X} W \| Q_{X} W\right)=J_{X} W \operatorname{diag}\left(Q_{X} W\right)^{-1} W^{\top} J_{X}^{T}
$$

Characterization of Less Noisy using Operator Convexity

Theorem (Equivalent Characterizations of $\succeq_{\text {ln }}$)

Given channels W and V, and any non-linear operator convex function $f:(0, \infty) \rightarrow \mathbb{R}$ such that $f(1)=0$:

$$
\begin{aligned}
W \succeq_{\ln } V & \Leftrightarrow \forall P_{X}, Q_{X}, D_{f}\left(P_{X} W \| Q_{X} W\right) \geq D_{f}\left(P_{X} V \| Q_{X} V\right) \\
& \Leftrightarrow \forall P_{X}, Q_{X}, \chi^{2}\left(P_{X} W \| Q_{X} W\right) \geq \chi^{2}\left(P_{X} V \| Q_{X} V\right) \\
& \Leftrightarrow \forall Q_{X}, W \operatorname{diag}\left(Q_{X} W\right)^{-1} W^{T} \succeq_{\text {PSD }} V \operatorname{diag}\left(Q_{X} V\right)^{-1} V^{T}
\end{aligned}
$$

Remarks:

- Proof uses Löwner's integral representation [CRS94].
- PSD characterization follows from [vDi97].

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

- Motivation and Main Results
- Equivalent Characterizations of Less Noisy Preorder
- Conditions for Less Noisy Domination by Symmetric Channels
- Less Noisy Domination and Logarithmic Sobolev Inequalities
(4) Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Condition for Degradation by Symmetric Channels

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

Condition for Degradation by Symmetric Channels

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

- Definition (Degradation [Bla51, She51, Ste51, Cov72, Ber73]): V is degraded version of W, denoted $W \succeq_{\operatorname{deg}} V$, if $V=W A$ for some channel A.

Condition for Degradation by Symmetric Channels

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

- Definition (Degradation [Bla51, She51, Ste51, Cov72, Ber73]): V is degraded version of W, denoted $W \succeq_{\operatorname{deg}} V$, if $V=W A$ for some channel A.
- Prop: $W \succeq_{\operatorname{deg}} V \Rightarrow W \succeq_{\ln } V$.

Condition for Degradation by Symmetric Channels

Given channel V, find q-ary symmetric channel W_{δ} with largest $\delta \in\left[0, \frac{q-1}{q}\right]$ such that $W_{\delta} \succeq_{\ln } V$?

- Definition (Degradation [Bla51, She51, Ste51, Cov72, Ber73]): V is degraded version of W, denoted $W \succeq_{\operatorname{deg}} V$, if $V=W A$ for some channel A.
- Prop: $W \succeq_{\operatorname{deg}} V \Rightarrow W \succeq_{\ln } V$.

Theorem (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum probability entry $\nu=\min \left\{[V]_{i, j}: 1 \leq i, j \leq q\right\}$:

$$
0 \leq \delta \leq \frac{\nu}{1-(q-1) \nu+\frac{\nu}{q-1}} \Rightarrow W_{\delta} \succeq_{\operatorname{deg}} V
$$

Condition for Degradation by Symmetric Channels

Theorem (Degradation by Symmetric Channels)

For channel V with common input and output alphabet, and minimum probability entry $\nu=\min \left\{[V]_{i, j}: 1 \leq i, j \leq q\right\}$:

$$
0 \leq \delta \leq \frac{\nu}{1-(q-1) \nu+\frac{\nu}{q-1}} \Rightarrow W_{\delta} \succeq_{\operatorname{deg}} V .
$$

Remark: Condition is tight when no further information about V known. For example, suppose:

$$
V=\left[\begin{array}{ccccc}
\nu & 1-(q-1) \nu & \nu & \cdots & \nu \\
1-(q-1) \nu & \nu & \nu & \cdots & \nu \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1-(q-1) \nu & \nu & \nu & \cdots & \nu
\end{array}\right]
$$

Then, $0 \leq \delta \leq \nu /\left(1-(q-1) \nu+\frac{\nu}{q-1}\right) \Leftrightarrow W_{\delta} \succeq_{\operatorname{deg}} V$.

Additive Noise Channels

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.

Additive Noise Channels

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$
Y=X \oplus Z, \quad X \Perp Z
$$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise random variables.

Additive Noise Channels

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$
Y=X \oplus Z, \quad X \Perp Z
$$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise random variables.

- Channel probabilities given by noise pmf P_{Z} :

$$
\forall x, y \in \mathcal{X}, \quad P_{Y \mid X}(y \mid x)=P_{Z}(-x \oplus y)
$$

Additive Noise Channels

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$
Y=X \oplus Z, \quad X \Perp Z
$$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise random variables.

- Channel probabilities given by noise pmf P_{Z} :

$$
\forall x, y \in \mathcal{X}, \quad P_{Y \mid X}(y \mid x)=P_{Z}(-x \oplus y)
$$

- P_{Y} is convolution of P_{X} and P_{Z} :

$$
\forall y \in \mathcal{X}, \quad P_{Y}(y)=\left(P_{X} * P_{Z}\right)(y) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) P_{Z}(-x \oplus y)
$$

Additive Noise Channels

- Fix Abelian group (\mathcal{X}, \oplus) with order q as alphabet.
- Additive noise channel:

$$
Y=X \oplus Z, \quad X \Perp Z
$$

where $X, Y, Z \in \mathcal{X}$ are input, output, and noise random variables.

- Channel probabilities given by noise pmf P_{Z} :

$$
\forall x, y \in \mathcal{X}, \quad P_{Y \mid X}(y \mid x)=P_{Z}(-x \oplus y)
$$

- P_{Y} is convolution of P_{X} and P_{Z} :

$$
\forall y \in \mathcal{X}, \quad P_{Y}(y)=\left(P_{X} * P_{Z}\right)(y) \triangleq \sum_{x \in \mathcal{X}} P_{X}(x) P_{Z}(-x \oplus y)
$$

- q-ary symmetric channel: $P_{Z}=\left(1-\delta, \frac{\delta}{q-1}, \ldots, \frac{\delta}{q-1}\right)$ for $\delta \in[0,1]$

$$
\left(\cdot * P_{Z}\right)=W_{\delta}
$$

More Noisy and Degradation Regions

- Fix q-ary symmetric channel W_{δ} with $\delta \in[0,1]$.

More Noisy and Degradation Regions

- Fix q-ary symmetric channel W_{δ} with $\delta \in[0,1]$.
- More noisy region of W_{δ} is:

$$
\operatorname{more-noisy}\left(W_{\delta}\right) \triangleq\left\{P_{Z}: W_{\delta} \succeq_{\ln }\left(\cdot * P_{Z}\right)\right\}
$$

More Noisy and Degradation Regions

- Fix q-ary symmetric channel W_{δ} with $\delta \in[0,1]$.
- More noisy region of W_{δ} is:

$$
\operatorname{more-noisy}\left(W_{\delta}\right) \triangleq\left\{P_{Z}: W_{\delta} \succeq_{\ln }\left(\cdot * P_{Z}\right)\right\}
$$

- Degradation region of W_{δ} is:

$$
\operatorname{degrade}\left(W_{\delta}\right) \triangleq\left\{P_{Z}: W_{\delta} \succeq_{\operatorname{deg}}\left(\cdot * P_{Z}\right)\right\}
$$

Domination Structure of Additive Noise Channels

Theorem (More Noisy and Degradation Regions)

For W_{δ} with $\delta \in\left[0, \frac{q-1}{q}\right]$ and $q \geq 2$:

$$
\begin{aligned}
\operatorname{degrade}\left(W_{\delta}\right) & =\operatorname{conv}\left(\text { rows of } W_{\delta}\right) \\
& \subseteq \operatorname{conv}\left(\text { rows of } W_{\delta} \text { and } W_{\gamma}\right) \\
& \subseteq \text { more-noisy }\left(W_{\delta}\right) \\
& \subseteq\left\{P_{Z}:\left\|P_{Z}-\mathbf{u}\right\|_{2} \leq\left\|w_{\delta}-\mathbf{u}\right\|_{2}\right\}
\end{aligned}
$$

where $\operatorname{conv}(\cdot)$ denotes convex hull, $\gamma=(1-\delta) /\left(1-\delta+\frac{\delta}{(q-1)^{2}}\right), \mathbf{u}$ is the uniform pmf, and w_{δ} is first row of W_{δ}.

Domination Structure of Additive Noise Channels

Theorem (More Noisy and Degradation Regions)

For W_{δ} with $\delta \in\left[0, \frac{q-1}{q}\right]$ and $q \geq 2$:

$$
\begin{aligned}
\operatorname{degrade}\left(W_{\delta}\right) & =\operatorname{conv}\left(\text { rows of } W_{\delta}\right) \\
& \subseteq \operatorname{conv}\left(\text { rows of } W_{\delta} \text { and } W_{\gamma}\right) \\
& \subseteq \text { more-noisy }\left(W_{\delta}\right) \\
& \subseteq\left\{P_{Z}:\left\|P_{Z}-\mathbf{u}\right\|_{2} \leq\left\|w_{\delta}-\mathbf{u}\right\|_{2}\right\}
\end{aligned}
$$

where $\operatorname{conv}(\cdot)$ denotes convex hull, $\gamma=(1-\delta) /\left(1-\delta+\frac{\delta}{(q-1)^{2}}\right), \mathbf{u}$ is the uniform pmf, and w_{δ} is first row of W_{δ}.

Furthermore, more-noisy $\left(W_{\delta}\right)$ is closed, convex, and invariant under permutations corresponding to (\mathcal{X}, \oplus).

Domination Structure of Additive Noise Channels

Illustration of the $q=3$ case:

Domination Structure of Additive Noise Channels

Illustration of the $q=3$ case:

Domination Structure of Additive Noise Channels

Illustration of the $q=3$ case:

Domination Structure of Additive Noise Channels

Illustration of the $q=3$ case:

Domination Structure of Additive Noise Channels

Illustration of the $q=3$ case:

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

- Motivation and Main Results
- Equivalent Characterizations of Less Noisy Preorder
- Conditions for Less Noisy Domination by Symmetric Channels
- Less Noisy Domination and Logarithmic Sobolev Inequalities
(4) Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Logarithmic Sobolev Inequalities

- Consider irreducible Markov chain V with uniform stationary pmf u on state space of size q.

Logarithmic Sobolev Inequalities

- Consider irreducible Markov chain V with uniform stationary pmf u on state space of size q.
- Dirichlet form $\mathcal{E}_{V}: \mathbb{R}^{q} \times \mathbb{R}^{q} \rightarrow[0, \infty)$

$$
\mathcal{E}_{V}(f, f) \triangleq \frac{1}{q} f^{T}\left(I-\frac{V+V^{T}}{2}\right) f
$$

Logarithmic Sobolev Inequalities

- Consider irreducible Markov chain V with uniform stationary pmf u on state space of size q.
- Dirichlet form $\mathcal{E}_{V}: \mathbb{R}^{q} \times \mathbb{R}^{q} \rightarrow[0, \infty)$

$$
\mathcal{E}_{V}(f, f) \triangleq \frac{1}{q} f^{T}\left(I-\frac{V+V^{T}}{2}\right) f
$$

- Log-Sobolev inequality with constant $\alpha \geq 0$: For every $f \in \mathbb{R}^{q}$ such that $f^{T} f=q$:

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right)=\frac{1}{q} \sum_{i=1}^{q} f_{i}^{2} \log \left(f_{i}^{2}\right) \leq \frac{1}{\alpha} \mathcal{E}_{V}(f, f)
$$

Logarithmic Sobolev Inequalities

- Consider irreducible Markov chain V with uniform stationary pmf u on state space of size q.
- Dirichlet form $\mathcal{E}_{V}: \mathbb{R}^{q} \times \mathbb{R}^{q} \rightarrow[0, \infty)$

$$
\mathcal{E}_{V}(f, f) \triangleq \frac{1}{q} f^{T}\left(I-\frac{V+V^{T}}{2}\right) f
$$

- Log-Sobolev inequality with constant $\alpha \geq 0$: For every $f \in \mathbb{R}^{q}$ such that $f^{T} f=q$:

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right)=\frac{1}{q} \sum_{i=1}^{q} f_{i}^{2} \log \left(f_{i}^{2}\right) \leq \frac{1}{\alpha} \mathcal{E}_{V}(f, f)
$$

- Log-Sobolev constant - largest α satisfying log-Sobolev inequality.

Comparison of Dirichlet Forms

- Standard Dirichlet form:

$$
\mathcal{E}_{\text {std }}(f, f) \triangleq \mathbb{V A}_{\mathbb{R}_{\mathbf{u}}}(f)=\sum_{i=1}^{q} \frac{1}{q} f_{i}^{2}-\left(\sum_{i=1}^{q} \frac{1}{q} f_{i}\right)^{2}
$$

Comparison of Dirichlet Forms

- For standard Dirichlet form, $\mathcal{E}_{\text {std }}(f, f) \triangleq \mathbb{V A}_{\mathbf{R}}^{\mathbf{u}}(f)$, log-Sobolev constant known [DSC96]:

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right) \leq \frac{q \log (q-1)}{(q-2)} \mathcal{E}_{\text {std }}(f, f)
$$

for all $f \in \mathbb{R}^{q}$ with $f^{T} f=q$.

Comparison of Dirichlet Forms

- For standard Dirichlet form, $\mathcal{E}_{\text {std }}(f, f) \triangleq \mathbb{V A}_{\mathbf{R}}(f)$, log-Sobolev constant known [DSC96]:

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right) \leq \frac{q \log (q-1)}{(q-2)} \mathcal{E}_{\text {std }}(f, f)
$$

for all $f \in \mathbb{R}^{q}$ with $f^{T} f=q$.

Theorem (Domination of Dirichlet Forms)

For channels W_{δ} and V with $\delta \in\left[0, \frac{q-1}{q}\right]$ and stationary pmf \mathbf{u} :

$$
W_{\delta} \succeq_{\ln } V \Rightarrow \mathcal{E}_{V} \geq \frac{q \delta}{q-1} \mathcal{E}_{\text {std }} \text { pointwise }
$$

Comparison of Dirichlet Forms

- For standard Dirichlet form, $\mathcal{E}_{\text {std }}(f, f) \triangleq \mathbb{V A}_{\mathbb{u}}(f)$, log-Sobolev constant known [DSC96]:

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right) \leq \frac{q \log (q-1)}{(q-2)} \mathcal{E}_{\text {std }}(f, f)
$$

for all $f \in \mathbb{R}^{q}$ with $f^{T} f=q$.

Theorem (Domination of Dirichlet Forms)

For channels W_{δ} and V with $\delta \in\left[0, \frac{q-1}{q}\right]$ and stationary pmf \mathbf{u} :

$$
W_{\delta} \succeq_{\ln } V \Rightarrow \mathcal{E}_{V} \geq \frac{q \delta}{q-1} \mathcal{E}_{\text {std }} \text { pointwise }
$$

- $W_{\delta} \succeq_{\ln } V \Rightarrow$ log-Sobolev inequality for V :

$$
D\left(f^{2} \mathbf{u} \| \mathbf{u}\right) \leq \frac{(q-1) \log (q-1)}{\delta(q-2)} \mathcal{E}_{V}(f, f)
$$

for every $f \in \mathbb{R}^{q}$ satisfying $f^{T} f=q$.

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels
4) Modal Decomposition of Mutual χ^{2}-Information

- Maximal Correlation and Conditional Expectation Operators
- Embedding Data using Modal Decompositions
- Algorithm for Information Decomposition
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ is:

$$
\rho_{\max }(X ; Y) \triangleq \max _{f, g} \mathbb{E}[f(X) g(Y)]
$$

where maximization is over all $f: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $\mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0$ and $\mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1$.

Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ is:

$$
\rho_{\max }(X ; Y) \triangleq \max _{f, g} \mathbb{E}[f(X) g(Y)]
$$

where maximization is over all $f: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $\mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0$ and $\mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1$.

Prop (Maximal Correlation as Contraction Coefficient [Sar58])

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)=\rho_{\max }(X ; Y)^{2}
$$

Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ is:

$$
\rho_{\max }(X ; Y) \triangleq \max _{f, g} \mathbb{E}[f(X) g(Y)]=\max _{f, g} \mathbb{E}[g(Y) \mathbb{E}[f(X) \mid Y]]
$$

where maximization is over all $f: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $\mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0$ and $\mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1$.

Prop (Maximal Correlation as Contraction Coefficient [Sar58])

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)=\rho_{\max }(X ; Y)^{2}
$$

- $\rho_{\text {max }}(X ; Y)$ is singular value of conditional expectation operator $\mathbb{E}[\cdot \mid Y]$ and optimizing functions are singular vectors [Hir35, Rén59].

Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ is:

$$
\rho_{\max }(X ; Y) \triangleq \max _{f, g} \mathbb{E}[f(X) g(Y)]
$$

where maximization is over all $f: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $\mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0$ and $\mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1$.

Prop (Maximal Correlation as Contraction Coefficient [Sar58])

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)=\rho_{\max }(X ; Y)^{2}
$$

- $\rho_{\text {max }}(X ; Y)$ is singular value of $\mathbb{E}[\cdot \mid Y]$ [Hir35, Rén59].
- SVD structure of $\mathbb{E}[\cdot \mid Y] \Rightarrow$ SDPI for χ^{2}-divergence

Maximal Correlation and Contraction Coefficients

Definition (Maximal Correlation [Hir35, Geb41, Sar58, Rén59])

Maximal correlation between random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$ is:

$$
\rho_{\max }(X ; Y) \triangleq \max _{f, g} \mathbb{E}[f(X) g(Y)]
$$

where maximization is over all $f: \mathcal{X} \rightarrow \mathbb{R}$ and $g: \mathcal{Y} \rightarrow \mathbb{R}$ such that $\mathbb{E}[f(X)]=\mathbb{E}[g(Y)]=0$ and $\mathbb{E}\left[f(X)^{2}\right]=\mathbb{E}\left[g(Y)^{2}\right]=1$.

Prop (Maximal Correlation as Contraction Coefficient [Sar58])

$$
\eta_{\chi^{2}}\left(P_{X}, P_{Y \mid X}\right)=\rho_{\max }(X ; Y)^{2}
$$

- $\rho_{\text {max }}(X ; Y)$ is singular value of $\mathbb{E}[\cdot \mid Y]$ [Hir35, Rén59].
- SVD structure of $\mathbb{E}[\cdot \mid Y] \Rightarrow$ SDPI for χ^{2}-divergence
- Singular vectors of $\mathbb{E}[\cdot \mid Y] \Rightarrow$ feature functions for embedding

Conditional Expectation Operators

Fix bivariate distribution $P_{X, Y}$ such that $P_{X}>0$ and $P_{Y}>0$.

Conditional Expectation Operators

Fix bivariate distribution $P_{X, Y}$ such that $P_{X}>0$ and $P_{Y}>0$.

Hilbert Spaces:

$\mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f(X)^{2}\right]<+\infty\right\}$ with inner product:

$$
\forall f, f^{\prime} \in \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right), \quad\left\langle f, f^{\prime}\right\rangle_{P_{X}} \triangleq \mathbb{E}\left[f(X) f^{\prime}(X)\right]
$$

Conditional Expectation Operators

Fix bivariate distribution $P_{X, Y}$ such that $P_{X}>0$ and $P_{Y}>0$.

Hilbert Spaces:

$\mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f(X)^{2}\right]<+\infty\right\}$ with inner product:

$$
\forall f, f^{\prime} \in \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right), \quad\left\langle f, f^{\prime}\right\rangle_{P_{X}} \triangleq \mathbb{E}\left[f(X) f^{\prime}(X)\right] .
$$

$\mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right) \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}\left[g(Y)^{2}\right]<+\infty\right\}$ with inner product:

$$
\forall g, g^{\prime} \in \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right), \quad\left\langle g, g^{\prime}\right\rangle_{P_{Y}} \triangleq \mathbb{E}\left[g(Y) g^{\prime}(Y)\right]
$$

Conditional Expectation Operators

Fix bivariate distribution $P_{X, Y}$ such that $P_{X}>0$ and $P_{Y}>0$.

Hilbert Spaces:

$\mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right) \triangleq\left\{f: \mathcal{X} \rightarrow \mathbb{R} \mid \mathbb{E}\left[f(X)^{2}\right]<+\infty\right\}$ with inner product:

$$
\forall f, f^{\prime} \in \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right), \quad\left\langle f, f^{\prime}\right\rangle_{P_{X}} \triangleq \mathbb{E}\left[f(X) f^{\prime}(X)\right]
$$

$\mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right) \triangleq\left\{g: \mathcal{Y} \rightarrow \mathbb{R} \mid \mathbb{E}\left[g(Y)^{2}\right]<+\infty\right\}$ with inner product:

$$
\forall g, g^{\prime} \in \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right), \quad\left\langle g, g^{\prime}\right\rangle_{P_{Y}} \triangleq \mathbb{E}\left[g(Y) g^{\prime}(Y)\right]
$$

Definition (Conditional Expectation Operator)

$C: \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ maps $f \in \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ to $C(f) \in \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right):$

$$
(C(f))(y) \triangleq \mathbb{E}[f(X) \mid Y=y]
$$

Singular Value Decomposition (SVD)

SVD of Conditional Expectation Operator: For $1 \leq i \leq \min \{|\mathcal{X}|,|\mathcal{Y}|\}$,

$$
C\left(f_{i}\right)=\sigma_{i} g_{i}
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \geq 0$ are singular values,
- $\left\{f_{1}, \ldots, f_{|\mathcal{X}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ are right singular vectors,
- $\left\{g_{1}, \ldots, g_{|\mathcal{Y}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ are left singular vectors.

Singular Value Decomposition (SVD)

SVD of Conditional Expectation Operator: For $1 \leq i \leq \min \{|\mathcal{X}|,|\mathcal{Y}|\}$,

$$
C\left(f_{i}\right)=\sigma_{i} g_{i}
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \geq 0$ are singular values,
- $\left\{f_{1}, \ldots, f_{|\mathcal{X}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ are right singular vectors,
- $\left\{g_{1}, \ldots, g_{|\mathcal{Y}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ are left singular vectors.

Theorem (SVD Structure)

- Operator Norm: $\|C\|_{\text {op }}=\sigma_{1}=1$, and corresponding singular vectors are $f_{1}=1$ and $g_{1}=1$.

Singular Value Decomposition (SVD)

SVD of Conditional Expectation Operator: For $1 \leq i \leq \min \{|\mathcal{X}|,|\mathcal{Y}|\}$,

$$
C\left(f_{i}\right)=\sigma_{i} g_{i}
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \geq 0$ are singular values,
- $\left\{f_{1}, \ldots, f_{|\mathcal{X}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ are right singular vectors,
- $\left\{g_{1}, \ldots, g_{|\mathcal{Y}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ are left singular vectors.

Theorem (SVD Structure)

- Operator Norm: $\|C\|_{\text {op }}=\sigma_{1}=1$, and corresponding singular vectors are $f_{1}=\mathbf{1}$ and $g_{1}=\mathbf{1}$.
- Max Correlation [Hir35, Rén59]: $\sigma_{2}=\rho_{\max }(X ; Y)=\mathbb{E}\left[f_{2}(X) g_{2}(Y)\right]$.

Singular Value Decomposition (SVD)

SVD of Conditional Expectation Operator: For $1 \leq i \leq \min \{|\mathcal{X}|,|\mathcal{Y}|\}$,

$$
C\left(f_{i}\right)=\sigma_{i} g_{i}
$$

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \geq 0$ are singular values,
- $\left\{f_{1}, \ldots, f_{|\mathcal{X}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ are right singular vectors,
- $\left\{g_{1}, \ldots, g_{|\mathcal{Y}|}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ are left singular vectors.

Theorem (SVD Structure)

- Operator Norm: $\|C\|_{\text {op }}=\sigma_{1}=1$, and corresponding singular vectors are $f_{1}=1$ and $g_{1}=1$.
- Max Correlation [Hir35, Rén59]: $\sigma_{2}=\rho_{\max }(X ; Y)=\mathbb{E}\left[f_{2}(X) g_{2}(Y)\right]$.
- Courant-Fischer-Weyl: For $2 \leq k \leq \min \{|\mathcal{X}|,|\mathcal{Y}|\}$,

$$
\sigma_{k}=\mathbb{E}\left[f_{k}(X) g_{k}(Y)\right]=\max _{f, g} \mathbb{E}[f(X) g(Y)]
$$

where maximization is over unit-norm $f \in \operatorname{span}\left(f_{1}, \ldots, f_{k-1}\right)^{\perp}$ and $g \in \operatorname{span}\left(g_{1}, \ldots, g_{k-1}\right)^{\perp}$.

Representation of Conditional Expectation Operators

Consider $C=\mathbb{E}_{P_{X \mid Y}}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ with operator norm:

$$
\|C\|_{Q_{X} \rightarrow P_{Y}}^{2} \triangleq \max _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right): \\ \mathbb{E}_{Q_{X}}\left[f(X)^{2}\right]=1}} \mathbb{E}_{P_{Y}}\left[\mathbb{E}_{P_{X \mid Y}}[f(X) \mid Y]^{2}\right]
$$

Representation of Conditional Expectation Operators

Consider $C=\mathbb{E}_{P_{X \mid Y}}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ with operator norm:

$$
\|C\|_{Q_{X} \rightarrow P_{Y}}^{2} \triangleq \max _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right): \\ \mathbb{E}_{Q_{X}}\left[f(X)^{2}\right]=1}} \mathbb{E}_{P_{Y}}\left[\mathbb{E}_{P_{X \mid Y}}[f(X) \mid Y]^{2}\right]
$$

Prop (Inner Product for Contraction Property)

- $\min _{Q_{X}}\|C\|_{Q_{X} \rightarrow P_{Y}}^{2}=\|C\|_{P_{X} \rightarrow P_{Y}}^{2}=1$.

Remark: $Q_{X}^{*}=P_{X}$ is only inner product that makes C contractive.

Representation of Conditional Expectation Operators

Consider $C=\mathbb{E}_{P_{X \mid Y}}[\cdot \mid Y]: \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ with operator norm:

$$
\|C\|_{Q_{X} \rightarrow P_{Y}}^{2} \triangleq \max _{\substack{f \in \mathcal{L}^{2}\left(\mathcal{X}, Q_{X}\right): \\ \mathbb{E}_{Q_{X}}\left[f(X)^{2}\right]=1}} \mathbb{E}_{P_{Y}}\left[\mathbb{E}_{P_{X \mid Y}}[f(X) \mid Y]^{2}\right]
$$

Prop (Inner Product for Contraction Property)

- $\min _{Q_{X}}\|C\|_{Q_{X} \rightarrow P_{Y}}^{2}=\|C\|_{P_{X} \rightarrow P_{Y}}^{2}=1$.
- For all $Q_{X},\|C\|_{Q_{X} \rightarrow P_{Y}}^{2}-1 \geq \chi^{2}\left(P_{X} \| Q_{X}\right)$.

Remark: $Q_{X}^{*}=P_{X}$ is only inner product that makes C contractive.

Modal Decomposition

Theorem (Modal Decomposition [Hir35, Lan58])

- Modal decomposition of bivariate distribution:

$$
P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)\left(1+\sum_{i=2}^{\min \{|\mathcal{X}||\mathcal{Y}|\}} \sigma_{i} f_{i}(x) g_{i}(y)\right)
$$

where $\left\{f_{i}\right\},\left\{g_{i}\right\}$ are singular vectors of C, and $\sigma_{i}=\mathbb{E}\left[f_{i}(X) g_{i}(Y)\right]$ are singular values.

Modal Decomposition

Theorem (Modal Decomposition [Hir35, Lan58])

- Modal decomposition of bivariate distribution:

$$
P_{X, Y}(x, y)=P_{X}(x) P_{Y}(y)\left(1+\sum_{i=2}^{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \sigma_{i} f_{i}(x) g_{i}(y)\right)
$$

where $\left\{f_{i}\right\},\left\{g_{i}\right\}$ are singular vectors of C, and $\sigma_{i}=\mathbb{E}\left[f_{i}(X) g_{i}(Y)\right]$ are singular values.

- Modal decomposition of mutual χ^{2}-information:

$$
I_{\chi^{2}}(X ; Y) \triangleq \chi^{2}\left(P_{X, Y} \| P_{X} P_{Y}\right)=\sum_{i=2}^{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \sigma_{i}^{2}
$$

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels
(4) Modal Decomposition of Mutual χ^{2}-Information

- Maximal Correlation and Conditional Expectation Operators
- Embedding Data using Modal Decompositions
- Algorithm for Information Decomposition
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y,

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, }, \text {, }, \text {, }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP, ICML, } \ldots\}
\end{aligned}
$$

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, ere }, \ldots\} \\
& \mathcal{Y}=\{\mathrm{ISIT}, \text { Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Want: Embed \mathcal{X} into Euclidean space \mathbb{R}^{k} using knowledge of $P_{X, Y}$ for further processing, e.g. clustering.

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, ere, }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP, ICML, } \ldots\}
\end{aligned}
$$

Want: Embed \mathcal{X} into Euclidean space \mathbb{R}^{k} using knowledge of $P_{X, Y}$ for further processing, e.g. clustering.
"Natural" Embedding: Represent each $x \in \mathcal{X}$ using conditional distribution $P_{Y \mid X=x} \in \mathbb{R}^{|\mathcal{Y}|}$.

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, ere, }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP, ICML }, \ldots\}
\end{aligned}
$$

Want: Embed \mathcal{X} into Euclidean space \mathbb{R}^{k} using knowledge of $P_{X, Y}$ for further processing, e.g. clustering.
"Natural" Embedding: Represent each $x \in \mathcal{X}$ using conditional distribution $P_{Y \mid X=x} \in \mathbb{R}^{|\mathcal{Y}|}$.

Dimensionality Reduction:
$|\mathcal{Y}|$ is large!
Reduce dimension of embedding.

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, eve }, \ldots\} \\
& \mathcal{Y}=\{\mathrm{ISIT}, \text { Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Want: Low-dimensional embedding of \mathcal{X} into Euclidean space \mathbb{R}^{k}.

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, Ge, }, \ldots\} \\
& \mathcal{Y}=\{\mathrm{ISIT}, \text { Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Modal Decomposition Embedding:

$$
P_{Y \mid X=x}=P_{Y}+\sum_{i=2}^{\min \{|\mathcal{X}|,|\mathcal{Y}|\}} \sigma_{i} f_{i}(x)\left(g_{i} \cdot P_{Y}\right)
$$

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, Ge }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Modal Decomposition Embedding: (when σ_{k+2} small)

$$
\zeta_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}, \quad \zeta_{k}(x)=\left[\sigma_{2} f_{2}(x) \cdots \sigma_{k+1} f_{k+1}(x)\right]^{T}
$$

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, Ge }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Modal Decomposition Embedding: (when σ_{k+2} small)

$$
\zeta_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}, \quad \zeta_{k}(x)=\left[\sigma_{2} f_{2}(x) \cdots \sigma_{k+1} f_{k+1}(x)\right]^{T}
$$

Diffusion Distance Preservation: (similar to diffusion maps [CL06])

$$
D_{\text {diff }}\left(P_{Y \mid X=x}, P_{Y \mid X=x^{\prime}}\right) \triangleq \sum_{y \in \mathcal{Y}} \frac{\left(P_{Y \mid X}(y \mid x)-P_{Y \mid X}\left(y \mid x^{\prime}\right)\right)^{2}}{P_{Y}(y)}
$$

Application: Embedding Data into Euclidean Space

Consider bivariate distribution $P_{X, Y}$ on categorical variables X and Y, e.g.

$$
\begin{aligned}
& \mathcal{X}=\{\text {, }, \ldots\} \\
& \mathcal{Y}=\{\text { ISIT, Allerton, ICASSP }, \mathrm{ICML}, \ldots\}
\end{aligned}
$$

Modal Decomposition Embedding: (when σ_{k+2} small)

$$
\zeta_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}, \quad \zeta_{k}(x)=\left[\sigma_{2} f_{2}(x) \cdots \sigma_{k+1} f_{k+1}(x)\right]^{T}
$$

Diffusion Distance Preservation: (similar to diffusion maps [CL06])

$$
\begin{aligned}
D_{\text {diff }}\left(P_{Y \mid X=x}, P_{Y \mid X=x^{\prime}}\right) & \triangleq \sum_{y \in \mathcal{Y}} \frac{\left(P_{Y \mid X}(y \mid x)-P_{Y \mid X}\left(y \mid x^{\prime}\right)\right)^{2}}{P_{Y}(y)} \\
& =\left\|\zeta_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}-1}(x)-\zeta_{\min \{|\mathcal{X}|,|\mathcal{Y}|\}-1}\left(x^{\prime}\right)\right\|_{2}^{2} \\
& \approx\left\|\zeta_{k}(x)-\zeta_{k}\left(x^{\prime}\right)\right\|_{2}^{2}
\end{aligned}
$$

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information

- Maximal Correlation and Conditional Expectation Operators
- Embedding Data using Modal Decompositions
- Algorithm for Information Decomposition
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

Remarks:

- Orthogonal iteration method [GvL96]

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k 1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=0 \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=\ell
$$

Remarks:

- Orthogonal iteration method [GvL96]

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=l .
$$

3. Compute update $\underline{s}_{k}: \mathcal{Y} \rightarrow \mathbb{R}^{k}: \quad \underline{s}_{k}(y)=\mathbb{E}\left[\hat{r}_{k}(X) \mid Y=y\right]$.

Remarks:

- Orthogonal iteration method [GvL96]

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=1
$$

3. Compute update $\underline{s}_{k}: \mathcal{Y} \rightarrow \mathbb{R}^{k}: \quad \underline{s}_{k}(y)=\mathbb{E}\left[\hat{r}_{k}(X) \mid Y=y\right]$.
4. Center and whiten \underline{s}_{k} to obtain \hat{s}_{k} :

$$
\mathbb{E}\left[\hat{s}_{k}(Y)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{s}_{k}(Y) \hat{s}_{k}(Y)^{T}\right]=I
$$

5. Compute update $\underline{r}_{k}: \quad \underline{r}_{k}(x)=\mathbb{E}\left[\hat{s}_{k}(Y) \mid X=x\right]$.

Remarks:

- Orthogonal iteration: $C^{*}=\mathbb{E}[\cdot \mid X]$ is adjoint of $C=\mathbb{E}[\cdot \mid Y]$

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=l .
$$

3. Compute update $\underline{s}_{k}: \mathcal{Y} \rightarrow \mathbb{R}^{k}: \quad \underline{s}_{k}(y)=\mathbb{E}\left[\hat{r}_{k}(X) \mid Y=y\right]$.
4. Center and whiten \underline{s}_{k} to obtain \hat{s}_{k} :

$$
\mathbb{E}\left[\hat{s}_{k}(Y)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{s}_{k}(Y) \hat{s}_{k}(Y)^{T}\right]=I
$$

5. Compute update $\underline{r}_{k}: \quad \underline{r}_{k}(x)=\mathbb{E}\left[\hat{s}_{k}(Y) \mid X=x\right]$.

Until $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ stops increasing.

Remarks:

- Orthogonal iteration: $C^{*}=\mathbb{E}[\cdot \mid X]$ is adjoint of $C=\mathbb{E}[\cdot \mid Y]$
- Termination: $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ converges to Ky Fan k-norm $\sum_{i=2}^{k+1} \sigma_{i}$

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=l .
$$

3. Compute update $\underline{s}_{k}: \mathcal{Y} \rightarrow \mathbb{R}^{k}: \quad \underline{s}_{k}(y)=\mathbb{E}\left[\hat{r}_{k}(X) \mid Y=y\right]$.
4. Center and whiten \underline{s}_{k} to obtain \hat{s}_{k} :

$$
\mathbb{E}\left[\hat{s}_{k}(Y)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{s}_{k}(Y) \hat{s}_{k}(Y)^{T}\right]=I
$$

5. Compute update $\underline{r}_{k}: \quad \underline{r}_{k}(x)=\mathbb{E}\left[\hat{s}_{k}(Y) \mid X=x\right]$.

Until $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ stops increasing.

Remarks:

- Orthogonal iteration: \hat{r}_{k}, \hat{s}_{k} converge to $\left[f_{2} \cdots f_{k+1}\right]^{T},\left[g_{2} \cdots g_{k+1}\right]^{T}$
- Termination: $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ converges to Ky Fan k-norm $\sum_{i=2}^{k+1} \sigma_{i}$

Extended Alternating Conditional Expectations Algorithm

Require: joint pmf $P_{X, Y}$, number of dominant modes k

1. Initialization: Randomly choose $\underline{r}_{k}: \mathcal{X} \rightarrow \mathbb{R}^{k}$.

Repeat:

2. Center and whiten \underline{r}_{k} to obtain \hat{r}_{k} :

$$
\mathbb{E}\left[\hat{r}_{k}(X)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{r}_{k}(X) \hat{r}_{k}(X)^{T}\right]=l .
$$

3. Compute update $\underline{s}_{k}: \mathcal{Y} \rightarrow \mathbb{R}^{k}: \quad \underline{s}_{k}(y)=\mathbb{E}\left[\hat{r}_{k}(X) \mid Y=y\right]$.
4. Center and whiten \underline{s}_{k} to obtain \hat{s}_{k} :

$$
\mathbb{E}\left[\hat{s}_{k}(Y)\right]=\mathbf{0} \text { and } \mathbb{E}\left[\hat{s}_{k}(Y) \hat{s}_{k}(Y)^{T}\right]=I
$$

5. Compute update $\underline{r}_{k}: \quad \underline{r}_{k}(x)=\mathbb{E}\left[\hat{s}_{k}(Y) \mid X=x\right]$.

Until $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ stops increasing.

Remarks:

- Orthogonal iteration: \hat{r}_{k}, \hat{s}_{k} converge to $\left[f_{2} \cdots f_{k+1}\right]^{T},\left[g_{2} \cdots g_{k+1}\right]^{T}$
- Termination: $\mathbb{E}\left[\hat{r}_{k}(X)^{T} \hat{s}_{k}(Y)\right]$ converges to Ky Fan k-norm $\sum_{i=2}^{k+1} \sigma_{i}$
- $k=1$ case: alternating conditional expectations (ACE) algorithm for regression [BF85]

Sample Extended ACE Algorithm

- Suppose true $P_{X, Y}$ unknown.

Sample Extended ACE Algorithm

- Suppose true $P_{X, Y}$ unknown.
- Observe i.i.d. training samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim P_{X, Y}$ with empirical joint pmf:

$$
\hat{P}_{X, Y}^{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{X_{i}=x, Y_{i}=y\right\}
$$

Sample Extended ACE Algorithm

- Suppose true $P_{X, Y}$ unknown.
- Observe i.i.d. training samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim P_{X, Y}$ with empirical joint pmf:

$$
\hat{P}_{X, Y}^{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{X_{i}=x, Y_{i}=y\right\}
$$

- Assume P_{X} and P_{Y} known (e.g. high-dimensional regime $\max \{|\mathcal{X}|,|\mathcal{Y}|\} \ll n \ll|\mathcal{X}||\mathcal{Y}|$, or additional "unlabeled" data).

Sample Extended ACE Algorithm

- Suppose true $P_{X, Y}$ unknown.
- Observe i.i.d. training samples $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right) \sim P_{X, Y}$ with empirical joint pmf:

$$
\hat{P}_{X, Y}^{n}(x, y)=\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\left\{X_{i}=x, Y_{i}=y\right\}
$$

- Assume P_{X} and P_{Y} known (e.g. high-dimensional regime $\max \{|\mathcal{X}|,|\mathcal{Y}|\} \ll n \ll|\mathcal{X}||\mathcal{Y}|$, or additional "unlabeled" data).
- Sample Version:

Center and update steps use operator $\hat{C}_{n}: \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right) \rightarrow \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$ that maps $f \in \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$ to $\hat{C}_{n}(f) \in \mathcal{L}^{2}\left(\mathcal{Y}, P_{Y}\right)$:

$$
\left(\hat{C}_{n}(f)\right)(y) \triangleq \frac{\hat{P}_{Y}^{n}(y)}{P_{Y}(y)} \mathbb{E}_{\hat{P}_{X \mid Y}^{n}}[f(X) \mid Y=y]-\mathbb{E}_{P_{X}}[f(X)]
$$

Sample Complexity Analysis

- Let \hat{C}_{n} have singular values $\hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{\max \{|\mathcal{X}|,|\mathcal{Y}|\}+1} \geq 0$ with right singular vectors $\left\{\hat{f}_{2}, \ldots, \hat{f}_{|\mathcal{X}|+1}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$.

Sample Complexity Analysis

- Let \hat{C}_{n} have singular values $\hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{\max \{|\mathcal{X}|,|\mathcal{Y}|\}+1} \geq 0$ with right singular vectors $\left\{\hat{f}_{2}, \ldots, \hat{f}_{|\mathcal{X}|+1}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$.
- \hat{C}_{n} is "empirical version" of C with leading singular vector removed, i.e. $\tilde{C} \triangleq C-\mathbb{E}_{P_{\chi}}[\cdot]$.

Sample Complexity Analysis

- Let \hat{C}_{n} have singular values $\hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{\max \{|\mathcal{X}|,|\mathcal{Y}|\}+1} \geq 0$ with right singular vectors $\left\{\hat{f}_{2}, \ldots, \hat{f}_{|\mathcal{X}|+1}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$.
- \hat{C}_{n} is "empirical version" of C with leading singular vector removed, i.e. $\tilde{C} \triangleq C-\mathbb{E}_{P_{\chi}}[\cdot]$.
- Convergence of Ky Fan k-norm (termination condition):

$$
\left\|\hat{C}_{n}\right\|_{(k)}=\sum_{i=2}^{k+1} \hat{\sigma}_{i} \xrightarrow{P}\|\tilde{C}\|_{(k)}=\sum_{i=2}^{k+1} \sigma_{i}
$$

Sample Complexity Analysis

- Let \hat{C}_{n} have singular values $\hat{\sigma}_{2} \geq \cdots \geq \hat{\sigma}_{\max \{|\mathcal{X}|,|\mathcal{Y}|\}+1} \geq 0$ with right singular vectors $\left\{\hat{f}_{2}, \ldots, \hat{f}_{|\mathcal{X}|+1}\right\} \subseteq \mathcal{L}^{2}\left(\mathcal{X}, P_{X}\right)$.
- \hat{C}_{n} is "empirical version" of C with leading singular vector removed, i.e. $\tilde{C} \triangleq C-\mathbb{E}_{P_{x}}[\cdot]$.
- Convergence of Ky Fan k-norm (termination condition):

$$
\left\|\hat{C}_{n}\right\|_{(k)}=\sum_{i=2}^{k+1} \hat{\sigma}_{i} \xrightarrow{P}\|\tilde{C}\|_{(k)}=\sum_{i=2}^{k+1} \sigma_{i}
$$

- Convergence of "rank k approximation" of χ^{2}-information:

$$
\sum_{i=2}^{k+1} \mathbb{E}_{P_{Y}}\left[\left(\tilde{C}\left(\hat{f}_{i}\right)\right)(Y)^{2}\right] \xrightarrow{P} \sum_{i=2}^{k+1} \sigma_{i}^{2}
$$

Sample Complexity Analysis

Fix $\delta>0$ such that $P_{X}, P_{Y} \geq \delta$.

Sample Complexity Analysis

Fix $\delta>0$ such that $P_{X}, P_{Y} \geq \delta$.

Theorem (Consistency)

- Ky Fan k-Norm Estimation: For every $0 \leq t \leq \frac{1}{\delta} \sqrt{\frac{k}{2}}$:

$$
\mathbb{P}\left(\left|\left\|\hat{C}_{n}\right\|_{(k)}-\|\tilde{C}\|_{(k)}\right| \geq t\right) \leq \exp \left(\frac{1}{4}-\frac{n \delta^{2} t^{2}}{8 k}\right)
$$

- Singular Vector Estimation: For every $0 \leq t \leq 4 k$:

$$
\mathbb{P}\left(\left|\sum_{i=2}^{k+1} \mathbb{E}_{P_{Y}}\left[\left(\tilde{C}\left(\hat{f}_{i}\right)\right)(Y)^{2}\right]-\sum_{i=2}^{k+1} \sigma_{i}^{2}\right| \geq t\right) \leq(|\mathcal{X}|+|\mathcal{Y}|) \exp \left(-\frac{n \delta t^{2}}{64 k^{2}}\right)
$$

Sample Complexity Analysis

Fix $\delta>0$ such that $P_{X}, P_{Y} \geq \delta$.

Theorem (Consistency)

- Ky Fan k-Norm Estimation: For every $0 \leq t \leq \frac{1}{\delta} \sqrt{\frac{k}{2}}$:

$$
\mathbb{P}\left(\left|\left\|\hat{C}_{n}\right\|_{(k)}-\|\tilde{C}\|_{(k)}\right| \geq t\right) \leq \exp \left(\frac{1}{4}-\frac{n \delta^{2} t^{2}}{8 k}\right)
$$

- Singular Vector Estimation: For every $0 \leq t \leq 4 k$:

$$
\mathbb{P}\left(\left|\sum_{i=2}^{k+1} \mathbb{E}_{P_{Y}}\left[\left(\tilde{C}\left(\hat{f}_{i}\right)\right)(Y)^{2}\right]-\sum_{i=2}^{k+1} \sigma_{i}^{2}\right| \geq t\right) \leq(|\mathcal{X}|+|\mathcal{Y}|) \exp \left(-\frac{n \delta t^{2}}{64 k^{2}}\right)
$$

Remark: n grows with k

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs

- Problem and Motivation
- Results on Random DAGs
- Results on 2D Regular Grids

6 Conclusion

Broadcasting on Bounded Indegree DAGs

- Fix infinite directed acyclic graph (DAG) with single source node.

Broadcasting on Bounded Indegree DAGs

- Fix infinite DAG with single source node.
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
level 0
level 1
level 2

level k

$$
X_{k, 0}^{\bullet} \quad \stackrel{\ominus}{X}_{k, 1} \quad \cdot \quad \cdot{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\bullet}{X}_{k, L_{k}-1}
$$

Broadcasting on Bounded Indegree DAGs

- Fix infinite DAG with single source node.
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
level 0
level 1

level $k \quad \underset{X_{k, 0}}{\bullet} \quad \stackrel{\ominus}{X_{k, 1}} \quad \cdots \quad \cdots{ }_{X_{k, L_{k}-2}}^{\bullet} \stackrel{\bullet}{X_{k, L_{k}-1}} \quad L_{k}$ vertices

Broadcasting on Bounded Indegree DAGs

- Fix infinite DAG with single source node.
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of each node
level 0
level 1
level 2

Broadcasting on Bounded Indegree DAGs

- Fix infinite DAG with single source node.
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of each node
level 0
level 1
level 2

$$
L_{0}=1
$$

- Every edge is independent

$$
L_{1}=3
$$ BSC with crossover

$$
d=2
$$ probability $\delta \in\left(0, \frac{1}{2}\right)$.

$$
\begin{array}{llll}
& X_{2,0} & X_{2,1} & X_{2,2}
\end{array} X_{2,3}
$$

$$
L_{2}=4
$$

-
-
-

level $k \quad \stackrel{\ominus}{\bullet} \quad \stackrel{\bullet}{X_{k, 1}} \quad \cdots \quad \cdots \quad{ }_{X_{k, L_{k}-2}}^{\bullet} \quad \stackrel{\bullet}{X_{k, L_{k}-1}} \quad L_{k}$ vertices

Broadcasting on Bounded Indegree DAGs

- Fix infinite DAG with single source node.
- $X_{k, j} \in\{0,1\}$ - node random variable at j th position in level k
- L_{k} - number of nodes at level k
- d - indegree of each node

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?

level $k \quad \stackrel{X_{k, 0}}{\bullet} \quad \stackrel{\bullet}{X_{k, 1}} \quad \cdots \quad{ }_{X_{k, L_{k}-2}}^{\bullet} \quad \stackrel{\ominus}{X}_{k, L_{k}-1} L_{k}$ vertices

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)
$$

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)=\frac{1}{2}\left(1-\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}\right) .
$$

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)=\frac{1}{2}\left(1-\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}\right)
$$

- By DPI, TV distance contracts as k increases.

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)=\frac{1}{2}\left(1-\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}\right)
$$

- By DPI, TV distance contracts as k increases.
- Broadcasting/Reconstruction possible if:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2} \Leftrightarrow \lim _{k \rightarrow \infty}\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}>0
$$

and Broadcasting/Reconstruction impossible if:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2} \Leftrightarrow \lim _{k \rightarrow \infty}\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}=0
$$

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)=\frac{1}{2}\left(1-\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}\right)
$$

- By DPI, TV distance contracts as k increases.
- Broadcasting/Reconstruction possible iff:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2} \Leftrightarrow \lim _{k \rightarrow \infty}\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}>0
$$

For which $\delta, d,\left\{L_{k}\right\}$, and Boolean processing functions is reconstruction possible?

Broadcasting Question

- Let $X_{k} \triangleq\left(X_{k, 0}, \ldots, X_{k, L_{k}-1}\right)$.
- Can we decode X_{0} from X_{k} as $k \rightarrow \infty$?
- Binary Hypothesis Testing: Let $\hat{X}_{M L}^{k}\left(X_{k}\right) \in\{0,1\}$ be maximum likelihood (ML) decoder with probability of error:

$$
P_{\mathrm{ML}}^{(k)} \triangleq \mathbb{P}\left(\hat{X}_{\mathrm{ML}}^{k}\left(X_{k}\right) \neq X_{0,0}\right)=\frac{1}{2}\left(1-\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}\right)
$$

- By DPI, TV distance contracts as k increases.
- Broadcasting/Reconstruction possible iff:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2} \Leftrightarrow \lim _{k \rightarrow \infty}\left\|P_{X_{k} \mid X_{0}=1}-P_{X_{k} \mid X_{0}=0}\right\|_{\mathrm{TV}}>0
$$

- Broadcasting \Leftrightarrow TV distance contraction.

For which $\delta, d,\left\{L_{k}\right\}$, and Boolean processing functions is reconstruction possible?

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $\delta<\frac{1}{2}-\frac{1}{2 \sqrt{\operatorname{br}(T)}}$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$.
- If $\delta>\frac{1}{2}-\frac{1}{2 \sqrt{\operatorname{br}(T)}}$, then reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$.

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $(1-2 \delta)^{2} \operatorname{br}(T)>1$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$.
- If $(1-2 \delta)^{2} \operatorname{br}(T)<1$, then reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$.

Idea: Contract $\eta_{\mathrm{KL}}(\mathrm{BSC}(\delta))^{k}=(1-2 \delta)^{2 k}$ along $\operatorname{br}(T)^{k}$ paths [ES99].

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $(1-2 \delta)^{2} \operatorname{br}(T)>1$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$.
- If $(1-2 \delta)^{2} \operatorname{br}(T)<1$, then reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$.

Idea: Contract $\eta_{\mathrm{KL}}(\mathrm{BSC}(\delta))^{k}=(1-2 \delta)^{2 k}$ along $\operatorname{br}(T)^{k}$ paths [ES99].

Observations:

- L_{k} sub-exponential $\Rightarrow \operatorname{br}(T)=1$ and reconstruction impossible

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $(1-2 \delta)^{2} \operatorname{br}(T)>1$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$.
- If $(1-2 \delta)^{2} \operatorname{br}(T)<1$, then reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$.

Idea: Contract $\eta_{\mathrm{KL}}(\mathrm{BSC}(\delta))^{k}=(1-2 \delta)^{2 k}$ along $\operatorname{br}(T)^{k}$ paths [ES99].

Observations:

- L_{k} sub-exponential $\Rightarrow \operatorname{br}(T)=1$ and reconstruction impossible
- $d>1 \Rightarrow$ information fusion at nodes

Can we broadcast with sub-exponential L_{k} when $d>1$?

Motivation: Broadcasting on Trees

Fix tree T with $d=1$, identity processing, and branching number $\operatorname{br}(T)$.

Theorem (Phase Transition for Trees [KS66, BRZ95, EKPS00])

- If $(1-2 \delta)^{2} \operatorname{br}(T)>1$, then reconstruction possible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}$.
- If $(1-2 \delta)^{2} \operatorname{br}(T)<1$, then reconstruction impossible: $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}$.

Idea: Contract $\eta_{\mathrm{KL}}(\mathrm{BSC}(\delta))^{k}=(1-2 \delta)^{2 k}$ along $\operatorname{br}(T)^{k}$ paths [ES99].

Observations:

- L_{k} sub-exponential $\Rightarrow \operatorname{br}(T)=1$ and reconstruction impossible
- $d>1 \Rightarrow$ information fusion at nodes

Can we broadcast with sub-exponential L_{k} when $d>1$?
Yes, we can broadcast with $L_{k}=\Theta(\log (k))$!

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs

- Problem and Motivation
- Results on Random DAGs
- Results on 2D Regular Grids

6 Conclusion

Random DAG Model

- Fix $\left\{L_{k}\right\}$ and $d>1$.

Random DAG Model

- Fix $\left\{L_{k}\right\}$ and $d>1$.
- For each node $X_{k, j}$, randomly and independently select d parents from level $k-1$ (with repetition).
- This defines random DAG G.

Random DAG Model

- Fix $\left\{L_{k}\right\}$ and $d>1$.
- For each node $X_{k, j}$, randomly and independently select d parents from level $k-1$ (with repetition).
- This defines random DAG G.
- Let $P_{\mathrm{ML}}^{(k)}(G)$ be ML decoding probability of error for DAG G, and define $\sigma_{k} \triangleq \frac{1}{L_{k}} \sum_{j} X_{k, j}$ which is sufficient statistic of X_{k} for $\sigma_{0}=X_{0,0}$.

level $k \begin{array}{lllll}X_{k, 0} & \stackrel{\bullet}{X} & \cdots & \cdots & X_{k, 1} \stackrel{\bullet}{L_{k}-2}\end{array} \stackrel{\bullet}{X}_{X_{k, L_{k}-1}} L_{k}$ vertices

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

- Suppose $\delta \in\left(0, \delta_{\text {maj }}\right)$. Then, there exists $C(\delta, d)>0$ such that if $L_{k} \geq C(\delta, d) \log (k)$, then reconstruction possible:

$$
\limsup _{k \rightarrow \infty} \mathbb{P}\left(\hat{S}_{k} \neq X_{0,0}\right)<\frac{1}{2}
$$

where $\hat{S}_{k} \triangleq \mathbb{1}\left\{\sigma_{k} \geq \frac{1}{2}\right\}$ is majority decoder.

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

- Suppose $\delta \in\left(0, \delta_{\text {maj }}\right)$. Then, there exists $C(\delta, d)>0$ such that if $L_{k} \geq C(\delta, d) \log (k)$, then reconstruction possible:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{\mathrm{ML}}^{(k)}(G)\right] \leq \limsup _{k \rightarrow \infty} \mathbb{P}\left(\hat{S}_{k} \neq X_{0,0}\right)<\frac{1}{2}
$$

where $\hat{S}_{k} \triangleq \mathbb{1}\left\{\sigma_{k} \geq \frac{1}{2}\right\}$ is majority decoder.

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

- Suppose $\delta \in\left(0, \delta_{\text {maj }}\right)$. Then, there exists $C(\delta, d)>0$ such that if $L_{k} \geq C(\delta, d) \log (k)$, then reconstruction possible:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{\mathrm{ML}}^{(k)}(G)\right] \leq \limsup _{k \rightarrow \infty} \mathbb{P}\left(\hat{S}_{k} \neq X_{0,0}\right)<\frac{1}{2}
$$

where $\hat{S}_{k} \triangleq \mathbb{1}\left\{\sigma_{k} \geq \frac{1}{2}\right\}$ is majority decoder.

- Suppose $\delta \in\left(\delta_{\text {maj }}, \frac{1}{2}\right)$. Then, there exists $D(\delta, d)>1$ such that if $L_{k}=o\left(D(\delta, d)^{k}\right)$, then reconstruction impossible:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}(G)=\frac{1}{2} \quad G \text {-a.s. }
$$

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

- Suppose $\delta \in\left(0, \delta_{\text {maj }}\right)$. Then, there exists $C(\delta, d)>0$ such that if $L_{k} \geq C(\delta, d) \log (k)$, then $\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{\mathrm{ML}}^{(k)}(G)\right]<\frac{1}{2}$.
- Suppose $\delta \in\left(\delta_{\text {maj }}, \frac{1}{2}\right)$. Then, there exists $D(\delta, d)>1$ such that if $L_{k}=o\left(D(\delta, d)^{k}\right)$, then $\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}(G)=\frac{1}{2} \quad G$-a.s.

Remarks:

- $\delta_{\text {maj }}=\frac{1}{6}$ for $d=3$ appears in reliable computation [vNe56, HW91].
- $\delta_{\text {maj }}$ for odd $d \geq 3$ also relevant in reliable computation [ES03].
- $\delta_{\text {maj }}$ for $d \geq 3$ relevant in recursive reconstruction on trees [Mos98].

Random DAG with Majority Processing

Theorem (Phase Transition for $d \geq 3$)

Consider random DAG model with $d \geq 3$ and majority processing (with ties broken randomly). Let $\delta_{\text {maj }} \triangleq \frac{1}{2}-\frac{2^{d-2}}{\lceil d / 2\rceil\binom{ d}{\lceil d / 2\rceil}}$.

- Suppose $\delta \in\left(0, \delta_{\text {maj }}\right)$. Then, there exists $C(\delta, d)>0$ such that if $L_{k} \geq C(\delta, d) \log (k)$, then $\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{\mathrm{ML}}^{(k)}(G)\right]<\frac{1}{2}$.
- Suppose $\delta \in\left(\delta_{\text {maj }}, \frac{1}{2}\right)$. Then, there exists $D(\delta, d)>1$ such that if $L_{k}=o\left(D(\delta, d)^{k}\right)$, then $\lim _{k \rightarrow \infty} P_{M L}^{(k)}(G)=\frac{1}{2} \quad G$-a.s.

Questions:

- Broadcasting possible with sub-logarithmic L_{k} ?
- Broadcasting possible when $\delta>\delta_{\text {maj }}$ with other processing functions?
- What about $d=2$?

Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic L_{k} ?

Prop (Layer Size Impossibility Result)

For any deterministic DAG, if:

$$
L_{k} \leq \frac{\log (k)}{d \log \left(\frac{1}{2 \delta}\right)}
$$

then reconstruction impossible for all processing functions:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

Optimality of Logarithmic Layer Size Growth

Broadcasting possible with sub-logarithmic L_{k} ?

Prop (Layer Size Impossibility Result)

For any deterministic DAG, if:

$$
L_{k} \leq \frac{\log (k)}{d \log \left(\frac{1}{2 \delta}\right)}
$$

then reconstruction impossible for all processing functions:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

No, broadcasting impossible with sub-logarithmic L_{k} !

Partial Converse Results

Broadcasting possible when $\delta>\delta_{\text {maj }}$ with other processing functions?

Prop (Single Vertex Reconstruction)

Consider random DAG model with $d \geq 3$.

- If $\delta \in\left(0, \delta_{\text {maj }}\right), L_{k} \geq C(\delta, d) \log (k)$, and processing functions are majority, then single vertex reconstruction possible:

$$
\limsup _{k \rightarrow \infty} \mathbb{P}\left(X_{k, 0} \neq X_{0,0}\right)<\frac{1}{2} .
$$

Partial Converse Results

Broadcasting possible when $\delta>\delta_{\text {maj }}$ with other processing functions?

Prop (Single Vertex Reconstruction)

Consider random DAG model with $d \geq 3$.

- If $\delta \in\left(0, \delta_{\text {maj }}\right), L_{k} \geq C(\delta, d) \log (k)$, and processing functions are majority, then single vertex reconstruction possible:

$$
\limsup _{k \rightarrow \infty} \mathbb{P}\left(X_{k, 0} \neq X_{0,0}\right)<\frac{1}{2} .
$$

- If $\delta \in\left[\delta_{\text {maj }}, \frac{1}{2}\right), d$ is odd, $\lim _{k \rightarrow \infty} L_{k}=\infty$, and $\inf _{n \geq k} L_{n}=O\left(d^{2 k}\right)$, then single vertex reconstruction impossible for all processing functions:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[\left\|P_{X_{k, 0} \mid G, X_{0,0}=1}-P_{X_{k, 0} \mid G, X_{0,0}=0}\right\|_{\mathrm{TV}}\right]=0
$$

Remark: Converse uses reliable computation results [HW91, ES03].

Partial Converse Results

Broadcasting possible when $\delta>\delta_{\text {maj }}$ with other processing functions?

Prop (Information Percolation [ES99])

For any deterministic DAG, if:

$$
\delta>\frac{1}{2}-\frac{1}{2 \sqrt{d}} \quad \text { and } \quad L_{k}=o\left(\frac{1}{\left((1-2 \delta)^{2} d\right)^{k}}\right)
$$

then reconstruction impossible for all processing functions:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

Partial Converse Results

Broadcasting possible when $\delta>\delta_{\text {maj }}$ with other processing functions?

Prop (Information Percolation [ES99])

For any deterministic DAG, if:

$$
\delta>\frac{1}{2}-\frac{1}{2 \sqrt{d}}>\delta_{\text {maj }} \quad \text { and } \quad L_{k}=o\left(\frac{1}{\left((1-2 \delta)^{2} d\right)^{k}}\right)
$$

then reconstruction impossible for all processing functions:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}=\frac{1}{2}
$$

Random DAG with NAND Processing

What about $d=2$?

Theorem (Phase Transition for $d=2$)
Consider random DAG model with $d=2$ and NAND processing functions. Let $\delta_{\text {nand }} \triangleq \frac{3-\sqrt{7}}{4}$.

- Suppose $\delta \in\left(0, \delta_{\text {nand }}\right)$. Then, there exist $C(\delta)>0$ and $t(\delta) \in(0,1)$ such that if $L_{k} \geq C(\delta) \log (k)$, then reconstruction possible:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{M L}^{(k)}(G)\right] \leq \limsup _{k \rightarrow \infty} \mathbb{P}\left(\hat{T}_{2 k} \neq X_{0,0}\right)<\frac{1}{2}
$$

where $\hat{T}_{k} \triangleq \mathbb{1}\left\{\sigma_{k} \geq t(\delta)\right\}$ is thresholding decoder.

- Suppose $\delta \in\left(\delta_{\text {nand }}, \frac{1}{2}\right)$. Then, there exist $D(\delta), E(\delta)>1$ such that if $L_{k}=o\left(D(\delta)^{k}\right)$ and $\liminf _{k \rightarrow \infty} L_{k}>E(\delta)$, then reconstruction impossible:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}(G)=\frac{1}{2} \quad G \text {-a.s. }
$$

Random DAG with NAND Processing

What about $d=2$?

Theorem (Phase Transition for $d=2$)

Consider random DAG model with $d=2$ and NAND processing functions. Let $\delta_{\text {nand }} \triangleq \frac{3-\sqrt{7}}{4}$.

- Suppose $\delta \in\left(0, \delta_{\text {nand }}\right)$. Then, there exist $C(\delta)>0$ and $t(\delta) \in(0,1)$ such that if $L_{k} \geq C(\delta) \log (k)$, then reconstruction possible:

$$
\lim _{k \rightarrow \infty} \mathbb{E}\left[P_{\mathrm{ML}}^{(k)}(G)\right] \leq \limsup _{k \rightarrow \infty} \mathbb{P}\left(\hat{T}_{2 k} \neq X_{0,0}\right)<\frac{1}{2}
$$

where $\hat{T}_{k} \triangleq \mathbb{1}\left\{\sigma_{k} \geq t(\delta)\right\}$ is thresholding decoder.

- Suppose $\delta \in\left(\delta_{\text {nand }}, \frac{1}{2}\right)$. Then, there exist $D(\delta), E(\delta)>1$ such that if $L_{k}=o\left(D(\delta)^{k}\right)$ and $\liminf _{k \rightarrow \infty} L_{k}>E(\delta)$, then reconstruction impossible:

$$
\lim _{k \rightarrow \infty} P_{M L}^{(k)}(G)=\frac{1}{2} \quad G \text {-a.s. }
$$

Remark: $\delta_{\text {nand }}$ appears in reliable computation [EP98, Ung07].

Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting \Rightarrow DAG where reconstruction possible exists.

Existence of DAGs where Broadcasting is Possible

Probabilistic Method:

Random DAG broadcasting \Rightarrow DAG where reconstruction possible exists. For example:

Corollary (Existence of Deterministic Broadcasting DAGs)

For every $d \geq 3, \delta \in\left(0, \delta_{\text {maj }}\right)$, and $L_{k} \geq C(\delta, d) \log (k)$, there exists DAG with majority processing functions such that reconstruction possible:

$$
\lim _{k \rightarrow \infty} P_{\mathrm{ML}}^{(k)}<\frac{1}{2}
$$

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels

4 Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs

- Problem and Motivation
- Results on Random DAGs
- Results on 2D Regular Grids

6 Conclusion

2D Regular Grid Model

- DAG is 2D regular grid with $L_{k}=k+1$.

2D Regular Grid Model

- DAG is 2D regular grid with $L_{k}=k+1$.
- Side nodes use identity processing.
- Other nodes use common Boolean processing function.

2D Regular Grid Model

- DAG is 2D regular grid with $L_{k}=k+1$.
- Side nodes use identity processing.
- Other nodes use common Boolean processing function.

Conjecture: For all $\delta \in\left(0, \frac{1}{2}\right)$ and common processing functions, reconstruction impossible on 2D regular grid model.

Motivation: "Positive rates conjecture" on ergodicity of simple 1D probabilistic cellular automata.

Impossibility of Broadcasting

Theorem (2D Regular AND Grid)

For all $\delta \in\left(0, \frac{1}{2}\right)$, reconstruction impossible on 2 D regular grid model with AND processing:

$$
\lim _{k \rightarrow \infty} P_{M L}^{(k)}=\frac{1}{2} .
$$

Theorem (2D Regular XOR Grid)

For all $\delta \in\left(0, \frac{1}{2}\right)$, reconstruction impossible on 2 D regular grid model with XOR processing:

$$
\lim _{k \rightarrow \infty} P_{M L}^{(k)}=\frac{1}{2} .
$$

Outline

(1) Introduction
(2) Contraction Coefficients and Strong Data Processing Inequalities
(3) Extension using Comparison of Channels
(4) Modal Decomposition of Mutual χ^{2}-Information
(5) Information Contraction in Networks: Broadcasting on DAGs
(6) Conclusion

Conclusion

Main Contributions:

- Properties of contraction coefficients

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {ln }}$ via operator convexity

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {ln }}$ via operator convexity
- Extending SDPIs: Conditions for $\succeq_{\text {ln }}$ domination by symmetric channels
- $\succeq_{\text {In }}$ domination \Rightarrow log-Sobolev inequalities

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {In }}$ via operator convexity
- Extending SDPIs: Conditions for $\succeq_{\text {ln }}$ domination by symmetric channels
- $\succeq_{\text {ln }}$ domination \Rightarrow log-Sobolev inequalities
- Maximal correlation functions as embeddings of categorical data
- Structure of conditional expectation operators

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {ln }}$ via operator convexity
- Extending SDPIs: Conditions for $\succeq_{\text {ln }}$ domination by symmetric channels
- $\succeq_{\text {ln }}$ domination \Rightarrow log-Sobolev inequalities
- Maximal correlation functions as embeddings of categorical data
- Structure of conditional expectation operators
- Extended ACE algorithm and sample complexity analysis

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {ln }}$ via operator convexity
- Extending SDPIs: Conditions for $\succeq_{\text {ln }}$ domination by symmetric channels
- $\succeq_{\text {ln }}$ domination \Rightarrow log-Sobolev inequalities
- Maximal correlation functions as embeddings of categorical data
- Structure of conditional expectation operators
- Extended ACE algorithm and sample complexity analysis
- Broadcasting in random DAGs with $d \geq 3$ and majority processing
- Broadcasting in random DAGs with $d=2$ and NAND processing

Conclusion

Main Contributions:

- Properties of contraction coefficients
- Characterization of $\succeq_{\text {In }}$ via operator convexity
- Extending SDPIs: Conditions for $\succeq_{\text {ln }}$ domination by symmetric channels
- $\succeq_{\text {ln }}$ domination \Rightarrow log-Sobolev inequalities
- Maximal correlation functions as embeddings of categorical data
- Structure of conditional expectation operators
- Extended ACE algorithm and sample complexity analysis
- Broadcasting in random DAGs with $d \geq 3$ and majority processing
- Broadcasting in random DAGs with $d=2$ and NAND processing
- Broadcasting impossible in 2D regular grids with AND/XOR processing

Acknowledgments

- Family: Anamitra, Anindita, and Anyatama Makur
- Doctoral Advisers: Yury Polyanskiy and Lizhong Zheng
- Research Guidance: Elchanan Mossel and Gregory Wornell
- Other Professors: Venkat Anantharam, Afonso Bandeira, Guy Bresler, Alan Edelman, Muriel Médard, Alan Oppenheim, and Devavrat Shah
- Friends: Ganesh Ajjanagadde, Mohamed AlHajri, Nirav Bhan, Austin Collins, Joyjit Daw, Ziv Goldfeld, Ankush Gupta, Sidharth Gupta, Shao-Lun Huang, Wasim Huleihel, Gaurav Kankanhalli, Eren Kizildag, Suhas Kowshik, Fabián Kozynski, Ashwin Kumar, Tarek Lahlou, SangJin Lee, Dheeraj Nagaraj, James Noraky, Or Ordentlich, David Qiu, Govind Ramnarayan, Ankit Rawat, Arman Rezaee, Hajir Roozbehani, Amir Salimi, Tuhin Sarkar, Aniket Soneji, James Thomas, Christos Thrampoulidis, Sibi Venkatesan, Aditya Venkatramani, and Eric Zhan
- Admin: Rachel Cohen, Molly Kruko, and Michael Lewy

Thank You!

